CN107991245B - 一种作物光谱信息采集装置及作物植被指数获取方法 - Google Patents

一种作物光谱信息采集装置及作物植被指数获取方法 Download PDF

Info

Publication number
CN107991245B
CN107991245B CN201711059669.8A CN201711059669A CN107991245B CN 107991245 B CN107991245 B CN 107991245B CN 201711059669 A CN201711059669 A CN 201711059669A CN 107991245 B CN107991245 B CN 107991245B
Authority
CN
China
Prior art keywords
vegetation index
crop
reflected light
cell
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711059669.8A
Other languages
English (en)
Other versions
CN107991245A (zh
Inventor
孙红
刘豪杰
孙梓淳
张俊逸
王旭
李民赞
郑立华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texel Technology (Shenzhen) Co.,Ltd.
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CN201711059669.8A priority Critical patent/CN107991245B/zh
Publication of CN107991245A publication Critical patent/CN107991245A/zh
Application granted granted Critical
Publication of CN107991245B publication Critical patent/CN107991245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种作物光谱信息采集装置及作物植被指数获取方法。所述采集装置包括:面阵光谱传感器和设置在所述面阵光谱传感器左右两侧的两个点阵光谱传感器;所述面阵光谱传感器,用于采集自身下方的面状区域内的作物冠层的光谱图像信息;所述点阵光谱传感器,用于采集自身正下方的多个点状区域内的作物冠层的多组反射光信号;其中,每一个点状区域具有一组反射光信号;所述多个点状区域位于所述面状区域内。本发明提供的装置及方法,通过将点阵光谱传感器和面阵光谱传感器组合使用,能够以较快的计算速度剔除土壤背景等对作物冠层反射光信号的干扰,进而获取高精度的作物冠层的反射光信号,为实时获取作物植被指数提供更可靠的数据支持。

Description

一种作物光谱信息采集装置及作物植被指数获取方法
技术领域
本发明涉及变量施肥技术领域,更具体地,涉及一种作物光谱信息采集装置及作物植被指数获取方法。
背景技术
我国自20世纪70年代开始,化肥的消费量迅速增加,对提高农作物产量起到了很大的作用,但我国的化肥投入突出问题是结构不合理,利用率低。1978—2005年粮食产量仅增产50%,但化肥消费量却增长了300%以上。目前我国施用化肥多停留在经验施肥的水平上,化肥利用率仅为30%~40%,化肥的增产效果并未得到充分发挥,造成了惊人的浪费,在一些地区已出现了水污染等问题。据统计,我国的化肥施用量已经达到了平均434.3kg/hm2,远远超出发达国家为防止化肥对水体造成污染所设置的225kg/hm2的安全上限,是国际标准的1.93倍。肥料施用量的增加和利用效率的下降,不仅造成了经济上的巨大损失,而且引起了严重的环境污染。化肥尤其是氮肥已成为主要的环境污染源之一,实行科学的变量施肥是农业可持续发展的必要措施和亟待解决的问题。
为了实行科学的变量施肥,获知被测农作物的生长状态信息极为关键,但现有的获取农作物的生长状态信息的技术一方面不能有效消除田间土壤反射光谱和作物生长形态导致的光谱干扰,从而导致测得的农作物的生长状态信息不够精确;另一方面,对于反演农作物的反射光信号所用的算法较为复杂,处理时间较长,对处理器要求较高,实时性差。
发明内容
本发明提供一种克服现有技术中的测得的农作物的生长状态信息不够精确,并且对于反演农作物的反射光信号所用的算法较为复杂,处理时间较长,对处理器要求较高,实时性差的问题的一种作物光谱信息采集装置及作物植被指数获取方法。
根据本发明的一个方面,提供一种作物光谱信息采集装置,所述采集装置包括:面阵光谱传感器和设置在所述面阵光谱传感器左右两侧的两个点阵光谱传感器;所述面阵光谱传感器,用于采集自身下方的面状区域内的作物冠层的光谱图像信息;所述点阵光谱传感器,用于采集自身正下方的多个点状区域内的作物冠层的多组反射光信号;其中,每一个点状区域具有一组反射光信号;所述多个点状区域位于所述面状区域内。
优选地,所述点阵光谱传感器具有多个光学通道,所述多个光学通道与所述多个点状区域一一对应;其中,每一个光学通道,用于采集对应的点状区域内的作物冠层在一个特定波长处的反射光信号。
优选地,所述多个光学通道至少为三个;其中,三个光学通道分别采集对应的点状区域内的作物冠层在可见光波段内的任一波长处、在红边波段内的任一波长处和在近红外光波段内的任一波长处的反射光信号。
优选地,所述点阵光谱传感器的多个光学通道彼此独立,其中,每一个光学通道中包含光电探测器、滤光片和透镜;每一个光学通道通过更换滤波片,以采集不同的特定波长处的反射光信号;所述光电探测器,用于将所述特定波长处的反射光信号转换为微弱电流信号。
优选地,所述点阵光谱传感器还具有:信号调理电路、微控制器和通信电路;所述信号调理电路,用于将多组所述微弱电流信号进行I/U转换和滤波放大处理;所述微控制器,用于接收所述信号调理电路发送的经过I/U转换和滤波放大处理后的多组电信号,并将所述经过I/U转换和滤波放大处理后的多组电信号转换为多组数字电信号;所述通信电路,用于将所述多组数字电信号发送至上位机。
根据本发明的另一个方面,提供一种使用上述的作物光谱信息采集装置获取生物植被指数的方法,所述方法包括:S1,根据所述两个点阵光谱传感器正下方的多个点状区域内的作物冠层的多组反射光信号,获取每一组反射光信号在对应的一个特定波长处的反射率;S2,根据多组反射光信号在对应的多个特定波长处的反射率,利用插值算法,获取所述面阵光谱传感器正下方区域内的作物冠层在所述多个特定波长处的反射率;S3,将所述面状区域划分为三个小区;对于每一小区,根据每一小区内的作物冠层的反射光信号在对应的特定波长处的反射率,获取第一实际植被指数和第二实际植被指数;S4,对于每一小区,通过每一小区内的光谱图像信息,获取每一小区内的作物覆盖率参数;并根据所述作物覆盖率参数,对所述第一实际植被指数和第二实际植被指数进行修正,以获取第一修正植被指数和第二修正植被指数;S5,根据每一小区的第一修正植被指数和第二修正植被指数,获取面状区域内的第一植被指数和第二植被指数。
优选地,步骤S3中的第一实际植被指数NDVI和第二实际植被指数NDRE,通过以下公式获取:
Figure BDA0001454482050000031
Figure BDA0001454482050000032
其中,Rnir为近红外光在对应的特定波长处的反射率,Rre为红边在对应的特定波长处的反射率,Rr为可见光在对应的特定波长处的反射率。
优选地,步骤S4具体包括:S41,对面阵光谱传感器采集的光谱图像信息进行滤波平滑处理;S42,根据经过滤波平滑处理后的光谱图像信息,基于HIS彩色空间模型的H分量,分割出作物的冠层叶片图像信息;S43,根据作物的冠层叶片在近红外光波段内的反射光的反射灰度级高于土壤背景的反射光的反射灰度级的特征,对所述冠层叶片图像信息进行二次分割,对经过二次分割的冠层叶片图像信息进行二值化处理;S44,根据经过二值化处理后的冠层叶片图像信息,获取每一小区内的作物覆盖率参数;并根据所述作物覆盖率参数,对所述第一实际植被指数和第二实际植被指数进行修正,以获取第一修正植被指数和第二修正植被指数。
优选地,步骤S44中的每一小区作物覆盖率参数C,通过以下公式获取:
Figure BDA0001454482050000041
其中,LP为任一小区内冠层叶片像素点数,Ap为任一小区内总像素点数;
所述第一修正植被指数NDVI和第二修正植被指数NDRE,通过以下公式获取:
Figure BDA0001454482050000042
其中,NDVI为第一实际植被指数,NDRE为第二实际植被指数,NDVIs为裸土区的第一植被指数,NDREs为裸土区的第二植被指数,C为作物覆盖率参数。
优选地,步骤S5中所述面状区域内的第一植被指数NDVI和第二植被指数NDRE,通过以下公式获取:
NDVI=KA·NDVIA+KB·NDVIB+KC·NDVIC
NDRE=KA·NDREA+KB·NDREB+KC·NDREC
其中,NDVIA为第一小区的第一修正植被指数,NDVIB为第二小区的第一修正植被指数,NDVIC为第三小区的第一修正植被指数,NDREA为第一小区的第二修正植被指数,NDREB为第二小区的第二修正植被指数,NDREC为第三小区的第二修正植被指数,KA、KB、KC均为加权系数。
本发明提供的一种作物光谱信息采集装置及作物植被指数获取方法,通过将点阵光谱传感器和面阵光谱传感器组合使用,使得该采集装置既保持了点阵传感器数据格式简单、处理速度快、实时性好且信噪比高的优点;又可利用面阵传感器采集的光谱图像信息而方便计算出地表作物覆盖度,以修正田间土壤反射光谱和作物生长形态导致的光谱干扰影响,从而可获得高精度的作物冠层的反射光信号,并可通过高精度的作物冠层的反射光信号,获得更精确的作物植被指数,进而为施肥决策提供更可靠的数据支持。
附图说明
图1为根据本发明实施例提供的一种作物光谱信息采集装置的结构示意图;
图2为根据本发明实施例提供的一种点阵光谱传感器的硬件结构示意图;
图3为根据本发明实施例提供的一种面阵光谱传感器的硬件结构示意图;
图4为根据本发明实施例提供的一种点阵光谱传感器的感光原理示意图;
图5为根据本发明实施例提供的一种面阵光谱传感器的感光原理示意图;
图6为根据本发明实施例提供的一种作物植被指数获取方法的流程图;
图7为根据本发明实施例提供的一种面状区域的分区示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
肥料施用量的增加和利用效率的下降,不仅造成了经济上的巨大损失,而且引起了严重的环境污染。化肥中的氮肥已成为主要的环境污染源之一,实行科学的变量施肥是农业可持续发展的必要措施和亟待解决的问题。
需要说明的是,为了对作物进行科学的变量施肥,首先需要获取作物的生长信息。因此,本发明提供一种作物光谱信息采集装置及作物植被指数获取方法,该采集装置用于获取作物的光谱信息,该物植被指数获取方法用于根据采集装置采集的作物的光谱信息,获取作为的生长信息。
以下将详细介绍一种作物光谱信息采集装置的结构与功能。
图1为根据本发明实施例提供的一种作物光谱信息采集装置的结构示意图,如图1所示,所述采集装置包括:面阵光谱传感器和设置在所述面阵光谱传感器左右两侧的两个点阵光谱传感器。即,该作物光谱信息采集装置由一个面阵光谱传感器和两个点阵光谱传感器组成。其中,面阵光谱传感器处于中间位置,两个点阵光谱传感器分别位于面阵光谱传感器的左侧和右侧。
所述面阵光谱传感器,用于采集自身下方的面状区域内的作物冠层的光谱图像信息。其中,面阵光谱传感器的镜头具有特定的视场角。在该面阵光谱传感器与被测面之间的距离一定时,面状区域的大小随视场角的变化而变化。当视场角一定时,面状区域的大小随面阵光谱传感器与被测面之间的距离的变化而变化。
所述点阵光谱传感器,用于采集自身正下方的多个点状区域内的作物冠层的多组反射光信号;其中,每一个点状区域具有一组反射光信号;所述多个点状区域位于所述面状区域内。
需要说明的是,“正下方”的含义和的“下方”的含义不同。“正下方”是指点阵光谱传感器在被测面的竖直投影区域,而“下方”是指面阵光谱传感器在被测面上所能探测到的一大片区域,该区域的大小可变,其变化规律在上文中已作介绍,此处不再赘述。“点状区域”与的“面状区域”的含义也不同。“点状区域”特指面积极小的区域,“面状区域”特指面积较大的区域。在本实施例中,多个点状区域位于面状区域内。
点阵光谱传感器虽然能够有效获取作物冠层的反射光信号,而且数据格式简单、处理速度快、实时性好,却不能有效消除田间土壤反射光谱和作物生长形态导致的光谱干扰。
面阵光谱传感器虽然能通过图像分割技术消除田间土壤反射光谱和作物生长形态导致的光谱干扰,但是图像数据量较大,尤其对于反演作物的反射光信号所用的算法较为复杂,处理时间较长,对处理器要求较高,实时性差。利用面阵光谱传感器实时检测作物长势以指导施肥决策,技术难度大,成本较高。
本实施例提供的一种作物光谱信息采集装置,通过将点阵光谱传感器和面阵光谱传感器组合使用,使得该采集装置既保持了点阵传感器数据格式简单、处理速度快、实时性好且信噪比高的优点;又可利用面阵传感器采集的光谱图像信息而方便计算出地表作物覆盖度,以修正田间土壤反射光谱和作物生长形态导致的光谱干扰影响,从而可获得高精度的作物冠层的反射光信号,并可通过高精度的作物冠层的反射光信号,获得更精确的作物植被指数,进而为施肥决策提供更可靠的数据支持。
基于上述实施例,本实施例对上述实施例中的点阵光谱传感器进行详细说明:
所述点阵光谱传感器具有多个光学通道,所述多个光学通道与所述多个点状区域一一对应;其中,每一个光学通道,用于采集对应的点状区域内的作物冠层在一个特定波长处的反射光信号。
需要说明的是,在本实施例中,两个点阵光谱传感器的结构和功能完全一致。两个点阵光谱传感器中的每一个点阵光谱传感器,具有多个光学通道。其中,每一个光学通道用于采集与该光学通道对应的点状区域内的作物冠层在一个特定波长处的反射光信号。
基于上述实施例,本实施例中的多个光学通道至少为三个;其中,三个光学通道分别采集对应的点状区域内的作物冠层在可见光波段内的任一波长处、在红边波段内的任一波长处和在近红外光波段内的任一波长处的反射光信号。
具体地,本实施例将光学通道的个数优选为至少三个。在本实施例中,若光学通道的个数仅为三个,为了以示区别,将这三个光学通道分别取名为第一光学通道、第二光学通道和第三光学通道。
其中,第一光学通道,用于采集其对应的点状区域内的作物冠层在可见光波段内的任一波长处的反射光信号;第二光学通道,用于采集其对应的点状区域内的作物冠层在红边波段内的任一波长处的反射光信号;第三光学通道,用于采集其对应的点状区域内的作物冠层在近红外光波段内的任一波长处的反射光信号。
需要说明的是,可见光波段的波长范围为400~700nm,红边波段的波长范围为700~760nm,近红外光波段的波长范围为760~1000nm。
基于上述实施例,本实施例对上述实施例中的点阵光谱传感器的光学通道进行进一步说明,所述点阵光谱传感器的多个光学通道彼此独立,其中,每一个光学通道中包含光电探测器、滤光片和透镜;每一个光学通道通过更换滤波片,以采集不同的特定波长处的反射光信号;所述光电探测器,用于将所述特定波长处的反射光信号转换为微弱电流信号。
其中,特定波长与该光学通道中的滤光片的特性相关,不同特性的滤光片采集不同特定波长处的反射光信号,一个光学通道只能采集一个特定波长处的反射光信号。
基于上述实施例,本实施例对上述实施例中的点阵光谱传感器的光学通道进行进一步说明,所述点阵光谱传感器的每一个光学通道,还用于将所述对应的点状区域内的作物冠层在一个特定波长处的反射光信号转换为电信号。
并且,所述点阵光谱传感器还具有:信号调理电路、微控制器和通信电路;所述信号调理电路,用于将多组所述微弱电流信号进行I/U转换和滤波放大处理;所述微控制器,用于接收所述信号调理电路发送的经过I/U转换和滤波放大处理后的多组电信号,并将所述经过I/U转换和滤波放大处理后的多组电信号转换为多组数字电信号;所述通信电路,用于将所述多组数字电信号发送至上位机。
作为一个优选实施例,本实施例结合附图,并通过具体的举例对本发明提供的一种作物光谱信息采集装置进行说明。
以下对点阵光谱传感器和面阵光谱传感器的硬件结构进行说明:
在本实施例中,点阵光谱传感器采用四波段自标定式光谱传感器。图2为根据本发明实施例提供的一种点阵光谱传感器的硬件结构示意图,如图2所示,该点阵光谱传感器主要由光学通道、信号调理电路、微控制器和相应外围电路组成。
该点阵光谱传感器具有四个光学通道,四个光学通道的特性均不同,因此,四个光学通道采集不同特定波长处的反射光信号。在本实施例中,由于四个光学通道的特性已固定,四个光学通道的光电探测器分别负责采集作物冠层在550nm、650nm、766nm和850nm处的反射光信号,并将反射光信号转换成微弱模拟电信号输出。微弱模拟电信号经过信号调理电路中的IU转换模块和滤波放大模块后,转换成为模拟电信号。模拟电信号再由微控制器进行A/D变换,进而转换为数字信号。该数字信号由相应外围电路中的通信模块输出给上位机。
其中,通信模块的通信方式预留CAN总线接口、WIFI模块接口和ZigBee接口等多种通信方式,可以根据具体场景选择合适的通信方式。
在本实施例中,面阵光谱传感器采用多光谱相机。图3为根据本发明实施例提供的一种面阵光谱传感器的硬件结构示意图,如图3所示,该面阵光谱传感器主要由镜头、信号调理模块、RGB和NIR图像输出模块组成。
该面阵光谱传感器通过棱镜分光技术可同步获取可见光RGB图像和NIR图像信号。该面阵光谱传感器将采集到的光谱图像信息传输给上位机,由上位机通过图像处理算法,计算得到覆盖率。
以下对点阵光谱传感器和面阵光谱传感器的功能进行说明:
图4为根据本发明实施例提供的一种点阵光谱传感器的感光原理示意图,如图4所示,点阵光谱传感器具有四个光学通道。为了以示区分,将四个光学通道分别取名为第一光学通道、第二光学通道、第三光学通道和第四光学通道。
其中,由于每一个光学通道内的光电探测器的感光面较小,只有3.2×3.2mm,因此,将光学通道的探测区域称为点状区域。
其中,第一光学通道用于采集对应点状区域内的作物冠层在550nm处的反射光信号,第二光学通道用于采集对应点状区域内的作物冠层在650nm处的反射光信号,第三光学通道用于采集对应点状区域内的作物冠层在766nm处的反射光信号,第四光学通道用于采集对应点状区域内的作物冠层在850nm处的反射光信号。
图5为根据本发明实施例提供的一种面阵光谱传感器的感光原理示意图,如图5所示,面阵光谱传感器具有一个镜头。该镜头具有25°视场角,其探测范围为一圆形面状区域。该圆形面状区域的大小由镜头距离被测面的距离决定。采集作物冠层光谱图像信息时考虑到反射光信号的强度问题,设定面阵光谱传感器到被测面即作物冠层的经验距离是50cm,此时的圆形面状区域的大小约为386cm2
需要说明的是,面阵光谱传感器的探测范围为一圆形面状区域,但其保存的光谱图像为圆形面状区域内的一块矩形面状区域。
以下对点阵光谱传感器和面阵光谱传感器的组合进行说明:
图1为根据本发明实施例提供的一种作物光谱信息采集装置,如图1所示,该作物光谱信息采集装置由一个面阵光谱传感器和两个点阵光谱传感器组成。其中,面阵光谱传感器处于中间位置,两个点阵光谱传感器分别位于面阵光谱传感器的左侧和右侧。
结合两种光谱传感器的物理尺寸关系,可以计算的得到两种光谱传感器探测范围的位置关系。通过计算得到,当两种光谱传感器的高度距离被测面即作物冠层的距离为50cm(50cm也是面阵光谱传感器采集作物冠层的光谱图像信息的适当距离)时,点阵光谱传感器的探测点在面阵光谱传感器的探测面内的两侧区域。
需要说明的是,探测点指代点状区域,探测面指代面状区域。
本实施例提供的一种作物光谱信息采集装置,通过将点阵光谱传感器和面阵光谱传感器组合使用,使得该采集装置既保持了点阵传感器数据格式简单、处理速度快、实时性好且信噪比高的优点;又可利用面阵传感器采集的光谱图像信息而方便计算出地表作物覆盖度,以修正田间土壤反射光谱和作物生长形态导致的光谱干扰影响,从而可获得高精度的作物冠层的反射光信号,并可通过高精度的作物冠层的反射光信号,获得更精确的作物植被指数,进而为施肥决策提供更可靠的数据支持。
基于上述实施例,图6为根据本发明实施例提供的一种作物植被指数获取方法的流程图,如图6所示,所述方法包括:
S1,根据所述两个点阵光谱传感器正下方的多个点状区域内的作物冠层的多组反射光信号,获取每一组反射光信号在对应的一个特定波长处的反射率。
S2,根据多组反射光信号在对应的多个特定波长处的反射率,利用插值算法,获取所述面阵光谱传感器正下方区域内的作物冠层在所述多个特定波长处的反射率。
S3,将所述面状区域划分为三个小区;对于每一小区,根据每一小区内的作物冠层的反射光信号在对应的特定波长处的反射率,获取第一实际植被指数和第二实际植被指数。
S4,对于每一小区,通过每一小区内的光谱图像信息,获取每一小区内的作物覆盖率参数;并根据所述作物覆盖率参数,对所述第一实际植被指数和第二实际植被指数进行修正,以获取第一修正植被指数和第二修正植被指数。
S5,根据每一小区的第一修正植被指数和第二修正植被指数,获取面状区域内的第一植被指数和第二植被指数。
具体地,对于步骤S1中的反射率的计算过程如下,需要说明的是,以下内容中以单个点阵光谱传感器进行说明:
当点阵光谱传感器在作物冠层上方测量时,设点阵光谱传感器测得可见光特征波长处太阳入射光的电信号为Ers、对应波长植被反射光的电信号为Erp;红边特征波长处太阳入射光的电信号为Eres、对应波长植被反射光的电信号为Erep;近红外光特征波长处太阳入射光的电信号为Enirs、对应波长植被反射光的电信号为Enirp,则近红外光特征波长处的反射率Rnir、红边特征波长处的反射率Rre和可见光特征波长处的反射率Rr分别为:
Figure BDA0001454482050000121
Figure BDA0001454482050000123
其中knir、kre和kr为均比例常数,由装置的光学系统、光电探测器及其适配放大器的特性参数决定。
需要说明的是,特征波长是指反射光信号对应的一个特定波长。例如,第一光学通道用于采集对应点状区域内的作物冠层在550nm处的反射光信号,那么,550nm为该反射光对应的特定波长,也为该反射光的特征波长。
具体地,步骤S22是指,获取两个点阵光谱传感器采集到的多组反射光信号在各自对应的特定波长处的反射率。并根据这些反射率,通过插值算法,获取面阵光谱传感器正下方区域内(以下成为待测区域)的作物冠层在上述多个特定波长处的反射率。
其中,在本实施例中,将插值算法优选为普通克里金法(Ordinary Kriging简称OK法),说明如何通过插值估算待测区域内各特定波长处的反射率的。OK法常称作局部最优线性无偏估计,所谓线性是指估计值是样本值的线性组合,即加权线性平均,无偏是指理论上估计值的平均值等于实际样本值的平均值,即估计的平均误差为0,最优是指估计的误差方差最小。
以下通过举例对步骤S2中的方法作出具体说明:
假设第一点阵光谱传感器和第二点阵光谱传感器的第一光学通道均用于采集对应点状区域内的作物冠层在550nm处的反射光信号。并且,第一点阵光谱传感器采集到的反射光信号在550nm处的反射率为R1,第二点阵光谱传感器采集到的反射光信号在550nm处的反射率为R2。那么,待测区域内的作物冠层的反射光信号在550nm处的反射率R为:
R=K1·R1+K2·R2
其中,K1和K2为加权系数,可根据场景需要进行调整。
待测区域在其他特定波长处的反射率的计算过程与上述计算过程一致,此处不再赘述。
具体地,对于步骤S23,此处结合附图对该步骤进行说明。图7为根据本发明实施例提供的一种面状区域的分区示意图,如图7所示,面阵光谱传感器的探测范围为一个圆形面状区域,但其保存的光谱图像为该圆形面状区域内的一个矩形面状区域。图7中的矩形面状区域代表一幅光谱图像,将该矩形面状区域水平分成三个小区,分别用A、B、C标识。
其中,A小区和C小区分别为两个点阵光谱传感器的正下方的投影区域,其中的圆圈均为其探测的点状区域。B小区为面阵光谱传感器正下方的投影区域,其中的圆圈代表点状区域。需要说明的是,B小区的点状区域实际上是不存在的,该点状区域内反射光信号的反射率通过A小区和C小区的点状区域内的反射光信号在其对应的特定波长处的反射率,通过插值算法计算得出的。
以A小区为例,计算该区域内的第一实际植被指数NDVI和第二实际植被指数NDRE
Figure BDA0001454482050000141
Figure BDA0001454482050000142
其中,Rnir为近红外光在对应的特定波长处的反射率,Rre为红边在对应的特定波长处的反射率,Rr为可见光在对应的特定波长处的反射率。
由上述实施例可知各反射光信号的反射率的求取公式,将上述各反射光信号的反射率公式带入第一实际植被指数NDVI和第二实际植被指数NDRE的公式中,可得:
Figure BDA0001454482050000143
其中,
Figure BDA0001454482050000145
其他参数均在上述实施例中作了介绍,此处不再赘述。
为尽可能消除光学传感器的光学系统、光电探测器及其适配放大器系统误差及太阳光照变化对测量结果的影响,研究了系统的标定方法。
当点阵光谱传感器在白板上方测量时,设点阵光谱传感器测得可见光特征波长处太阳入射光的电信号为Es0、对应波长植被反射光的电信号为Ep0;红边特征波长处太阳入射光的电信号为Eres0、对应波长植被反射光的电信号为Erep0;近红外光特征波长处太阳入射光的电信号为Enirs0、对应波长植被反射光的电信号为Enirp0。由于标准白板反射率为1,即近红外光特征波长处的反射率Rnir0、红边特征波长处的反射率Rre0和可见光特征波长处的反射率Rr0均为1,所以:
Figure BDA0001454482050000151
可确定装置标定的系数为:
Figure BDA0001454482050000152
B小区和C小区中的第一实际植被指数和第二实际植被指数与A小区中的计算方法一致,此处不再赘述。
由于点阵光谱传感器测得的反射光信号,不能去除土壤等背景的影响,因此需要从面阵传感器采集的光谱图像信息中,提取作物冠层信息,消除土壤等背景信息的干扰。因此,提出利用作物覆盖度修正由点阵光谱传感器数据计算得到的第一实际植被指数和第二实际植被指数,然后将修正后的植被指数作为氮素营养诊断模型的输入参数,从而反演作物氮素营养需求。
基于上述实施例,本实施例对步骤S4进行具体说明。步骤S4具体包括:
S41,对面阵光谱传感器采集的光谱图像信息进行滤波平滑处理。
S42,根据经过滤波平滑处理后的光谱图像信息,基于HIS彩色空间模型的H分量,分割出作物的冠层叶片图像信息。
S43,根据作物的冠层叶片在近红外光波段内的反射光的反射灰度级高于土壤背景的反射光的反射灰度级的特征,对所述冠层叶片图像信息进行二次分割,对经过二次分割的冠层叶片图像信息进行二值化处理。
S44,根据经过二值化处理后的冠层叶片图像信息,获取每一小区内的作物覆盖率参数;并根据所述作物覆盖率参数,对所述第一实际植被指数和第二实际植被指数进行修正,以获取第一修正植被指数和第二修正植被指数。
具体地,由于天气情况、拍摄环境等因素的影响,会使面阵光谱传感器采集的光谱图像信息混有不同程度的噪声。为减小噪声,消除其中的随机性和局部性噪声点,首先对光谱图像信息进行滤波平滑处理。然后,为了实现作物的冠层叶片与土壤背景的分割,利用作物冠层叶片与土壤背景颜色不同的特点,根据经过滤波平滑处理后的光谱图像信息,基于HIS彩色空间模型的H分量,分割出作物的冠层叶片图像信息。接着,根据作物的冠层叶片在近红外光波段内的反射光的反射灰度级高于土壤背景的反射光的反射灰度级的特征,对冠层叶片图像信息进行二次分割,对经过二次分割的冠层叶片图像信息进行二值化处理,从而将作物冠层叶片与土壤背景进行分离开来。
对将土壤背景分离后的光谱图像信息进行像素级操作。图7为根据本发明实施例提供的一种面状区域的分区示意图,如图7所示,首先提取出矩形面状区域的像素。然后将该区域像素在水平方向上,平均分为3个小区,对于每一个小区,其作物覆盖率参数C为:
Figure BDA0001454482050000161
其中,LP为任一小区内冠层叶片像素点数,Ap为任一小区内总像素点数;
所述第一修正植被指数NDVI和第二修正植被指数NDRE,通过以下公式获取:
Figure BDA0001454482050000162
Figure BDA0001454482050000163
其中,NDVI为第一实际植被指数,NDRE为第二实际植被指数,NDVIs为裸土区的第一植被指数,NDREs为裸土区的第二植被指数,C为作物覆盖率参数。
因此,面状区域内的第一植被指数NDVI和第二植被指数NDRE,通过以下公式获取:
NDVI=KA·NDVIA+KB·NDVIB+KC·NDVIC
NDRE=KA·NDREA+KB·NDREB+KC·NDREC
其中,NDVIA为A小区的第一修正植被指数,NDVIB为B小区的第一修正植被指数,NDVIC为C小区的第一修正植被指数;NDREA为A小区的第二修正植被指数,NDREB为B小区的第二修正植被指数,NDREC为C小区的第二修正植被指数;KA、KB和KC均为加权系数,加权系数可根据具体场景进行调整。
综上,本发明提供的一种作物光谱信息采集装置及作物植被指数获取方法,通过将点阵光谱传感器和面阵光谱传感器组合使用,使得该采集装置既保持了点阵传感器数据格式简单、处理速度快、实时性好且信噪比高的优点;又可利用面阵传感器采集的光谱图像信息而方便计算出地表作物覆盖度,以修正田间土壤反射光谱和作物生长形态导致的光谱干扰影响,从而可获得高精度的作物冠层的反射光信号,并可通过高精度的作物冠层的反射光信号,获得更精确的作物植被指数,进而为施肥决策提供更可靠的数据支持。
最后,本发明的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种基于作物光谱信息采集装置获取生物植被指数的方法,所述作物光谱信息采集装置包括面阵光谱传感器和设置在所述面阵光谱传感器左右两侧的两个点阵光谱传感器;所述面阵光谱传感器,用于采集自身下方的面状区域内的作物冠层的光谱图像信息;所述点阵光谱传感器,用于采集自身正下方的多个点状区域内的作物冠层的多组反射光信号;其中,每一个点状区域具有一组反射光信号;所述多个点状区域位于所述面状区域内;其特征在于,包括:
S1,根据所述两个点阵光谱传感器正下方的多个点状区域内的作物冠层的多组反射光信号,获取每一组反射光信号在对应的一个特定波长处的反射率;
S2,根据多组反射光信号在对应的多个特定波长处的反射率,利用插值算法,获取所述面阵光谱传感器正下方区域内的作物冠层在所述多个特定波长处的反射率;
S3,将所述面状区域划分为三个小区;对于每一小区,根据每一小区内的作物冠层的反射光信号在对应的特定波长处的反射率,获取第一实际植被指数和第二实际植被指数;
S4,对于每一小区,通过每一小区内的光谱图像信息,获取每一小区内的作物覆盖率参数;并根据所述作物覆盖率参数,对所述第一实际植被指数和第二实际植被指数进行修正,以获取第一修正植被指数和第二修正植被指数;
S5,根据每一小区的第一修正植被指数和第二修正植被指数,获取面状区域内的第一植被指数和第二植被指数。
2.根据权利要求1所述的方法,其特征在于,步骤S3中的第一实际植被指数NDVI和第二实际植被指数NDRE,通过以下公式获取:
Figure FDA0002276897080000011
Figure FDA0002276897080000021
其中,Rnir为近红外光在对应的特定波长处的反射率,Rre为红边在对应的特定波长处的反射率,Rr为可见光在对应的特定波长处的反射率。
3.根据权利要求1所述的方法,其特征在于,步骤S4具体包括:
S41,对面阵光谱传感器采集的光谱图像信息进行滤波平滑处理;
S42,根据经过滤波平滑处理后的光谱图像信息,基于HIS彩色空间模型的H分量,分割出作物的冠层叶片图像信息;
S43,根据作物的冠层叶片在近红外光波段内的反射光的反射灰度级高于土壤背景的反射光的反射灰度级的特征,对所述冠层叶片图像信息进行二次分割,对经过二次分割的冠层叶片图像信息进行二值化处理;
S44,根据经过二值化处理后的冠层叶片图像信息,获取每一小区内的作物覆盖率参数;并根据所述作物覆盖率参数,对所述第一实际植被指数和第二实际植被指数进行修正,以获取第一修正植被指数和第二修正植被指数。
4.根据权利要求3所述的方法,其特征在于,步骤S44中的每一小区作物覆盖率参数C,通过以下公式获取:
Figure FDA0002276897080000022
其中,LP为任一小区内冠层叶片像素点数,Ap为任一小区内总像素点数;
所述第一修正植被指数NDVI和第二修正植被指数NDRE,通过以下公式获取:
Figure FDA0002276897080000023
Figure FDA0002276897080000031
其中,NDVI为第一实际植被指数,NDRE为第二实际植被指数,NDVIs为裸土区的第一植被指数,NDREs为裸土区的第二植被指数,C为作物覆盖率参数。
5.根据权利要求1所述的方法,其特征在于,步骤S5中所述面状区域内的第一植被指数NDVI和第二植被指数NDRE,通过以下公式获取:
NDVI=KA·NDVIA+KB·NDVIB+KC·NDVIC
NDRE=KA·NDREA+KB·NDREB+KC·NDREC
其中,NDVIA为第一小区的第一修正植被指数,NDVIB为第二小区的第一修正植被指数,NDVIC为第三小区的第一修正植被指数,NDREA为第一小区的第二修正植被指数,NDREB为第二小区的第二修正植被指数,NDREC为第三小区的第二修正植被指数,KA、KB、KC均为加权系数。
CN201711059669.8A 2017-11-01 2017-11-01 一种作物光谱信息采集装置及作物植被指数获取方法 Active CN107991245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711059669.8A CN107991245B (zh) 2017-11-01 2017-11-01 一种作物光谱信息采集装置及作物植被指数获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711059669.8A CN107991245B (zh) 2017-11-01 2017-11-01 一种作物光谱信息采集装置及作物植被指数获取方法

Publications (2)

Publication Number Publication Date
CN107991245A CN107991245A (zh) 2018-05-04
CN107991245B true CN107991245B (zh) 2020-02-07

Family

ID=62030171

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711059669.8A Active CN107991245B (zh) 2017-11-01 2017-11-01 一种作物光谱信息采集装置及作物植被指数获取方法

Country Status (1)

Country Link
CN (1) CN107991245B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109459405B (zh) * 2018-10-23 2020-07-28 南京农业大学 基于窄带图像处理去除土壤背景干扰的光谱指数测量方法
WO2021192642A1 (ja) * 2020-03-25 2021-09-30 ソニーグループ株式会社 画像処理装置、および画像処理方法、並びにプログラム
CN112014330A (zh) * 2020-07-30 2020-12-01 北京农业智能装备技术研究中心 作物近地光谱数据采集方法及装置
CN113366956A (zh) * 2021-06-16 2021-09-10 中国农业大学 药肥同施的控制方法及药肥同施的装置
CN113640254B (zh) * 2021-08-11 2023-10-24 淮阴师范学院 一种可保持自平衡的作物生长信息传感器
CN117288693B (zh) * 2023-11-27 2024-03-26 慧诺云谱(海南)科技有限公司 一种实时获取植被指数地图的方法及机载装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144778B (zh) * 2007-06-19 2010-09-08 中国农业大学 光谱反射率测量装置
CN101793680B (zh) * 2010-03-19 2013-06-12 中国农业大学 作物植被指数测定系统
CN201638046U (zh) * 2010-04-15 2010-11-17 吉林农业大学 基于归一化植被指数的玉米氮肥变量施肥控制装置
CN102207452A (zh) * 2011-03-11 2011-10-05 中国农业大学 作物冠层光谱指数测量系统及方法
CN102384767B (zh) * 2011-11-17 2014-03-12 江苏大学 一种设施作物生长信息无损检测装置和方法

Also Published As

Publication number Publication date
CN107991245A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN107991245B (zh) 一种作物光谱信息采集装置及作物植被指数获取方法
CN101839979B (zh) 作物冠层植被指数测量方法及装置
CN111832518B (zh) 基于时空融合的tsa遥感影像土地利用方法
CN102324098B (zh) 一种结合实验室定标和均匀景统计的相对辐射定标方法
CN107976921B (zh) 一种施肥装置及方法
CN102081039A (zh) 一种环境可控的作物营养水分高光谱图像检测装置
CN101936882A (zh) 一种作物氮素和水分无损检测方法及装置
CN101692037A (zh) 高光谱图像和独立分量分析植物叶面叶绿素分布的方法
CN204963859U (zh) 遥感参数相机
CN109253976B (zh) 基于光感模块的高光谱实时辐射定标方法
WO2022252367A1 (zh) 一种多光谱图像传感器及其成像模块
CN108885277B (zh) 信息处理设备和信息处理方法
CN110186566B (zh) 基于光场相机多谱测温的二维真实温度场成像方法及系统
CN108737815B (zh) 一种图像传感器的质量检测方法及系统
CN109859231A (zh) 一种基于光学图像的叶面积指数提取阈值分割方法
CN103278503B (zh) 一种基于多传感器技术的葡萄水分胁迫诊断方法及系统
CN109974854B (zh) 一种框幅式fpi高光谱图像的辐射校正方法
CN107610066A (zh) 一种叶面积指数测量方法
CN104200457A (zh) 基于广角摄像的离散型冠层叶面积指数检测系统和方法
CN113175956A (zh) 一种作物长势监测的多光谱及光学相机传感器装置
CN114586066A (zh) 图像处理装置、图像处理方法和图像处理程序
CN106568730B (zh) 一种基于近地面高光谱影像的水稻阴阳叶穗识别方法
CN107576395A (zh) 一种多光谱镜头、多光谱测量装置及其标定方法
CN110719447A (zh) 一种具有多通道窄带滤色片阵列的图像传感器
CN109459405B (zh) 基于窄带图像处理去除土壤背景干扰的光谱指数测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211213

Address after: 518067 402d, block C, Wanrong building, No. 1029, Nanhai Avenue, Yanshan community, merchants street, Nanshan District, Shenzhen, Guangdong

Patentee after: Texel Technology (Shenzhen) Co.,Ltd.

Address before: 100193 No. 2 Old Summer Palace West Road, Beijing, Haidian District

Patentee before: CHINA AGRICULTURAL University