CN107994565B - A simulation method and system of unified power flow controller - Google Patents
A simulation method and system of unified power flow controller Download PDFInfo
- Publication number
- CN107994565B CN107994565B CN201711039003.6A CN201711039003A CN107994565B CN 107994565 B CN107994565 B CN 107994565B CN 201711039003 A CN201711039003 A CN 201711039003A CN 107994565 B CN107994565 B CN 107994565B
- Authority
- CN
- China
- Prior art keywords
- voltage
- current
- series
- parallel
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims abstract description 24
- 230000010363 phase shift Effects 0.000 claims description 17
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 238000010276 construction Methods 0.000 claims description 4
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 7
- 238000010586 diagram Methods 0.000 description 19
- 238000012545 processing Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2203/00—Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
- H02J2203/20—Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Electrical Variables (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
本发明提供一种统一潮流控制器的仿真方法,包括:获取电力系统潮流计算所需稳态运行参数;基于所述稳态运行参数和预先建立的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到统一潮流控制器的并联侧和串联侧的控制信号;所述并联侧换流器模型和串联侧换流器模型均包含双环控制和模式选择。本发明能准确地模拟UPFC的功率传输特性,够仿真UPFC在运行中因短路造成电流过大的情况,可以方便的对d轴和q轴的电流进行控制。
The invention provides a simulation method for a unified power flow controller, comprising: obtaining steady-state operation parameters required for power flow calculation of a power system; The series-side converter model obtains the control signals of the parallel-side and series-side of the unified power flow controller; the parallel-side converter model and the series-side converter model both include dual-loop control and mode selection. The invention can accurately simulate the power transmission characteristics of the UPFC, can simulate the situation of excessive current caused by the short circuit of the UPFC during operation, and can conveniently control the currents of the d-axis and the q-axis.
Description
技术领域technical field
本发明涉及电力系统领域的控制仿真领域,具体涉及一种统一潮流控制器的仿真方法及其系统。The invention relates to the field of control simulation in the field of power systems, in particular to a simulation method and system of a unified power flow controller.
背景技术Background technique
随着电网规模的扩大,区域内发电和负荷分布不均衡、输变电设备潮流分布不均匀问题日益突出,设备重载和轻载问题并存,而受制于重载设备的承受能力、电网供电能力难以得到充分利用。此外,由于城市规划的限制,线路改造和电网扩建难度日益增大。因此,在现有网架的基础上如何提高电网的输电能力、改善电网的潮流分布、保证电网的安全运行是当前亟待解决的问题。With the expansion of the scale of the power grid, the problems of uneven distribution of power generation and load in the region, and uneven distribution of power flow of power transmission and transformation equipment have become increasingly prominent. The problems of heavy and light load of equipment coexist, and are subject to the bearing capacity of heavy-load equipment and the power supply capacity of the power grid. Hard to take full advantage of. In addition, due to the limitation of urban planning, it is increasingly difficult to reconstruct the line and expand the power grid. Therefore, on the basis of the existing grid, how to improve the power transmission capacity of the power grid, improve the power flow distribution of the power grid, and ensure the safe operation of the power grid is an urgent problem to be solved at present.
通过采用新型FACTS装置来改善系统运行工况,提高电网输送容量是一个现实且理想的选择。第三代FACTS设备的典型代表统一潮流控制器(UPFC)是目前为止功能最全面、控制范围最广且特性最优越的柔性交流输电装置。UPFC通过调节串联侧和并联侧换流器输出电压的幅值和相角,可以独立或同时对受控母线的电压幅值、受控线路的有功和无功功率进行快速控制,为改善电网的潮流分布、提高线路输电能力提供了新思路和新技术,因此UPFC在实际工程中的应用具有较为明显的技术优势,应用前景广阔。It is a realistic and ideal choice to increase the transmission capacity of the power grid by adopting the new FACTS device to improve the operating conditions of the system. The typical representative of the third-generation FACTS equipment, the Unified Power Flow Controller (UPFC), is the flexible AC transmission device with the most comprehensive functions, the widest control range and the most superior characteristics so far. UPFC can quickly control the voltage amplitude of the controlled bus and the active and reactive power of the controlled line independently or simultaneously by adjusting the amplitude and phase angle of the output voltage of the series-side and parallel-side converters. The distribution of power flow and the improvement of power transmission capacity of the line provide new ideas and new technologies. Therefore, the application of UPFC in practical engineering has obvious technical advantages and broad application prospects.
UPFC的迅速发展和应用,对电力系统仿真提出了更高的要求。现有的UPFC控制模型多适用于机电暂态或电磁暂态,仿真速度明显不能满足电力系统的实际需要。The rapid development and application of UPFC have put forward higher requirements for power system simulation. The existing UPFC control models are mostly suitable for electromechanical transients or electromagnetic transients, and the simulation speed obviously cannot meet the actual needs of the power system.
发明内容SUMMARY OF THE INVENTION
为了解决现有技术中所存在的现有的UPFC控制模型仿真速度明显不能满足电力系统的实际需要的不足,本发明提供一种统一潮流控制器的仿真方法及系统。In order to solve the problem in the prior art that the simulation speed of the existing UPFC control model obviously cannot meet the actual needs of the power system, the present invention provides a simulation method and system for a unified power flow controller.
本发明提供的技术方案是:一种统一潮流控制器的仿真方法,所述方法包括:The technical scheme provided by the present invention is: a simulation method of a unified power flow controller, the method comprises:
获取电力系统潮流计算所需稳态运行参数;Obtain steady-state operating parameters required for power system power flow calculation;
基于所述稳态运行参数和预先建立的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到统一潮流控制器的并联侧和串联侧的控制信号;Based on the steady-state operating parameters and the pre-established parallel-side converter model and series-side converter model of the unified power flow controller, the control signals of the parallel-side and series-side converters of the unified power flow controller are obtained;
所述并联侧换流器模型和串联侧换流器模型均包含双环控制和模式选择。Both the parallel-side inverter model and the series-side inverter model include dual-loop control and mode selection.
优选的,所述获取电力系统潮流计算所需稳态运行参数包括:Preferably, the obtaining steady-state operating parameters required for power flow calculation of the power system includes:
由测量系统测量的串/并联侧电压和电流值,经过计算得到并联侧无功功率实际值、串联侧有功功率实际值和串联侧无功功率实际值,并将所述串联侧有功功率、并联侧直流电压和串/并联侧无功功率实际值转换为对应的标幺值。The voltage and current values of the series/parallel side measured by the measurement system are calculated to obtain the actual value of the parallel side reactive power, the actual value of the series side active power and the actual value of the series side reactive power. The actual values of side DC voltage and series/parallel side reactive power are converted into corresponding per-unit values.
优选的,所述有功功率标幺值按下式计算:Preferably, the active power per unit value is calculated as follows:
P=Vd*Id+Vq*IqP=Vd*Id+Vq*Iq
式中,P:有功功率标幺值;Vd:测量到的电压在d轴上的分量;Id:测量到的电流在d轴上的分量;Vq:测量到的电压在q轴上的分量,Iq:测量到的电流在q轴上的分量。In the formula, P: per-unit value of active power; Vd: the component of the measured voltage on the d-axis; Id: the component of the measured current on the d-axis; Vq: the component of the measured voltage on the q-axis, Iq: Component of the measured current on the q-axis.
优选的,所述无功功率标幺值按下式计算:Preferably, the reactive power per unit value is calculated as follows:
Q=Vq*Id-Vd*IqQ=Vq*Id-Vd*Iq
式中,Q:无功功率标幺值;Vd:测量到的电压d轴分量;Id:测量到的电流d轴分量;Vq:测量到的电压q轴分量,Iq:测量到的电流q轴分量。In the formula, Q: per unit value of reactive power; Vd: measured voltage d-axis component; Id: measured current d-axis component; Vq: measured voltage q-axis component, Iq: measured current q-axis weight.
优选的,所述测量到的电压d轴分量Vd按下式计算:Preferably, the measured voltage d-axis component Vd is calculated as follows:
式中,Va:串/并联侧的a相线电压;Vb:串/并联侧的b相线电压:Vc:串/并联侧的c相线电压;ω:相角;t:时间;In the formula, Va: a-phase line voltage on the series/parallel side; Vb: b-phase line voltage on the series/parallel side: Vc: c-phase line voltage on the series/parallel side; ω: phase angle; t: time;
所述测量到的电压q轴分量Vq按下式计算:The measured voltage q-axis component Vq is calculated as follows:
优选的,所述基于所述稳态运行参数和预先建立的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到统一潮流控制器的并联侧和串联侧的控制信号包括:Preferably, the control signals for the parallel side and the series side of the unified power flow controller are obtained based on the steady-state operating parameters and the pre-established parallel-side converter model and series-side converter model of the unified power flow controller, including: :
基于所述稳态运行参数和预先建立的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到交流电压dq轴参考值;Based on the steady-state operating parameters and the pre-established parallel-side converter model and series-side converter model of the unified power flow controller, the AC voltage dq-axis reference value is obtained;
由所述交流电压dq轴参考值和调制深度、移相角计算得到统一潮流控制器的并联侧和串联侧的控制信号。The control signals of the parallel side and the series side of the unified power flow controller are calculated from the dq axis reference value of the AC voltage, the modulation depth and the phase shift angle.
优选的,所述统一潮流控制器的并联侧换流器模型,包括:Preferably, the parallel-side converter model of the unified power flow controller includes:
基于并联侧的电压、电流、无功功率标幺值和直流电压标幺值作为外环无功功率控制、外环交流电压控制和外环直流电压控制的输入,得到并联侧交流电流dq轴参考值;Based on the voltage, current, reactive power per unit value and DC voltage per unit value of the parallel side as the input of the outer loop reactive power control, outer loop AC voltage control and outer loop DC voltage control, the dq axis reference of the parallel side AC current is obtained value;
将所述并联侧交流电流q轴参考值进行有功功率优先处理后和外环直流电压控制输出的交流电流d轴参考值作为内环电流控制的输入,输出内环处理后的交流电压dq轴参考值。The reference value of the AC current q-axis of the parallel side is processed by active power priority and the reference value of the AC current d-axis output by the DC voltage control of the outer loop is used as the input of the current control of the inner loop, and the reference value of the AC voltage dq-axis after the processing of the inner loop is output. value.
优选的,所述并联侧的内环电流控制按下式计算:Preferably, the inner loop current control of the parallel side is calculated as follows:
Ucd=Usd-(KP1(isdref-isd)+KI1∫(isdref-isd)dt)+ωLisq U cd =U sd -(K P1 (i sdref -i sd )+K I1 ∫(i sdref -i sd )dt)+ωLi sq
式中,Ucd:换流器交流侧电压基波的d轴分量;Usd:为电网电压的d轴分量;KP1:增益系数;KI1:增益系数;isdref:有功电流的参考值;isd:为电网电流的d轴分量;ω:相角;L:并联侧变压器加相电抗器的等效电感;isq:为电网电流的q轴分量;In the formula, U cd : the d-axis component of the voltage fundamental wave on the AC side of the converter; U sd : the d-axis component of the grid voltage; K P1 : gain coefficient; K I1 : gain coefficient; isdref : reference value of active current ; i sd : the d-axis component of the grid current; ω: the phase angle; L: the equivalent inductance of the transformer plus phase reactor on the parallel side; i sq : the q-axis component of the grid current;
Ucq=-(KP2(isqref-isq)+KI2∫(isqref-isq)dt)-ωLisd U cq =-(K P2 (i sqref -i sq )+K I2 ∫(i sqref -i sq )dt)-ωLi sd
式中,Ucq:换流器交流侧电压基波的q轴分量;ω表示工频角频率;isqref:无功电流的参考值;KP2:增益系数;KI2:增益系数。In the formula, U cq : the q-axis component of the voltage fundamental wave on the AC side of the converter; ω represents the power frequency angular frequency; i sqref : the reference value of the reactive current; K P2 : gain coefficient; K I2 : gain coefficient.
优选的,还包括:在所述并联侧的外环无功功率控制、外环交流电压控制和外环直流电压控制与所述内环电流控制之间设置模式选择;Preferably, it also includes: setting mode selection between the outer loop reactive power control, outer loop AC voltage control, outer loop DC voltage control and the inner loop current control on the parallel side;
所述模式选择包括:UPFC功率控制模式和并联侧STATCOM无功功率控制模式。The mode selection includes: UPFC power control mode and parallel side STATCOM reactive power control mode.
优选的,所述统一潮流控制器的串联侧换流器模型,包括:Preferably, the series-side converter model of the unified power flow controller includes:
基于串联侧的电压、电流、无功功率标幺值和有功功率标幺值作为外环无功功率控制器和外环有功功率控制器的输入,得到串联侧交流电流dq轴参考值;并将所述串联侧交流电流dq轴参考值作为所述内环电流控制器的输入,输出内外环控制的交流电压dq轴参考值。Based on the voltage, current, per-unit value of reactive power and per-unit value of active power on the series side as the input of the outer-loop reactive power controller and the outer-loop active power controller, the reference value of the series-side AC current dq axis is obtained; and The series-side AC current dq-axis reference value is used as the input of the inner loop current controller, and the dq-axis reference value of the AC voltage controlled by the inner and outer loops is output.
优选的,所述串联侧内环电流控制按下式计算:Preferably, the inner loop current control on the series side is calculated as follows:
Ucd=Usd+(KP1(isdref-isd)+KI1∫(isdref-isd)dt)-ωLisq U cd =U sd +(K P1 (i sdref -i sd )+K I1 ∫(i sdref -i sd )dt)-ωLi sq
式中,Ucd:换流器交流侧电压基波的d轴分量;Usd:为电网电压的d轴分量;KP1:增益系数;KI1:增益系数;isdref:表示有功电流的参考值;isd:为电网电流的d轴分量;ω:相角;L:并联侧变压器加相电抗器的等效电感;isq:为电网电流的q轴分量;In the formula, U cd : the d-axis component of the fundamental wave of the AC side voltage of the converter; U sd : the d-axis component of the grid voltage; K P1 : gain coefficient; K I1 : gain coefficient; i sdref : the reference representing the active current value; i sd : the d-axis component of the grid current; ω: phase angle; L: the equivalent inductance of the transformer plus phase reactor on the parallel side; i sq : the q-axis component of the grid current;
Ucq=Usq+(KP2(isqref-isq)+KI2∫(isqref-isq)dt)+ωLisd U cq =U sq +(K P2 (i sqref -i sq )+K I2 ∫(i sqref -i sq )dt)+ωLi sd
式中,Ucd:换流器交流侧电压基波的d轴分量;Ucq:换流器交流侧电压基波的q轴分量;Usq:为电网电压的q轴分量;KP2:增益系数;KI2:增益系数;isqref表示无功电流的参考值。In the formula, U cd : the d-axis component of the voltage fundamental wave on the AC side of the converter; U cq : the q-axis component of the voltage fundamental wave on the AC side of the converter; U sq : the q-axis component of the grid voltage; K P2 : gain coefficient; K I2 : gain coefficient; i sqref represents the reference value of reactive current.
优选的,还包括:在所述串联侧内环电流控制之后设置模式选择;Preferably, it also includes: setting mode selection after the series-side inner loop current control;
所述模式选择包括:UPFC功率控制模式和串联侧手动电压注入模式。The mode selection includes: UPFC power control mode and series side manual voltage injection mode.
一种统一潮流控制器的仿真系统,所述系统包括:A simulation system for a unified power flow controller, the system includes:
参数获取模块,用于获取电力系统潮流计算所需稳态运行参数;The parameter acquisition module is used to acquire the steady-state operating parameters required for the power flow calculation of the power system;
信号生成模块,用于基于所述稳态运行参数和预先建立的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到统一潮流控制器的并联侧和串联侧的控制信号;A signal generation module for obtaining control signals for the parallel side and the series side of the unified power flow controller based on the steady-state operating parameters and the pre-established parallel-side converter model and series-side converter model of the unified power flow controller ;
模型构建模块,用于构建包含双环控制和模式选择的并联侧换流器模型和串联侧换流器模型。Model building block for building parallel-side converter models and series-side converter models with dual-loop control and mode selection.
优选的,所述模型构建模块包括:并联侧换流器模型构建子模块和串联侧换流器模型构建子模块;Preferably, the model building module includes: a parallel-side converter model building sub-module and a series-side converter model building sub-module;
所述并联侧换流器模型构建子模块包括:外环交流电压控制器、外环无功功率控制器和外直流电压控制器并联后,依次串联内环电流控制器和调制深度、移相角计算模块;The parallel-side converter model building sub-module includes: after the outer loop AC voltage controller, the outer loop reactive power controller and the outer DC voltage controller are connected in parallel, the inner loop current controller and the modulation depth and phase shift angle are connected in series in sequence. calculation module;
所述串联侧换流器模型构建子模块包括:外环有功功率控制器和外环无功功率控制器并联后依次与内环电流控制器和调制深度、移相角计算模块串联。The series-side converter model building sub-module includes: the outer-loop active power controller and the outer-loop reactive power controller are connected in parallel with the inner-loop current controller and the modulation depth and phase-shift angle calculation modules in sequence.
优选的,所述并联侧换流器模型构建子模块还包括:所述外环交流电压控制器和外环无功功率控制器并联后串联模式选择模块,然后与所述外环直流电压控制器并联。Preferably, the parallel-side converter model building sub-module further includes: a series mode selection module after the outer-loop AC voltage controller and the outer-loop reactive power controller are connected in parallel, and then connected with the outer-loop DC voltage controller in parallel.
优选的,所述串联侧换流器模型构建子模块还包括:在串联侧内环电流控制器与调制深度、移相角计算模块之间设置有模式选择模块。Preferably, the series-side converter model building sub-module further includes: a mode selection module is arranged between the series-side inner loop current controller and the modulation depth and phase shift angle calculation module.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the beneficial effects of the present invention are:
本发明提供的技术方案,基于所述稳态运行参数和预先建立的包含双环控制和模式选择的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到统一潮流控制器的并联侧和串联侧的控制信号,考虑了串并联侧换流器、变压器等参数对UPFC动态性能的影响,能准确地、快速的模拟UPFC的功率传输特性。The technical solution provided by the present invention is based on the steady-state operating parameters and the pre-established parallel-side converter model and series-side converter model of the unified power flow controller including dual-loop control and mode selection, to obtain the unified power flow controller model. The control signals of the parallel side and the series side take into account the influence of the series-parallel side converters, transformers and other parameters on the dynamic performance of the UPFC, which can accurately and quickly simulate the power transmission characteristics of the UPFC.
本发明提供的技术方案加入了模式选择,使控制方式更多样,满足实际需要。The technical scheme provided by the present invention adds mode selection to make the control modes more diverse and meet actual needs.
本发明提供的技术方案考虑了有功电流、无功电流过大的影响,加入了有功功率优先的电流限制器,能够仿真UPFC在运行中因短路造成电流过大的情况。The technical solution provided by the present invention considers the influence of excessive active current and reactive current, and adds a current limiter that prioritizes active power, which can simulate the situation of excessive current caused by a short circuit in the UPFC during operation.
本发明提供的技术方案在串并联侧换流器的控制系统中,通过解耦得到了相互独立的内环电流控制器,可以方便的对d轴和q轴的电流进行控制。In the control system of the series-parallel side converter, the technical solution provided by the present invention obtains mutually independent inner loop current controllers through decoupling, which can conveniently control the currents of the d-axis and the q-axis.
附图说明Description of drawings
图1为本发明的统一潮流控制器的仿真方法流程图;Fig. 1 is the flow chart of the simulation method of the unified power flow controller of the present invention;
图2为本发明提供的统一潮流控制器控制逻辑仿真的总体结构图;Fig. 2 is the overall structure diagram of unified power flow controller control logic simulation provided by the present invention;
图3为本发明提供的并联侧外环交流电压控制图;FIG. 3 is a control diagram of the parallel side outer loop AC voltage provided by the present invention;
图4为本发明提供的并联侧外环无功功率控制图;Fig. 4 is the reactive power control diagram of the parallel side outer loop provided by the present invention;
图5为本发明提供的并联侧外环直流电压控制图;5 is a control diagram of a parallel-side outer loop DC voltage provided by the present invention;
图6为本发明提供的经过解耦的并联侧内环电流控制图;Fig. 6 is the control diagram of the inner loop current of the parallel side through decoupling provided by the present invention;
图7为本发明提供的串联侧外环有功功率控制图;Fig. 7 is the active power control diagram of the series side outer loop provided by the present invention;
图8为本发明提供的串联侧外环无功功率控制图;Fig. 8 is the reactive power control diagram of the series side outer loop provided by the present invention;
图9为本发明提供的经过解耦的串联侧内环电流控制图;Fig. 9 is the decoupling inner loop current control diagram of the series side provided by the present invention;
图10为本发明提供的电流输出限幅示意图。FIG. 10 is a schematic diagram of current output limiting provided by the present invention.
具体实施方式Detailed ways
为了更好地理解本发明,下面结合说明书附图和实例对本发明的内容做进一步的说明。In order to better understand the present invention, the content of the present invention will be further described below with reference to the accompanying drawings and examples.
本发明提出了适用于UPFC控制逻辑的仿真方法,如图1所示,统一潮流控制器的仿真方法包括:The present invention proposes a simulation method suitable for UPFC control logic. As shown in Figure 1, the simulation method of the unified power flow controller includes:
获取电力系统潮流计算所需稳态运行参数;Obtain steady-state operating parameters required for power system power flow calculation;
基于稳态运行参数和预先建立的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到统一潮流控制器的并联侧和串联侧的控制信号;Based on the steady-state operating parameters and the pre-established parallel-side converter model and series-side converter model of the unified power flow controller, the control signals of the parallel side and the series side of the unified power flow controller are obtained;
并联侧换流器模型和串联侧换流器模型均包含双环控制和模式选择。Both the parallel-side converter model and the series-side converter model include dual-loop control and mode selection.
UPFC控制逻辑的功能结构如附图2,该模型结构合理,具有较好的可操作性和适应性,可以正确仿真正常工况和短路工况下UPFC的动态特性。The functional structure of the UPFC control logic is shown in Figure 2. The model has a reasonable structure, good operability and adaptability, and can correctly simulate the dynamic characteristics of the UPFC under normal and short-circuit conditions.
UPFC控制结构图包括:对并联侧的处理和对串联侧的处理。The UPFC control structure diagram includes: processing on the parallel side and processing on the series side.
并联侧的处理:UPFC测量系统测得的数据经过处理作为并联侧外环交流电压控制、并联侧外环无功功率控制和并联侧外环直流电压控制的输入,并联侧外环交流电压控制和并联侧外环无功功率控制的输出作为并联侧模式选择的输入,其输出值经过有功功率优先处理与并联侧外环直流电压控制的输出共同作为并联侧内环电流控制的输入,然后所述内环电流控制的输出作为调制深度、移相角计算的输入,经过调制深度、移相角计算得到并联侧控制信号。Processing on the parallel side: The data measured by the UPFC measurement system is processed as the input for the parallel side outer loop AC voltage control, the parallel side outer loop reactive power control and the parallel side outer loop DC voltage control, and the parallel side outer loop AC voltage control and The output of the parallel-side outer-loop reactive power control is used as the input of the parallel-side mode selection, and its output value is processed by active power priority and the output of the parallel-side outer-loop DC voltage control is used as the parallel-side inner-loop current control input. The output of the inner loop current control is used as the input of the modulation depth and phase shift angle calculation, and the parallel side control signal is obtained through the modulation depth and phase shift angle calculation.
串联侧的处理:UPFC测量系统测得的数据经过处理作为串联侧外环有功功率控制和串联侧外环无功功率控制的输入,串联侧外环有功功率控制和串联侧外环无功功率控制的输出作为串联侧内环电流控制的输入,其输出与串联侧交流电压dq轴分量手动注入值作为模式选择的输入,经模式选择后的数值作为调制深度、移相角计算的输入,经过调制深度、移相角计算得到串联侧控制信号。Processing on the series side: The data measured by the UPFC measurement system is processed as the input of the series side outer loop active power control and the series side outer loop reactive power control, the series side outer loop active power control and the series side outer loop reactive power control. The output is used as the input of the inner loop current control on the series side, its output and the manual injection value of the AC voltage dq axis component on the series side are used as the input of mode selection, and the value after mode selection is used as the input for the calculation of modulation depth and phase shift angle. The depth and phase shift angle are calculated to obtain the series side control signal.
(1)获取电力系统潮流计算所需稳态运行参数(1) Obtain the steady-state operating parameters required for power flow calculation of the power system
建立UPFC的测量系统,获得一次系统串联侧、并联侧电压电流的d轴、q轴分量,并经过计算得到并联侧无功功率实际值,串联侧有功功率、无功功率实际值,根据选定的功率电压基准值,将测量系统得到的数据转换为标幺值;UPFC测量系统的dq轴变换解析表达式如下:Establish a UPFC measurement system, obtain the d-axis and q-axis components of the voltage and current on the series side and parallel side of the primary system, and obtain the actual value of the reactive power on the parallel side through calculation, and the actual value of the active power and reactive power on the series side. The power and voltage reference value of the UPFC measurement system is converted into per-unit value; the analytical expression of the dq-axis transformation of the UPFC measurement system is as follows:
其中Va、Vb、Vc分别表示串/并联侧三相线电压或三相线电流。Where Va, Vb, Vc represent the three-phase line voltage or three-phase line current on the series/parallel side, respectively.
有功功率、无功功率可以由电压dq轴分量和电流dq轴分量计算得到,经过平均化、滤波,可以得到用于控制的有功功率、无功功率标幺值,表达式如下:Active power and reactive power can be calculated from the voltage dq axis component and the current dq axis component. After averaging and filtering, the per-unit values of active power and reactive power for control can be obtained, and the expressions are as follows:
P=Vd*Id+Vq*Iq <3>P=Vd*Id+Vq*Iq <3>
Q=Vq*Id-Vd*Iq <4>;Q=Vq*Id-Vd*Iq<4>;
其中:Vd、Vq为电压dq轴分量,Id、Iq为电流dq轴分量。Among them: Vd and Vq are the dq-axis components of the voltage, and Id and Iq are the dq-axis components of the current.
(2)将步骤(1)得到的并联侧电压、电流d轴、q轴分量、并联侧无功功率标幺值及直流电压标幺值作为外环交流电压控制、外环无功功率控制、外环直流电压控制的输入,得到并联侧交流电流d轴、q轴参考值;外环交流电压控制器、外环无功功率控制器、外环直流电压控制器均采用有限幅的PI控制器,如图3、图4、图5所示;(2) Use the parallel side voltage, current d-axis, q-axis components, parallel side reactive power per unit value and DC voltage per unit value obtained in step (1) as the outer loop AC voltage control, outer loop reactive power control, The input of the outer-loop DC voltage control is used to obtain the reference values of the d-axis and q-axis of the parallel side AC current; the outer-loop AC voltage controller, the outer-loop reactive power controller, and the outer-loop DC voltage controller all use limited amplitude PI controllers , as shown in Figure 3, Figure 4, Figure 5;
(3)将步骤(1)得到的串联侧电压、电流dq轴分量及串联侧有功功率、无功功率标幺值作为外环有功功率控制、外环无功功率控制的输入,得到串联侧交流电流d轴、q轴参考值;外环有功功率控制器、外环无功功率控制器均采用有限幅的PI控制器,如图7和图8所示。(3) Using the voltage and current dq-axis components on the series side and the per-unit values of the active power and reactive power on the series side obtained in step (1) as the input of the outer-loop active power control and the outer-loop reactive power control to obtain the series-side AC The current d-axis and q-axis reference values; the outer-loop active power controller and the outer-loop reactive power controller all use limited-amplitude PI controllers, as shown in Figures 7 and 8.
(4)将步骤(2)得到的并联侧交流电流q轴参考值输入到模式选择中,根据设定的模式,得到选择后的并联侧交流电流q轴参考值;(4) Input the reference value of the parallel-side AC current q-axis obtained in step (2) into the mode selection, and obtain the selected parallel-side AC current q-axis reference value according to the set mode;
并联侧模式选择包括UPFC功率控制模式和并联侧STATCOM无功功率控制模式。Parallel side mode selection includes UPFC power control mode and parallel side STATCOM reactive power control mode.
并联侧STATCOM无功功率控制模式:稳定并联侧母线交流电压,使直流侧电压稳定;Parallel-side STATCOM reactive power control mode: stabilize the AC voltage of the parallel-side busbar and stabilize the DC-side voltage;
UPFC功率控制模式:控制线路有功功率、无功功率。UPFC power control mode: control line active power and reactive power.
(5)将步骤(3)得到的串联侧交流电流dq轴参考值输入到串联侧内环电流控制模块中,得到并联侧交流电压dq轴参考值;图9为串联侧内环电流控制框图,内环电流控制中采用解耦控制方法:(5) Input the reference value of the series side AC current dq axis obtained in step (3) into the series side inner loop current control module to obtain the parallel side AC voltage dq axis reference value; Fig. 9 is a block diagram of the series side inner loop current control, The decoupling control method is used in the inner loop current control:
将串联侧同步旋转坐标系的d轴定向于并联侧交流电网的电压矢量,同理可得串联侧内环电流控制器表达式为:Orienting the d-axis of the synchronous rotating coordinate system on the series side to the voltage vector of the AC grid on the parallel side, in the same way, the expression of the inner loop current controller on the series side can be obtained as:
Ucd=Usd+(KP1(isdref-isd)+KI1∫(isdref-isd)dt)-ωLisq <5>U cd =U sd +(K P1 (i sdref -i sd )+K I1 ∫(i sdref -i sd )dt)-ωLi sq <5>
Ucq=Usq+(KP2(isqref-isq)+KI2∫(isqref-isq)dt)+ωLisd <6>;U cq =U sq +(K P2 (i sqref -i sq )+K I2 ∫(i sqref -i sq )dt)+ωLi sd <6>;
(6)将步骤(5)得到的串联侧交流电压dq轴参考值及串联侧交流电压dq轴分量手动注入值输入到模式选择模块中,根据设定的模式,得到选择后的串联侧交流电压dq轴参考值;(6) Input the dq-axis reference value of the series-side AC voltage and the dq-axis component manual injection value of the series-side AC voltage obtained in step (5) into the mode selection module, and obtain the selected series-side AC voltage according to the set mode dq axis reference value;
串联的测模式选择包括:UPFC功率控制模式和串联侧手动电压注入模式。The series measurement mode selection includes: UPFC power control mode and series side manual voltage injection mode.
UPFC功率控制模式:控制线路有功功率、无功功率;UPFC power control mode: control line active power and reactive power;
串联侧手动电压注入模式:相对于功率控制模式,其控制效果是串联侧注入一定电压,可以使线路末端电压提高到特定值。Series side manual voltage injection mode: Compared with the power control mode, the control effect is to inject a certain voltage on the series side, which can increase the voltage at the end of the line to a specific value.
(7)将步骤(4)得到的并联侧交流电流q轴参考值输入到电流限制模块中,输出按有功功率优先原则对电流进行限制得到并联侧交流电流q轴参考值;图10为电流限制原理图,其中有功功率优先原则为:得到Id和Iq后考虑总电流不能超过限幅;优先保证Id的大小,对Iq进行限幅,即限幅后的并联侧交流电流q轴参考值为:(7) Input the q-axis reference value of the parallel side AC current obtained in step (4) into the current limiting module, and the output limits the current according to the active power priority principle to obtain the parallel side AC current q-axis reference value; Figure 10 shows the current limit Schematic diagram, in which the active power priority principle is: after obtaining I d and I q , consider the total current The limit cannot be exceeded; the priority is to ensure the size of I d , and the limit of I q is performed, that is, the reference value of the q-axis of the parallel side AC current after the limit is:
(8)将步骤(2)得到的并联侧交流电流d轴参考值和步骤(7)得到的串联侧交流电流q轴参考值输入到并联侧内环电流控制中,输出并联侧交流电压dq轴参考值;图6为并联侧内环电流控制框图,内环电流控制中采用解耦控制方法:(8) Input the parallel-side AC current d-axis reference value obtained in step (2) and the series-side AC current q-axis reference value obtained in step (7) into the parallel-side inner loop current control, and output the parallel-side AC voltage dq-axis Reference value; Figure 6 is a block diagram of the inner loop current control on the parallel side, and the decoupling control method is used in the inner loop current control:
结合UPFC串并联侧换流器和变压器的结构参数得出dq轴坐标系下采用解耦控制方法的串并联侧换流器的内环电流控制器:Combined with the structural parameters of the UPFC series-parallel side converter and transformer, the inner loop current controller of the series-parallel side converter using the decoupling control method in the dq-axis coordinate system is obtained:
并联侧内环电流控制器的数学表达式如下:The mathematical expression of the inner loop current controller on the parallel side is as follows:
其中,ΔUd=ωLisd;ΔUq=ωLisq;Ucd和Ucq为换流器交流侧电压基波的d轴、q轴分量;Usd、Usq分别为电网电压的d、q轴分量;isd、isq分别为电网电流的d、q轴分量;和采用下式的比例积分环节来实现:in, ΔU d =ωLi sd ; ΔU q =ωLi sq ; U cd and U cq are the d-axis and q-axis components of the AC side voltage fundamental wave of the converter; U sd and U sq are the d- and q-axis components of the grid voltage, respectively; i sd and i sq are the d and q axis components of the grid current, respectively; and The proportional integral link of the following formula is used to achieve:
在内环电流控制器中,存在交叉耦合项ωLid和ωLiq,即公式中的ΔUd和ΔUq项,引入电流状态反馈量ωLid和ωLiq来解除耦合;将同步旋转坐标系的d轴定向于并联侧交流电网的电压矢量,可得:In the inner loop current controller, there are cross-coupling terms ωLi d and ωLi q , namely the ΔU d and ΔU q terms in the formula, and the current state feedback quantities ωLi d and ωLi q are introduced to decouple; The axis is oriented to the voltage vector of the AC grid on the parallel side, we can get:
Usd=Us <12>U sd =U s <12>
Usq=0 <13>U sq = 0 <13>
其中,Us为并联侧交流电网的相电压峰值。Among them, U s is the phase voltage peak value of the AC power grid on the parallel side.
将以上公式合并得到并联侧内环电流控制器表达式为:Combining the above formulas, the expression of the parallel side inner loop current controller is:
Ucd=Usd-(KP1(isdref-isd)+KI1∫(isdref-isd)dt)+ωLisq <14>U cd =U sd -(K P1 (i sdref -i sd )+K I1 ∫(i sdref -i sd )dt)+ωLi sq <14>
Ucq=-(KP2(isqref-isq)+KI2∫(isqref-isq)dt)-ωLisd <15>U cq =-(K P2 (i sqref -i sq )+K I2 ∫(i sqref -i sq )dt)-ωLi sd <15>
<8>;<8>;
其内环控制的d轴和q轴形成两个完全独立的控制环,分别控制d轴和q轴的电流;The d-axis and q-axis controlled by the inner loop form two completely independent control loops, which control the current of the d-axis and the q-axis respectively;
其中:L是并联侧变压器加相电抗器的等效电感,ω表示工频角频率,isdref、isqref分别表示有功电流和无功电流的参考值,KP1、KP2、KI1、KI2为增益系数。Among them: L is the equivalent inductance of the transformer phase reactor on the parallel side, ω is the power frequency angular frequency, i sdref , i sqref are the reference values of active current and reactive current respectively, K P1 , K P2 , K I1 , K I2 is the gain coefficient.
(9)将步骤(6)获得的串联侧交流电压dq轴参考值和步骤(8)得到的并联侧交流电压dq轴参考值输入调制深度、移相角计算模块中,得到换流器模块的控制信号;(9) Input the dq-axis reference value of the series-side AC voltage obtained in step (6) and the dq-axis reference value of the parallel-side AC voltage obtained in step (8) into the modulation depth and phase-shift angle calculation module to obtain the control signal;
(10)将步骤(9)得到的调制深度、移相角输入到串并联侧换流器模型中,以实现内外环的电压电流控制。(10) The modulation depth and phase shift angle obtained in step (9) are input into the series-parallel side converter model, so as to realize the voltage and current control of the inner and outer loops.
依照本发明的UPFC控制逻辑的仿真方法,具有较好的可操作性和适应性,可以正确仿真正常工况和短路工况下UPFC的动态特性,能够应用于UPFC电磁暂态的仿真。The simulation method of UPFC control logic according to the present invention has good operability and adaptability, can correctly simulate the dynamic characteristics of UPFC under normal working conditions and short-circuit conditions, and can be applied to the simulation of UPFC electromagnetic transient.
一种统一潮流控制器的仿真系统,其特征在于,所述系统包括:A simulation system for a unified power flow controller, characterized in that the system includes:
参数获取模块,用于获取电力系统潮流计算所需稳态运行参数;The parameter acquisition module is used to acquire the steady-state operating parameters required for the power flow calculation of the power system;
信号生成模块,用于基于所述稳态运行参数和预先建立的统一潮流控制器的并联侧换流器模型和串联侧换流器模型,得到统一潮流控制器的并联侧和串联侧的控制信号;A signal generation module for obtaining control signals for the parallel side and the series side of the unified power flow controller based on the steady-state operating parameters and the pre-established parallel-side converter model and series-side converter model of the unified power flow controller ;
模型构建模块,用于构建包含双环控制和模式选择的并联侧换流器模型和串联侧换流器模型。Model building block for building parallel-side converter models and series-side converter models with dual-loop control and mode selection.
模型构建模块包括:并联侧换流器模型构建子模块和串联侧换流器模型构建子模块;The model building module includes: a parallel-side converter model building sub-module and a series-side converter model building sub-module;
并联侧换流器模型构建子模块包括:外环交流电压控制器、外环无功功率控制器和外直流电压控制器并联后,依次串联内环电流控制器和调制深度、移相角计算模块;The parallel-side converter model building sub-module includes: after the outer loop AC voltage controller, the outer loop reactive power controller and the outer DC voltage controller are connected in parallel, the inner loop current controller and the modulation depth and phase shift angle calculation modules are connected in series in sequence. ;
串联侧换流器模型构建子模块包括:外环有功功率控制器和外环无功功率控制器并联后依次与内环电流控制器和调制深度、移相角计算模块串联。The sub-module of the series-side converter model construction includes: the outer-loop active power controller and the outer-loop reactive power controller are connected in parallel with the inner-loop current controller and the modulation depth and phase-shift angle calculation modules in series.
并联侧换流器模型构建子模块还包括:所述外环交流电压控制器和外环无功功率控制器并联后串联模式选择模块,然后与所述外环直流电压控制器并联。The parallel-side converter model building sub-module further includes: a series mode selection module after the outer-loop AC voltage controller and the outer-loop reactive power controller are connected in parallel, and then connected in parallel with the outer-loop DC voltage controller.
串联侧换流器模型构建子模块还包括:在串联侧内环电流控制器与调制深度、移相角计算模块之间设置有模式选择模块。The series-side converter model building sub-module further includes: a mode selection module is arranged between the series-side inner loop current controller and the modulation depth and phase-shift angle calculation module.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。As will be appreciated by those skilled in the art, the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block in the flowchart illustrations and/or block diagrams, and combinations of flows and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to the processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the instructions executed by the processor of the computer or other programmable data processing device produce Means for implementing the functions specified in a flow or flow of a flowchart and/or a block or blocks of a block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions The apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions can also be loaded on a computer or other programmable data processing device to cause a series of operational steps to be performed on the computer or other programmable device to produce a computer-implemented process such that The instructions provide steps for implementing the functions specified in the flow or blocks of the flowcharts and/or the block or blocks of the block diagrams.
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均包含在申请待批的本发明的权利要求范围之内。The above are only examples of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention are included in the application for pending approval of the present invention. within the scope of the claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711039003.6A CN107994565B (en) | 2017-10-30 | 2017-10-30 | A simulation method and system of unified power flow controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711039003.6A CN107994565B (en) | 2017-10-30 | 2017-10-30 | A simulation method and system of unified power flow controller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107994565A CN107994565A (en) | 2018-05-04 |
CN107994565B true CN107994565B (en) | 2021-11-02 |
Family
ID=62031164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711039003.6A Active CN107994565B (en) | 2017-10-30 | 2017-10-30 | A simulation method and system of unified power flow controller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107994565B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108899895B (en) * | 2018-06-26 | 2022-04-29 | 中国电力科学研究院有限公司 | Electromechanical-electromagnetic hybrid simulation method and system for power system |
CN111884227B (en) * | 2020-07-31 | 2021-08-27 | 广东电网有限责任公司 | UPFC model parameter adjustment method and system |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280187A (en) * | 2005-03-25 | 2006-10-12 | Chang Gung Univ | Control method of integrated power flow dynamic model |
CN103955572A (en) * | 2014-04-23 | 2014-07-30 | 国家电网公司 | Modeling method for electromechanical transient model of doubly-fed wind power generator set |
CN105119305A (en) * | 2015-09-23 | 2015-12-02 | 国家电网公司 | Charging control strategy of MMC type unified power flow controller |
CN105870927A (en) * | 2016-03-14 | 2016-08-17 | 全球能源互联网研究院 | Unified power flow controller with multiple operational modes |
CN105896558A (en) * | 2016-04-26 | 2016-08-24 | 中国电力科学研究院 | VSC-based UPFC electromechanical transient modular modeling method |
CN106058852A (en) * | 2016-05-30 | 2016-10-26 | 许继电气股份有限公司 | Unified power flow controller line power control method |
CN106505595A (en) * | 2016-12-22 | 2017-03-15 | 山东大学 | System and method for three-phase unbalance control of transmission lines based on MMC‑UPFC |
CN106786725A (en) * | 2017-02-17 | 2017-05-31 | 南京南瑞继保电气有限公司 | A kind of control method for improving DC transmission system Inverter Station transient voltage |
CN106961113A (en) * | 2017-05-08 | 2017-07-18 | 许继集团有限公司 | THE UPFC system and transverter powerless control method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103972887B (en) * | 2014-05-19 | 2017-07-18 | 南京南瑞继保电气有限公司 | A kind of THE UPFC suitable for double-circuit line |
-
2017
- 2017-10-30 CN CN201711039003.6A patent/CN107994565B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006280187A (en) * | 2005-03-25 | 2006-10-12 | Chang Gung Univ | Control method of integrated power flow dynamic model |
CN103955572A (en) * | 2014-04-23 | 2014-07-30 | 国家电网公司 | Modeling method for electromechanical transient model of doubly-fed wind power generator set |
CN105119305A (en) * | 2015-09-23 | 2015-12-02 | 国家电网公司 | Charging control strategy of MMC type unified power flow controller |
CN105870927A (en) * | 2016-03-14 | 2016-08-17 | 全球能源互联网研究院 | Unified power flow controller with multiple operational modes |
CN105896558A (en) * | 2016-04-26 | 2016-08-24 | 中国电力科学研究院 | VSC-based UPFC electromechanical transient modular modeling method |
CN106058852A (en) * | 2016-05-30 | 2016-10-26 | 许继电气股份有限公司 | Unified power flow controller line power control method |
CN106505595A (en) * | 2016-12-22 | 2017-03-15 | 山东大学 | System and method for three-phase unbalance control of transmission lines based on MMC‑UPFC |
CN106786725A (en) * | 2017-02-17 | 2017-05-31 | 南京南瑞继保电气有限公司 | A kind of control method for improving DC transmission system Inverter Station transient voltage |
CN106961113A (en) * | 2017-05-08 | 2017-07-18 | 许继集团有限公司 | THE UPFC system and transverter powerless control method |
Also Published As
Publication number | Publication date |
---|---|
CN107994565A (en) | 2018-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xue et al. | A complete impedance model of a PMSG-based wind energy conversion system and its effect on the stability analysis of MMC-HVDC connected offshore wind farms | |
CN108616141A (en) | The control method of LCL gird-connected inverters power nonlinear in micro-capacitance sensor | |
CN107681662B (en) | A virtual synchronous generator control method with power quality composite control function | |
CN111917131A (en) | Harmonic suppression method for photovoltaic LCL grid-connected inverter based on PI and MPR | |
CN105006825B (en) | A kind of electric power electric transformer and its control method of high quality of power supply output | |
CN102623992A (en) | Control and optimization method of island microgrid based on virtual impedance of rotating coordinates | |
CN107171328A (en) | A kind of modeling of Distributed Power Flow controller and emulation mode based on ADPSS | |
CN107093901A (en) | The machine-electricity transient model and emulation mode of a kind of Distributed Power Flow controller | |
CN108923468A (en) | A kind of virtual synchronous motor is seamless smooth-switching method and system | |
CN112583050A (en) | Control method and system for multi-VSG inverter loop current suppression and fault handling | |
CN108365636A (en) | A kind of virtual synchronous generator control method | |
CN106786673A (en) | The suppressing method and device of double-fed blower fan compensated transmission system subsynchronous resonance | |
CN117060488A (en) | Smooth grid-connection method of grid-structured inverter | |
CN107994565B (en) | A simulation method and system of unified power flow controller | |
CN113644667A (en) | Method and system for calculating asymmetric fault components of power distribution network under inverter control strategy | |
CN108347060A (en) | A kind of power electronics interface power Reduced Modeling Methods and system | |
Dong et al. | Mitigation strategy of subsynchronous oscillation based on fractional-order sliding mode control for VSC-MTDC systems with DFIG-based wind farm access | |
CN109672207B (en) | Back-to-back system control method and system based on virtual synchronous machine | |
CN108123466B (en) | Energy storage converter parallel current sharing control method based on power series decoupling | |
Deng et al. | An optimal short-circuit current control method for self-synchronization controlled wind turbines | |
CN112421976B (en) | A Reduced-Order Modeling Method for Three-level Inverter Power Supply Based on Hybrid System Theory | |
CN111313463B (en) | Secondary Frequency Modulation Control Method of Virtual Synchronous Generator Based on Backstep Sliding Mode Control | |
Liao et al. | Hardware in-the-loop simulation system based on NI-PXI for operation and control of microgrid | |
Qin et al. | Micro-grid droop control strategy and isolated island operation system stability analysis | |
CN114744640A (en) | A Distributed Modulator Sequence Impedance Modeling Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |