CN107988882B - 一种多功能高速公路变形监测基站的工作方法 - Google Patents

一种多功能高速公路变形监测基站的工作方法 Download PDF

Info

Publication number
CN107988882B
CN107988882B CN201711353652.3A CN201711353652A CN107988882B CN 107988882 B CN107988882 B CN 107988882B CN 201711353652 A CN201711353652 A CN 201711353652A CN 107988882 B CN107988882 B CN 107988882B
Authority
CN
China
Prior art keywords
base station
deformation
monitoring
monitoring base
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711353652.3A
Other languages
English (en)
Other versions
CN107988882A (zh
Inventor
陈志国
王书娟
闫秋波
沈艳东
王连威
郑纯宇
李坤霖
曹春梅
于丽梅
陈梓宁
秦卫军
魏志刚
吕东冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin Communications Polytechnic
Jilin Provincial Transport Scientific Research Institute
Original Assignee
Jilin Communications Polytechnic
Jilin Provincial Transport Scientific Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin Communications Polytechnic, Jilin Provincial Transport Scientific Research Institute filed Critical Jilin Communications Polytechnic
Priority to CN201711353652.3A priority Critical patent/CN107988882B/zh
Publication of CN107988882A publication Critical patent/CN107988882A/zh
Application granted granted Critical
Publication of CN107988882B publication Critical patent/CN107988882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D1/00Investigation of foundation soil in situ
    • E02D1/08Investigation of foundation soil in situ after finishing the foundation structure

Abstract

本发明属于路段变形监测技术领域,提供一种多功能高速公路变形监测基站的工作方法,该基站包括角散射器、转向支架、黑盒、太阳能电池板、固定桩和天线,所述转向支架上端与角散射器外板铰接相连,下端与黑盒面板铰接相连,所述黑盒内集成GPS定位器、与太阳能电池板匹配的蓄电池、数据存储器、信号收发射器,所述天线与信号收发射器相连。本发明方法通过在监控路段设置若干无人监测基站,实时监测各基站道路变形,结合雷达干涉测量技术,可实现对该路段的全天候实时无人监控,对提高监控数据信息的及时性及有效性,提高公路行驶安全具有重要意义。

Description

一种多功能高速公路变形监测基站的工作方法
技术领域
本发明属于路段变形监测技术领域,具体地说是一种多功能高速公路变形监测基站的工作方法。
背景技术
路基作为公路工程重要的结构组成部分,对行车安全起着十分重要的作用,而公路路基沉降一直是影响公路路基质量的重要问题,在我国北方季节冻区,由于冬季气温低,会导致高速公路冻胀融沉变形,甚至可超过几十厘米,造成道路极大损害,因而及时获取道路变形信息,对于道路维护和养护至关重要。目前对于道路变形的监控措施主要采用水准测量,即使用水准测量仪进行人工测量,这种方法存在以下不足:只能监测站点数据,无法获取大面积道路变形信息;人工监测方法费时耗力,无法实时获取信息。
发明内容
本发明的目的是针对上述现有技术的不足,提供一种多功能高速公路变形监测基站的工作方法,可实现对道路变形量的实时监控,高效可靠,节省人力。
本发明的发明目的是通过如下技术方案实现的。
一种多功能高速公路变形监测基站,包括角散射器、转向支架、黑盒、太阳能电池板、固定桩和天线,所述转向支架上端与角散射器外板铰接相连,下端与黑盒面板铰接相连,所述黑盒内集成GPS定位器、与太阳能电池板匹配的蓄电池、数据存储器、信号收发射器,所述太阳能电池板为整个监测基站提供电能,并与蓄电池相连,所述黑盒底部设有固定桩,所述天线与信号收发射器相连。
在上述技术方案中,太阳能电池板有较高的发电效率,并且有相应的蓄电池与其匹配,保证监测基站能够在夜晚或连续阴天的天气情况下依然有存储电力,保证正常工作。数据存储器用于将监测的路面变形数据进行储存,在特殊情况下如信号收发射器发生故障,不能及时将该基站的数据实时传输到监控总部,依然可以通过人工现场读取储存器中的监控数据。
在上述技术方案中,所述转向支架为三个独立的液压伸缩杆,液压伸缩杆与转向支架控制模块相连,转向支架控制模块中配有相应的程序实现控制。
在上述技术方案中,所述太阳能电池板上设有全方位光感应器,太阳能电池板端部设有转轴,转轴与驱动电机相连,所述全方位光感应器由投光器、受光器、接收感应器组成,投光器通过透镜将光线聚焦,传输至受光器的透镜,再至接收感应器,接收感应器将收到的光线讯号转变成电信号,电信号进一步控制驱动电机,带动太阳能电池板转动。
在上述技术方案中,该监测基站与监控总部通过无线通讯连接。
本发明提供一种上述的多功能高速公路变形监测基站的工作方法,包括以下步骤:
(1)在监测路段布置多个监测基站,实时监测各基站道路变形;
(2)GPS定位器采用太阳能电池板供能,自动解算监测基站坐标,将当前解算的坐标值与以往坐标值对比,即可得到监测基站位置的变形情况,从而获取形变数据,将采集的形变数据利用数据存储器进行存储,如果变形超过阈值则触发报警系统;
(3)雷达卫星过境时,获取该地区的雷达干涉影像,利用角散射器形成的永久散射体配准干涉影像,即确保干涉影像中同一区域对应相同的地理位置;根据干涉测量原理,解算不同时段的地形高程信息,从而提取地形形变信息,将其与GPS定位器测量的形变数据进行比对,得到更加准确的道路变形数据;
(4)雷达卫星过境时,角散射器根据卫星方位调整转向支架,使其散射面板正对卫星,形成永久散射体,该永久散射体的作用是作为雷达干涉影像的参考点,用于将当前的雷达干涉影像与上次干涉影像对比,得到该地区各个点位高程信息变化值;
(5)信号收发射器通过天线将监测基站采集的数据或者路面变形过大触发的报警信号实时传输到监控总部,监控总部通过接收的各监测基站的采集数据,结合雷达干涉测量技术,实现对整个路段变形的监测。
在上述技术方案中,步骤(4)中转向支架的调整过程如下:
第一步,在转向支架控制模块中存储有全球星历数据,根据GPS定位器确定的监测基站的三维坐标,转向支架控制模块自动筛选在此过境的所有卫星信息,包括过境时间以及过境角度;
第二步,根据筛选的卫星过境时间及过境角度,转向支架控制模块对转向支架的液压伸缩杆进行实时控制,调整角散射器的角度,使其正对卫星形成永久散射体。
由于不同卫星过境发射的电磁波方向不同,所以角散射器通过调整下方的三个液压伸缩杆实现角散射器在一定角度范围内的转动,保证电磁波散射强度。
本发明的有益效果:
本发明旨在解决传统人工监测公路路面变形耗时费力,无法及时获取信息的问题,通过在监控路段设置若干无人监测基站,实时监测各基站道路变形,结合雷达干涉测量技术,可实现对该路段的全天候实时无人监控。同时,监测基站采用太阳能电池板供能,非故障问题不需要人力操作维修。本发明对提高监控数据信息的及时性及有效性,提高公路行驶安全具有重要意义。
附图说明
图1为本发明监控基站的组成示意图。
图2为本发明监控基站中转向支架的调整流程图。
其中:1、角散射器;2、转向支架;3、太阳能电池板;4、黑盒(内部集成GPS定位器、蓄电池、数据存储器、信号收发射器);5、固定桩;6、公路;7、天线; 8、监控总部;9、卫星。
实施方式
下面结合附图及具体实施例对本发明作进一步的说明。
如图1所示,本发明实施例提供一种多功能高速公路变形监测基站,包括角散射器1、转向支架2、黑盒4、太阳能电池板3、固定桩5和天线7,所述转向支架2上端与角散射器1外板铰接相连,下端与黑盒4面板铰接相连,所述黑盒4内集成GPS定位器、与太阳能电池板匹配的蓄电池、数据存储器、信号收发射器,所述太阳能电池板3为整个监测基站提供电能,并与蓄电池相连,所述黑盒4底部设有固定桩,所述天线7与信号收发射器相连。
在上述实施例中,所述转向支架2为三个独立的液压伸缩杆,液压伸缩杆与转向支架控制模块相连,通过相应的程序实现控制。
在上述实施例中,太阳能电池板3为整个监测基站提供电能,太阳能电池板通可以根据太阳方位实时调整角度,提高发电效率。所述太阳能电池板3上设有全方位光感应器,或由多个感应器组合而成的全方位感应器,比较各方位的光强,太阳能电池板跟着最强的那个方位旋转。太阳能电池板端部设有转轴,转轴与驱动电机相连,所述全方位光感应器由投光器、受光器、接收感应器组成,投光器通过透镜将光线聚焦,传输至受光器的透镜,再至接收感应器,接收感应器将收到的光线讯号转变成电信号,电信号进一步控制驱动电机,带动太阳能电池板转动。
在上述实施例中,该监测基站与监控总部通过无线通讯连接,实时传输监测数据信息,也可以实现监控总部8对监测基站的实时控制。
本发明实施例提供一种上述的多功能高速公路变形监测基站的工作方法,包括以下步骤:
(1)在监测路段布置多个监测基站,实时监测各基站道路变形;
(2)GPS定位器采用太阳能电池板供能,自动解算监测基站坐标,将当前解算的坐标值与以往坐标值对比,即可得到监测基站位置的变形情况,从而获取形变数据,将采集的形变数据利用数据存储器进行存储,如果变形超过阈值则触发报警系统;
(3)雷达卫星过境时,获取该地区的雷达干涉影像,利用角散射器形成的永久散射体配准干涉影像,即确保干涉影像中同一区域对应相同的地理位置;根据干涉测量原理,解算不同时段的地形高程信息,从而提取地形形变信息,将其与GPS定位器测量的形变数据进行比对,得到更加准确的道路变形数据;
(4)雷达卫星过境时,角散射器根据卫星方位调整转向支架,使其散射面板正对卫星,形成永久散射体,该永久散射体的作用是作为雷达干涉影像的参考点,用于将当前的雷达干涉影像与上次干涉影像对比,得到该地区各个点位高程信息变化值;
(5)信号收发射器通过天线将监测基站采集的数据或者路面变形过大触发的报警信号实时传输到监控总部,监控总部通过接收的各监测基站的采集数据,结合雷达干涉测量技术,实现对整个路段变形的监测。
在上述实施例中,如图2所示,步骤(4)中转向支架的调整过程如下:
第一步,在转向支架控制模块中存储有全球星历数据,根据GPS定位器确定的监测基站的三维坐标,转向支架控制模块自动筛选在此过境的所有卫星信息,包括过境时间以及过境角度;
第二步,根据筛选的卫星过境时间及过境角度,转向支架控制模块对转向支架的液压伸缩杆进行实时控制,调整角散射器的角度,使其正对卫星形成永久散射体。
本说明书中未作详细描述的内容,属于本专业技术人员公知的现有技术。
本发明的上述实例仅仅为清楚说明本发明所作的举例,而非本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无法对所有的实施方式予以穷举。凡是属于本发明的技术方案所引申出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (5)

1.一种多功能高速公路变形监测基站的工作方法,其特征在于:所述监测基站包括角散射器、转向支架、黑盒、太阳能电池板、固定桩和天线,所述转向支架上端与角散射器外板铰接相连,下端与黑盒面板铰接相连,所述黑盒内集成GPS定位器、与太阳能电池板匹配的蓄电池、数据存储器、信号收发射器,所述太阳能电池板为整个监测基站提供电能,并与蓄电池相连,所述黑盒底部设有固定桩,所述天线与信号收发射器相连;
该工作方法包括以下步骤:
(1)在监测路段布置多个监测基站,实时监测各基站道路变形;
(2)GPS定位器采用太阳能电池板供能,自动解算监测基站坐标,将当前解算的坐标值与以往坐标值对比,即可得到监测基站位置的变形情况,从而获取形变数据,将采集的形变数据利用数据存储器进行存储,如果变形超过阈值则触发报警系统;
(3)雷达卫星过境时,获取该地区的雷达干涉影像,利用角散射器形成的永久散射体配准干涉影像,即确保干涉影像中同一区域对应相同的地理位置;根据干涉测量原理,解算不同时段的地形高程信息,从而提取地形形变信息,将其与GPS定位器测量的形变数据进行比对,得到更加准确的道路变形数据;
(4)雷达卫星过境时,角散射器根据卫星方位调整转向支架,使其散射面板正对卫星,形成永久散射体,该永久散射体的作用是作为雷达干涉影像的参考点,用于将当前的雷达干涉影像与上次干涉影像对比,得到该地区各个点位高程信息变化值;
(5)信号收发射器通过天线将监测基站采集的数据或者路面变形过大触发的报警信号实时传输到监控总部,监控总部通过接收的各监测基站的采集数据,结合雷达干涉测量技术,实现对整个路段变形的监测。
2.根据权利要求1所述的多功能高速公路变形监测基站的工作方法,其特征在于:步骤(4)中转向支架的调整过程如下:
第一步,在转向支架控制模块中存储有全球星历数据,根据GPS定位器确定的监测基站的三维坐标,转向支架控制模块自动筛选在此过境的所有卫星信息,包括过境时间以及过境角度;
第二步,根据筛选的卫星过境时间及过境角度,转向支架控制模块对转向支架的液压伸缩杆进行实时控制,调整角散射器的角度,使其正对卫星形成永久散射体。
3.根据权利要求1所述的多功能高速公路变形监测基站的工作方法,其特征在于:所述转向支架为三个独立的液压伸缩杆。
4.根据权利要求1所述的多功能高速公路变形监测基站的工作方法,其特征在于:所述太阳能电池板上设有全方位光感应器,太阳能电池板端部设有转轴,转轴与驱动电机相连,所述全方位光感应器由投光器、受光器、接收感应器组成,投光器通过透镜将光线聚焦,传输至受光器的透镜,再至接收感应器,接收感应器将收到的光线讯号转变成电信号,电信号进一步控制驱动电机,带动太阳能电池板转动。
5.根据权利要求1所述的多功能高速公路变形监测基站的工作方法,其特征在于:所述监测基站与监控总部通过无线通讯连接。
CN201711353652.3A 2017-12-15 2017-12-15 一种多功能高速公路变形监测基站的工作方法 Active CN107988882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711353652.3A CN107988882B (zh) 2017-12-15 2017-12-15 一种多功能高速公路变形监测基站的工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711353652.3A CN107988882B (zh) 2017-12-15 2017-12-15 一种多功能高速公路变形监测基站的工作方法

Publications (2)

Publication Number Publication Date
CN107988882A CN107988882A (zh) 2018-05-04
CN107988882B true CN107988882B (zh) 2023-12-22

Family

ID=62038527

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711353652.3A Active CN107988882B (zh) 2017-12-15 2017-12-15 一种多功能高速公路变形监测基站的工作方法

Country Status (1)

Country Link
CN (1) CN107988882B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109163289A (zh) * 2018-08-01 2019-01-08 武汉亿文光电设备有限公司 一种便于拆装使用的户外太阳能led灯
CN110512502A (zh) * 2019-08-26 2019-11-29 中国十七冶集团有限公司 一种下穿高铁桥梁下道路路面的变形监测与控制方法
CN110541341B (zh) * 2019-09-04 2021-10-22 山西省交通科技研发有限公司 一种基于稳定视觉的公路结构病害检测装置及方法
CN110726396A (zh) * 2019-11-08 2020-01-24 北京铁科工程检测有限公司 一种insar地面角反射器和差异沉降监测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202404229U (zh) * 2012-01-11 2012-08-29 中国矿业大学 一种gps定位雷达角反射器
CN203908542U (zh) * 2014-04-30 2014-10-29 北京市水文地质工程地质大队 一种地表形变空地一体化监测验证装置
CN204551213U (zh) * 2015-04-21 2015-08-12 武汉光谷北斗地球空间信息产业股份有限公司 一种基于cors基站的公路形变监测系统
CN106997041A (zh) * 2017-05-05 2017-08-01 中国人民解放军理工大学 基于角反射器的雷达信号源自动跟踪系统
CN107332576A (zh) * 2017-06-06 2017-11-07 芜湖航飞科技股份有限公司 一种北斗终端结构
CN107389029A (zh) * 2017-08-24 2017-11-24 北京市水文地质工程地质大队 一种基于多源监测技术融合的地面沉降集成监测方法
CN207619800U (zh) * 2017-12-15 2018-07-17 吉林省交通科学研究所 一种多功能高速公路变形监测基站

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202404229U (zh) * 2012-01-11 2012-08-29 中国矿业大学 一种gps定位雷达角反射器
CN203908542U (zh) * 2014-04-30 2014-10-29 北京市水文地质工程地质大队 一种地表形变空地一体化监测验证装置
CN204551213U (zh) * 2015-04-21 2015-08-12 武汉光谷北斗地球空间信息产业股份有限公司 一种基于cors基站的公路形变监测系统
CN106997041A (zh) * 2017-05-05 2017-08-01 中国人民解放军理工大学 基于角反射器的雷达信号源自动跟踪系统
CN107332576A (zh) * 2017-06-06 2017-11-07 芜湖航飞科技股份有限公司 一种北斗终端结构
CN107389029A (zh) * 2017-08-24 2017-11-24 北京市水文地质工程地质大队 一种基于多源监测技术融合的地面沉降集成监测方法
CN207619800U (zh) * 2017-12-15 2018-07-17 吉林省交通科学研究所 一种多功能高速公路变形监测基站

Also Published As

Publication number Publication date
CN107988882A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN107988882B (zh) 一种多功能高速公路变形监测基站的工作方法
CN104834325B (zh) 一种漂浮式太阳能发电单轴跟踪系统及其控制方法
US20170329351A1 (en) Apparatus-assisted sensor data collection
CN105844859B (zh) 一种公路危岩无线监测预警系统
CN109557534B (zh) 一种多要素全方位跟踪检测雷达传感器设备及其使用方法
CN203908542U (zh) 一种地表形变空地一体化监测验证装置
CN207622744U (zh) 使用激光标尺的垂直高差测量装置
CN112394425A (zh) 一种雪深探测仪器及探测方法
CN109883479A (zh) 一种定点悬挂式冰厚、水位一体化连续监测装置
CN105321327A (zh) 一种用于高大模板支撑系统的自动监测系统
CN101650297A (zh) 大气偏振模式多维检测装置及检测方法
CN207619800U (zh) 一种多功能高速公路变形监测基站
CN202583889U (zh) Dcs监控激光标校太阳能聚光反射镜定位装置
CN206553979U (zh) 一种新型智能交通锥
CN110579812B (zh) 一种机载偏振法检测路面结冰预警系统
CN209858725U (zh) 一种具有缓冲减震装置的雷达支架
CN112683336B (zh) 一种基于3d摄像头的水土保持在线监测装置及监测方法
CN203054615U (zh) 平单轴联动跟踪系统
JP4843946B2 (ja) 対空標識
CN212781296U (zh) 一种可自动对光的太阳能供电户外物联网气象站
CN203966295U (zh) 一种泥石流安全监测预警装置
CN214253012U (zh) 一种多功能自调节太阳能电池板装置
CN216746293U (zh) 一种基于北斗定位的铁路桥涵位移及水位综合监测系统
CN108547202B (zh) 一种基于环卫车的道路质量动态监测方法
CN213069232U (zh) 一种同步气象保障的无缝定位导航无人车

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant