CN107992646B - 垂直地震剖面观测系统炮检点分布范围动态设计方法 - Google Patents

垂直地震剖面观测系统炮检点分布范围动态设计方法 Download PDF

Info

Publication number
CN107992646B
CN107992646B CN201711131392.5A CN201711131392A CN107992646B CN 107992646 B CN107992646 B CN 107992646B CN 201711131392 A CN201711131392 A CN 201711131392A CN 107992646 B CN107992646 B CN 107992646B
Authority
CN
China
Prior art keywords
depth
minimum
maximum
target layer
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711131392.5A
Other languages
English (en)
Other versions
CN107992646A (zh
Inventor
黎书琴
李亚林
何光明
罗仕迁
耿春
罗文�
蔡力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Petroleum Corp
BGP Inc
Original Assignee
BGP Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BGP Inc filed Critical BGP Inc
Priority to CN201711131392.5A priority Critical patent/CN107992646B/zh
Publication of CN107992646A publication Critical patent/CN107992646A/zh
Application granted granted Critical
Publication of CN107992646B publication Critical patent/CN107992646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/06Multi-objective optimisation, e.g. Pareto optimisation using simulated annealing [SA], ant colony algorithms or genetic algorithms [GA]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

根据井点坐标,获取一条显示井轨迹的剖面;根据目的层位置,设定目的层参数;确定检波点初始最小沉降深度和初始最大沉降深度;在所述初始最小沉降深度和所述初始最大沉降深度之间滑动检波点;获得观测系统参数。本发明能够从VSP采集设计的源头实现对检波器沉降深度和偏移距两大参数的动态设计;能够完成对勘探参数的灵活、快速确定;还可完成对参数结果的直观、动态显示。此外,本发明实现了在确定了勘探目标层位的前提下指导观测系统的建立,为提高VSP观测系统的初始设计效率提供了保障。

Description

垂直地震剖面观测系统炮检点分布范围动态设计方法
技术领域
本发明属于垂直地震剖面观测系统优化设计领域,更具体地讲,涉及一种能够更直观、动态地显示垂直地震剖面观测系统设计的方法。
背景技术
垂直地震剖面(VSP)勘探在高分辨率和各向异性信息方面有其独特的优势,可以有效地提高勘探精度。近20多年来,为了适应垂直地震剖面勘探装备的研制,有关垂直地震剖面的地球物理技术和计算技术也不断进步,这推动了垂直地震剖面勘探技术的迅速发展,在复杂构造地区的油气勘探发挥了重要的作用。
垂直地震剖面采集是其勘探的基础,野外采集资料的质量直接影响到勘探效果,而采集参数的准确设计是资料采集成功的关键。垂直地震剖面勘探采集包括以下几个观测参数的确定:检波器的沉降深度、炮间距、偏移距和道间距,其中检波器的沉降深度以及偏移距这两个参数是需要最初确定的,通常的确定方式是根据“经验公式”以及“经验值”相结合的方式。当垂直地震剖面勘探的目的层深度和位置已知时,具体的方式是根据反射原理,固定检波器的沉降深度计算偏移距或者固定偏移距计算检波器的沉降深度。如果需要改变目的层的位置或者修改检波器的沉降深度,就需要进行重新计算,不仅计算麻烦而且显示也不直观。一直以来都缺乏适当的方法和装置来对垂直地震剖面检波器沉降深度和偏移距这两个参数进行更直观、动态的设计。
发明内容
针对现有技术中存在的问题,本发明的目的在于解决现有技术存在的上述不足中的至少一项。例如,本发明的目的在于更直观、动态地显示垂直地震剖面观测系统的设计。
为了实现上述目的,本发明提供了一种垂直地震剖面观测系统炮检点分布范围动态设计的方法。所述方法包括:根据井点坐标,获取一条显示井轨迹的剖面;根据目的层位置,设定目的层参数;确定检波点(在本发明中也可称为检波器)初始最小沉降深度和初始最大沉降深度;在所述初始最小沉降深度和所述初始最大沉降深度之间滑动检波点,根据目的层位置和检波器性能,分析得到检波点最小沉降深度和最大沉降深度,所述最小沉降深度值大于所述初始最小沉降深度值,所述最大沉降深度值小于初始最大沉降深度值;根据所述最小沉降深度和所述目的层位置和炮检点反射理论,计算出左边最小井源距、右边最小井源距、左边最小入射角、右边最小入射角中的一个或多个;根据所述最大沉降深度和所述目的层位置和炮检点反射理论,计算出左边最大井源距、右边最大井源距、左边最大入射角、右边最大入射角中的一个或多个;根据所述目的层参数计算出目的层深度和目的层倾角中的一个或多个。所述最小沉降深度、最大沉降深度、左边最小井源距、右边最小井源距、左边最小入射角、右边最小入射角、左边最大井源距、右边最大井源距、左边最大入射角、右边最大入射角、目的层深度、目的层倾角称为观测系统参数。
在本发明的一个示例性实施例中,所述显示井轨迹的剖面可以仅显示井轨迹。
在本发明的一个示例性实施例中,所述目的层参数可包括开始偏移、结束偏移、开始深度和结束深度。
在本发明的一个示例性实施例中,所述初始最小沉降深度可以为投影井轨迹的最小深度值,所述初始最大沉降深度可以为投影井轨迹的最大深度值。
在本发明的一个示例性实施例中,所述方法还可包括所述获得观测系统参数的步骤之后的动态显示步骤。此外,所述动态显示步骤的显示内容可包括井轨迹、目标层、射线路径、检波点沉降位置、地表设置震源位置和所述观测系统参数中的一种或多种。
与现有技术相比,本发明的有益效果包括:能够从VSP采集设计的源头实现对检波器沉降深度和偏移距(在本发明中也可以称为井源距)两大参数的动态设计;能够完成对勘探参数的灵活、快速确定。此外,本发明还可完成对参数结果的直观、动态显示。另外,本发明的方法还可以在确定了勘探目标层位的前提下指导观测系统的建立,为提高VSP观测系统的初始设计效率提供了保障。
附图说明
图1示出了根据本发明的一个示例性实施例的垂直地震剖面观测系统炮检点分布范围动态设计方法的技术流程图。
图2示出了根据本发明的另一个示例性实施例的垂直地震剖面观测系统炮检点分布范围动态设计方法的技术流程图。
图3示出了根据本发明的一个示例性实施例的垂直地震剖面观测系统炮检点分布范围动态设计方法的过井口位置剖面线选择示意图。
图4示出了根据本发明的一个示例性实施例的垂直地震剖面观测系统炮检点分布范围动态设计方法的目的层参数编辑示意图。
图5示出了根据本发明的一个示例性实施例的垂直地震剖面观测系统炮检点分布范围动态设计方法的动态显示示意图。
具体实施方式
在下文中,将结合示例性实施例和附图来详细说明本发明的垂直地震剖面观测系统炮检点分布范围动态设计方法。
如图1所示,在本发明的一个示例性实施例中,垂直地震剖面观测系统炮检点分布范围动态设计方法可以包括如下步骤:
步骤(1),根据井点坐标位置,获取一条仅显示井轨迹的剖面。
步骤(2),设定目的层参数,包括目的层的开始偏移(左偏移)、结束偏移(右偏移)、开始深度(左深度)和结束深度(右深度)。可以通过编辑开始偏移(L1)、结束偏移(L2)、开始深度(H1)和结束深度(H2)这四个目的层参数来确定目的层的位置,也可以通过手动编辑目的层点来确定,如图4所示。
步骤(3),根据投影井轨迹(在本发明中也可以称为井轨迹),确定初始最小沉降深度和初始最大沉降深度,初始最小沉降深度是投影井轨迹的最小深度值,初始最大沉降深度是投影井轨迹的最大深度值。(例如,井轨迹深度为0-6000m,初始最小沉降深度就是0m,初始最大沉降深度是6000m。)
需要说明的是,前述步骤(2)和(3)之间并无先后顺序的要求,可先后进行,也可同时进行。
步骤(4),在初始最小沉降深度和初始最大沉降深度之间滑动检波点,当变化满足我们的勘探要求时,滑动停止,分析得到检波点最小沉降深度(D1)和最大沉降深度(D2)。最小沉降深度和最大沉降深度为实际勘探工作中,根据目的层位置和检波器性能等进行综合分析,满足勘探要求时的检波器最小的沉放深度和最大的沉放深度,最小沉降深度值大于初始最小沉降深度值,最大沉降深度值小于初始最大沉降深度值。
步骤(5)根据最小沉降深度和目的层位置和炮检点反射理论,计算出左边最小井源距、右边最小井源距、左边最小入射角、右边最小入射角;根据最大沉降深度和目的层位置和炮检点反射理论,计算出左边最大井源距、右边最大井源距、左边最大入射角、右边最大入射角;根据目的层参数(开始偏移、结束偏移、开始深度和结束深度)计算出目的层深度和目的层倾角。并将井轨迹、目标层、射线路径、检波点沉降位置、地表设置震源位置和所有观测系统参数动态显示出来,如图5所示,图中xxx代表显示参数的数值。
步骤(6),如果该井的垂直地震剖面勘探目的层发生改变,重复步骤(2)至(5),直至得出新的满足垂直地震剖面勘探要求的一系列参数并动态显示出来。
在本发明中,最小沉降深度、最大沉降深度、左边最小井源距、右边最小井源距、左边最小入射角、右边最小入射角、左边最大井源距、右边最大井源距、左边最大入射角、右边最大入射角、目的层深度、目的层倾角称为观测系统参数。
如图2所示,在本发明的另一个示例性实施例中,垂直地震剖面(VSP)观测系统炮检点分布范围动态设计方法可由以下步骤实现:
步骤(1),在(x,y)平面内加载井轨迹数据,过井口位置沿二维VSP测线方向拉一条剖面线,这条二维剖面线将平面数据切成剖面显示,剖面上仅仅有井轨迹显示。x表示东坐标,y表示北坐标,根据两点的平面坐标(x1,y1)和(x2,y2)确定剖面端点位置,如图3所示,图中圆圈为井口位置,图中的矩形代表工区的区域。
步骤(2),如图4所示,设定目的层参数,包括目的层的开始偏移(左偏移)、结束偏移(右偏移)、开始深度(左深度)、结束深度(右深度)。该步骤中可以通过编辑开始偏移(L1)、结束偏移(L2)、开始深度(H1)和结束深度(H2)这四个目的层参数来确定目的层的位置。目的层位置除了可以通过精确数值填写获得,也可以通过手动编辑目的层点来确定。
步骤(3),设定检波器的沉降范围,可通过手动滑动井上的两点位置或者数值编辑来设定。移动检波器沉降深度的开始检波器深度点(初始最小沉降深度),移动检波器沉降深度的结束检波器深度点(初始最大沉降深度),根据目的层位置和检波器性能等,当满足勘探要求时停止滑动,此时的检波点沉放深度即确定为最小沉降深度D1和最大沉降深度D2,最小沉降深度值大于初始最小沉降深度值,最大沉降深度值小于初始最大沉降深度值。检波点沉放深度是在初始最大沉降深度和初始最小沉降深度之间的滑动停止时得到的值。
步骤(4),计算左边和右边最大、最小井源距,并在步骤(1)中切出的(x,h)剖面上显示出包括沉降深度在内的VSP观测系统的12个参数、射线变化轨迹和当前的入射点、反射点和接收点的位置,剖面中x表示东坐标,h表示深度,射线用入射点、反射点和接收点之间的连线来表示。需要注意的是,这里的东坐标与步骤(1)中所述的(x,y)平面的东坐标不一定一致,如果二维测线沿着原测网的x坐标轴方向,那么东坐标一致,如果二维测线与x坐标轴方向有一定的夹角,那么东坐标不一致。该步骤主要沿用根据炮检点的反射理论推导而来的如下公式来计算左边和右边最大、最小井源距这4个参数,当目的层反射点的位置已知,最大、最小接收点的位置也已知的时候,可以由如下公式来推算偏移距,即井源距(井口与震源之间的距离xs)。公式如下:
Figure BDA0001469631270000051
其中,x为目的层反射点的水平坐标,xw为井口的水平坐标,xs为井源距,H为目的层深度,ZV为检波点沉放深度。
该计算过程具体为:(1)通过检波器最小沉降深度和水平坐标、左边目的层深度和水平坐标计算左边最小井源距xs;(2)通过检波器最小沉降深度和水平坐标、右边目的层深度和水平坐标计算右边最小井源距xs;(3)通过检波器最大沉降深度和水平坐标、左边目的层深度和水平坐标计算左边最大井源距xs;(4)通过检波器最大沉降深度和水平坐标、右边目的层深度和水平坐标计算右边最大井源距xs
步骤(5),对目的层宽度、深度或对检波器的沉降深度进行手动编辑。该步骤中需要将目的层属性和检波器的沉降深度进行手动编辑,本发明可以对修改表现出一系列动态响应。
步骤(6),重新动态计算出左边和右边最大、最小井源距、左边、右边最大、最小入射角度,并将包括沉降深度在内的VSP观测系统的12个参数显示出来,并且在图上显示出修改后的入射点、反射点和出射点相应的位置,如图5所示。
需要说明的是,最大、最小沉放深度2个参数是经过滑动后自动读取的值,是根据目的层位置和检波器性能等,满足勘探要求时的检波器最大、最小沉降深度,最大、最小沉降深度的范围在滑动范围之间。左边和右边最大、最小井源距4个参数可以通过第四步计算得出,左边、右边最大、最小入射角度4个参数都是现有技术可以计算的;目的层倾角和深度这2个参数可以通过最开始的目的层参数获得。
在步骤(6)中,目的层属性和检波器的沉降深度被滑动改变时,(x,h)剖面上显示的计算参数会进行动态变化,当变化满足我们的勘探要求时,滑动停止,可以实时分析出VSP勘探的一系列参数,最小沉降深度、最大沉降深度、左边最小井源距、左边最大井源距,右边最小井源距、右边最大井源距以及入射角度等参数。
尽管上面已经结合附图和示例性实施例描述了本发明,但是本领域普通技术人员应该清楚,在不脱离权利要求的精神和范围的情况下,可以对上述实施例进行各种修改。

Claims (3)

1.一种垂直地震剖面观测系统炮检点分布范围动态设计的方法,其特征在于,所述方法包括以下步骤:
(1)根据井点坐标,获取一条显示井轨迹的剖面,所述显示井轨迹的剖面仅显示井轨迹;
(2)根据目的层位置,设定目的层参数;确定检波点初始最小沉降深度和初始最大沉降深度;
(3)在所述初始最小沉降深度和所述初始最大沉降深度之间滑动检波点,根据目的层位置和检波器性能,分析得到检波点最小沉降深度和最大沉降深度,所述最小沉降深度值大于所述初始最小沉降深度值,所述最大沉降深度值小于初始最大沉降深度值;
(4)根据所述最小沉降深度和所述目的层位置和炮检点反射理论,计算出左边最小井源距、右边最小井源距、左边最小入射角、右边最小入射角中的一个或多个;根据所述最大沉降深度和所述目的层位置和炮检点反射理论,计算出左边最大井源距、右边最大井源距、左边最大入射角、右边最大入射角中的一个或多个;根据所述目的层参数计算出目的层深度和目的层倾角中的一个或多个,所述最小沉降深度、最大沉降深度、左边最小井源距、右边最小井源距、左边最小入射角、右边最小入射角、左边最大井源距、右边最大井源距、左边最大入射角、右边最大入射角、目的层深度、目的层倾角作为观测系统参数;
(5)如果井的垂直地震剖面勘探目的层发生改变,重复步骤(2)至(4),直至得出新的满足垂直地震剖面勘探要求的一系列参数并动态显示出来,
所述方法还包括获得观测系统参数中的一个或多个之后的动态显示步骤,所述动态显示步骤的显示对象包括井轨迹、目标层、射线路径、检波点沉降位置、地表设置震源位置和所述观测系统参数中的一种或多种。
2.根据权利要求1所述的垂直地震剖面观测系统炮检点分布范围动态设计的方法,其特征在于,所述目的层参数包括开始偏移、结束偏移、开始深度和结束深度。
3.根据权利要求1所述的垂直地震剖面观测系统炮检点分布范围动态设计的方法,其特征在于,所述初始最小沉降深度为投影井轨迹的最小深度值,所述初始最大沉降深度为投影井轨迹的最大深度值。
CN201711131392.5A 2017-11-15 2017-11-15 垂直地震剖面观测系统炮检点分布范围动态设计方法 Active CN107992646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711131392.5A CN107992646B (zh) 2017-11-15 2017-11-15 垂直地震剖面观测系统炮检点分布范围动态设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711131392.5A CN107992646B (zh) 2017-11-15 2017-11-15 垂直地震剖面观测系统炮检点分布范围动态设计方法

Publications (2)

Publication Number Publication Date
CN107992646A CN107992646A (zh) 2018-05-04
CN107992646B true CN107992646B (zh) 2021-02-12

Family

ID=62031010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711131392.5A Active CN107992646B (zh) 2017-11-15 2017-11-15 垂直地震剖面观测系统炮检点分布范围动态设计方法

Country Status (1)

Country Link
CN (1) CN107992646B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454680A (zh) * 2013-08-27 2013-12-18 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Walk-away VSP观测系统垂向覆盖次数的计算方法
CN104330823A (zh) * 2014-11-19 2015-02-04 中国石油集团川庆钻探工程有限公司地球物理勘探公司 确定垂直地震剖面观测参数的方法
CN104570119A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 一种三维垂直地震剖面反射波拉伸校正方法
CN105510958A (zh) * 2014-10-15 2016-04-20 中国石油化工股份有限公司 一种适用复杂介质的三维vsp观测系统设计方法
CN105866833A (zh) * 2016-06-16 2016-08-17 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Vsp-cdp叠加方法及三维vsp覆盖次数计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831961B1 (fr) * 2001-11-07 2004-07-23 Inst Francais Du Petrole Methode de traitement de donnees sismiques de puits en amplitude preservee absolue

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454680A (zh) * 2013-08-27 2013-12-18 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Walk-away VSP观测系统垂向覆盖次数的计算方法
CN104570119A (zh) * 2013-10-29 2015-04-29 中国石油化工股份有限公司 一种三维垂直地震剖面反射波拉伸校正方法
CN105510958A (zh) * 2014-10-15 2016-04-20 中国石油化工股份有限公司 一种适用复杂介质的三维vsp观测系统设计方法
CN104330823A (zh) * 2014-11-19 2015-02-04 中国石油集团川庆钻探工程有限公司地球物理勘探公司 确定垂直地震剖面观测参数的方法
CN105866833A (zh) * 2016-06-16 2016-08-17 中国石油集团川庆钻探工程有限公司地球物理勘探公司 Vsp-cdp叠加方法及三维vsp覆盖次数计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于 VSP-CDP 叠加理论的 VSP 观测系统快速设计;黎书琴 等;《2015年全国天然气学术年会》;20151104;156-161 *
轮古38井三维VSP数据采集方法探讨;李云龙 等;《石油物探》;20060525;第45卷(第3期);299-303 *

Also Published As

Publication number Publication date
CN107992646A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN106401643B (zh) 基于激光点云的隧道超欠挖检测方法
US9646415B2 (en) System and method for visualizing multiple-sensor subsurface imaging data
US7995054B2 (en) Identification of edge regions from 3D point data
US7843448B2 (en) Identification of occluded edge regions from 3D point data
AU2010353772B2 (en) Systems and methods for horizontal well correlation and geosteering
US20230154037A1 (en) Method for detecting leakage of water supply pipe based on ground-penetrating radar three-dimensional image attribute analysis
US20150234070A1 (en) Computer-assisted fault interpretation of seismic data
CN103644896B (zh) 一种基于三维激光扫描的工程地质测绘方法
CN109508508B (zh) 一种露天矿山治理勘查设计方法
CN106437677B (zh) 一种煤矿井下钻孔群钻孔质量评价方法及装置
CN111123359B (zh) 随钻测井与地层格架约束的井周地震成像探测方法及装置
CN104697502A (zh) 基于最小二乘法的建筑物特征点坐标提取方法
CN109826248A (zh) 3D Laser Scanner应用于基坑变形监测的方法
CN114067073B (zh) 一种基于tls点云的矿区建筑物变形自动提取方法
CN109708570A (zh) 用于掌子面结构面的信息采集与分析方法及装置
CN104614762B (zh) 疏松砂岩气藏边界确定方法及装置
CN109116416A (zh) 基于三维方式的倾斜海底检波器二次定位方法
CN105651202A (zh) 一种用于测量矿山体积的三维扫描方法及装置
CN107992646B (zh) 垂直地震剖面观测系统炮检点分布范围动态设计方法
CN105205817A (zh) 一种基于声呐图像边缘角点直方图的水下地形匹配方法
CN110082820A (zh) 炸药震源混合分布式宽频激发的方法
Wang et al. Characteristic parameters extraction method of hidden Karst Cave from Borehole radar signal
Kolapo et al. Factors to be considered in establishing a scanning laboratory for testing the accuracy of terrestrial laser scanning technologies
CN110245440A (zh) 一种基于测量坐标或三维场景的地质产状获取方法
CN106154354B (zh) 一种成像道集的应用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210412

Address after: 100007 No. 9 North Main Street, Dongcheng District, Beijing, Dongzhimen

Patentee after: CHINA NATIONAL PETROLEUM Corp.

Patentee after: BGP Inc., China National Petroleum Corp.

Address before: 071000 No. 189, Fan Yang Xi Road, Zhuozhou, Baoding, Hebei

Patentee before: BGP Inc., China National Petroleum Corp.

TR01 Transfer of patent right