CN107986784A - 一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法 - Google Patents

一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法 Download PDF

Info

Publication number
CN107986784A
CN107986784A CN201711262128.5A CN201711262128A CN107986784A CN 107986784 A CN107986784 A CN 107986784A CN 201711262128 A CN201711262128 A CN 201711262128A CN 107986784 A CN107986784 A CN 107986784A
Authority
CN
China
Prior art keywords
thick film
room temperature
ceramic thick
bsfn
tungsten bronze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711262128.5A
Other languages
English (en)
Inventor
郑兴华
罗国仕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201711262128.5A priority Critical patent/CN107986784A/zh
Publication of CN107986784A publication Critical patent/CN107986784A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0027Thick magnetic films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/667Sintering using wave energy, e.g. microwave sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种钨青铜室温多铁性陶瓷厚膜及其制备方法,其具有室室温下具有优异的铁电性能和铁磁性能,并且具有强烈的磁电耦合效应。本发明提供的多铁性陶瓷厚膜原料来源广泛、价格便宜、环保;制备工艺简单,性能优异,具有极大的工业应用价值。

Description

一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法
技术领域
本发明涉及一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法。
背景技术
多铁性材料是指同时具有铁电性、铁磁性和铁弹性三种特性中两种及以上的特性并且这种基本铁性间存在相互耦合作用而产生新效应的一类重要的功能材料,其基本特征是具有铁电性、铁磁性,在外电场的条件下其具有压电效应、铁电效应、热释电效应、非线性光学效应、磁电耦合效应等多种物理效应。这些特定性能使得多铁性材料广泛运用于压电声纳、铁电薄膜存储器、传感器、电光光阀等材料的重要材料。
现在多铁性材料主要是同时具有铁电性和铁磁性,其自发极化和自发磁矩相互间能够相互耦合、调控。但是这种同时具有铁电性和铁磁性的单相化合物罕见,主要是由于同时具有自发极化与自发磁化的点群有且只有1、2΄、2、m΄、m、3m΄、3、4m΄m΄、4、m΄m΄2΄、m΄m2΄、6m΄m΄13和6这13种。如钙钛矿结构(ABO3)材料,氧八面体中心离子的d0电子构型在铁电畸变的稳定性方面起着非常重要的作用,例如Nb5+、W6+及Ti4+等铁电活性离子的d0电子构型在铁电畸变的稳定性方面起着非常重要的作用。然而对于磁性氧化物来说,则要求其轨道需要未完全填满的Fe3+、Ni2+、Gr3+等过渡金属离子。倘若氧八面体中心被d轨道部分填满的磁性离子填充,那么该晶格的中心对称不倾向于被破坏,也就意味着不会出现自发极化,因此单相多铁性材料很稀少。除此之外,费米能级以上的高态密度往往使得铁磁体呈现出金属导电性,然而铁电材料则要求是绝缘体。因为在外加电场作用下导电体内部产生的是电流而不是电极化,所以导电性能要求的差异也是导致单相多铁性材料难以制备的原因之一。
大部分单相多铁性材料都存在着铁磁居里温度比较低、磁电耦合效应发生温度低等缺陷,从而限制了其在实际上的应用,所以目前对于单相多铁性材料只是停留在探索阶段。其中被大量研究的单相多铁性材料是BiFeO3(BFO),但是其电阻率偏低较小、漏导过大严重阻碍了其铁电与铁磁性能的实际运用。除此之外,由于BFO铁电性和铁磁性的来源不同,也导致其磁电耦合效应较弱。而且BFO难以合成单相。因为上述问题,迫切需要研究开发新型单相多铁性材料。其中一种方法是将磁性离子引入到铁电体,形成铁电性与铁磁性共存于一体的固溶体。如Pb(Fe1/2 3+Nb1/2 5+)(PFN), 其铁电居里温度与反铁磁温度分别是385K与143K,因此在较低温度下才同时具有铁磁性和铁电性。研究表明,不同的阳离子是PFN磁性和铁电性来源,Nb5+离子是铁电激活离子而Fe3+离子是磁性激活离子,故磁电耦合效应低的根本原因。最近几年来研究者探讨分析了Ba4Ln2Fe2Nb8O30 (Ln=La, Pr, Nd, Sm, Eu, Y)系列钨青铜多铁性材料,尽管不同研究者研究的结果的各有不同,但都表明Ba4Ln2Fe2Nb8O30(Ln=Nd, Sm, Eu)陶瓷具有室温铁电性和铁磁性。但是该系列陶瓷都观察到少量LnNbO4、BaFe12O19杂相,而且都将其铁磁性归因于陶瓷中存在少量铁氧体BaFe12O19杂相。另外,目前Ba4 Ln2Fe2Nb8O30(Ln=Nd, Sm, Eu)钨青铜陶瓷都采用传统固相法烧结,晶粒成柱状。通常,应用中需要将器件轻量化、集成化,陶瓷薄膜较难控制,而陶瓷厚膜处于薄膜和陶瓷块体之间,工艺简单、方便制备,而且性能容易得到保证。
由于单相多铁性陶瓷非常少,而且难以制备,因此一些研究者采用将铁电体陶瓷和铁磁体陶瓷复合,制备多铁性复合陶瓷。如专利一种多铁性复合陶瓷的制备方法(CN201611246516.X)和一种Bi2Fe4O9/BaFe12O19复合陶瓷及其制备方法(CN201511024110.2)采用微波水热法先合成纳米粉体,然后微波烧结分别制备了BaTiO3-BaFe12O19、Bi2Fe4O9/BaFe12O19多铁性复合陶瓷。这两种复合陶瓷为两种不同的铁电相和铁磁相共存,具有较强的铁磁性,但是铁电性能很弱。安徽理工大学陈晨学位论文中也报道了微波烧结制备Ni1-xZnxFe2O4-Sr1-xCaxTiO3复合陶瓷制备及性能研究,也存在同样问题。虽然这些文献报道了微波烧结制备有关多铁性复合陶瓷,相比与传统烧结制备的同类多铁性复合陶瓷在烧结时间上有明显缩短,但是性能并没有提升,而且相应的铁电相和铁磁相之间几乎没有发生反应。而且这些报道中多采用微波水热法先合成纳米粉体,存在工艺复杂、原料昂贵、成本高等问题。目前在纯相多铁性陶瓷中还没有相关报道,钨青铜单相多铁性陶瓷厚膜和薄膜的研究也未见报道。因此,研究开发一种钨青铜纯相室温多铁性陶瓷及其制备方法,不仅有利于探明钨青铜BSFN陶瓷的多铁性本质;而且可以提高BSFN陶瓷厚膜的铁电性能和铁磁性能;有利于其实际应用。另外,加快烧成速度,节约能源和资源,达到节能减排、环保的效果;而且提高了生产效率,大幅度降低了生产成本,显著提高企业的经济效益和社会效益。
发明内容
本发明要解决的技术问题是,针对目前Ba4Sm2Fe2Nb8O30(BSFN)陶瓷制备中难以获得纯相、铁磁性较差等不足,以及目前烧结方法所获得的BSFN陶瓷多为传统陶瓷烧结法。另外,就是工艺复杂的BSFN薄膜,针对这种情况,本专利提出一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法。
本发明采取的技术方案如下:
一种钨青铜纯相室温多铁性陶瓷厚膜,所述多铁性陶瓷厚膜的化学组成表达式Ba4Sm2Fe2Nb8O30(BSFN),其制备方法包括如下步骤:
1)以BaCO3、Sm2O3、Nb2O5、Fe2O3电子级粉末为制备陶瓷厚膜的原料,按照分子式称量配料,在去离子水或者酒精中高能球磨8-24小时,烘干后在1100-1200oC保温2-6小时,合成钨青铜单相BSFN粉体;
2)将BSFN粉体在去离子水中再次高能球磨8-16小时,然后将浆料进行流延成0.1-0.5mm的膜,以0.1-1oC/min升温速率升温到90oC,保温24小时,然后冷却到室温,获得BSFN陶瓷厚膜坯体;
3)将BSFN陶瓷厚膜坯体切割成边长10mm的方片,在1200-1300oC微波烧结法(2.45GHz)保温15分钟-1小时,随炉冷却至室温。
所述多铁性单相陶瓷厚膜的晶体结构为钨青铜结构,显微结构为等轴晶粒组成。
所述多铁性单相陶瓷厚膜的介电常数(f=1kHz)>150;剩余极化强度Pr>1.20μC/cm2,矫顽场Ec>10.00kV/cm;剩余磁化强度Mr>0.16emu/g,矫顽磁场Hc>800Oe。
本发明的技术贡献:1)采用传统固相反应合成BSFN粉体,不用采用水热法等方法合成纳米粉体,工艺简单,成本低;2)采用去离子水球磨获得浆料,然后采用流延法获得厚膜,与现有工艺兼容,容易产业化;3)采用微波烧结法制备BSFN钨青铜纯相室温多铁性陶瓷厚膜,烧结时间短,可以避免Fe3+还原和LnNbO4、BaFe12O19杂相出现,获得纯相多铁性钨青铜陶瓷厚膜;4)没有采用有机溶剂和粘结剂,具有节能减排的特性。
本发明制得的多铁性陶瓷厚膜为等轴晶粒结构,为钨青铜单相,具有优异的室温铁磁和铁电性能。这不但探明了BSFN为本征室温多铁性单相材料,而且为BSFN基材料的应用提供了一种简单有效的方法。
附图说明
1)图1为本发明的钨青铜纯相室温多铁性陶瓷厚膜的典型电滞回线;
2)图2为本发明的钨青铜纯相室温多铁性陶瓷厚膜的典型磁滞回线;
3)图3为本实施例4制备的钨青铜纯相室温多铁性陶瓷厚膜的电镜照片;
4)图4为本发明的钨青铜纯相室温多铁性陶瓷厚膜的XRD图谱。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
化学组成表达式Ba4Sm2Fe2Nb8O30(BSFN)。以BaCO3、Sm2O3、Nb2O5、Fe2O3电子级粉末为制备陶瓷厚膜的原料,按照分子式称量配料,在去离子水中高能球磨12小时,烘干后在1150oC保温4小时,合成钨青铜单相BSFN粉体;将BSFN粉体在去离子水中再次高能球磨8小时,然后将浆料进行流延成0.5mm的膜,以0.5oC/min升温速率升温到90oC,保温24小时,然后冷却到室温,获得BSFN陶瓷厚膜坯体。再将烘干后的BSFN陶瓷厚膜坯体切割成边长10mm的方片,在1250oC微波烧结法(2.45GHz)保温0.5小时,随炉冷却至室温,获得的BSFN多铁性单相钨青铜陶瓷厚膜。其室温性能如下:介电常数(f=1kHz)=156;剩余极化强度Pr=1.65μC/cm2,矫顽场Ec=12. 46kV/cm;剩余磁化强度=0.25emu/g,矫顽磁场Hc=1300Oe。
实施例2
化学组成表达式Ba4Sm2Fe2Nb8O30(BSFN)。以BaCO3、Sm2O3、Nb2O5、Fe2O3电子级粉末为制备陶瓷厚膜的原料,按照分子式称量配料,在酒精中高能球磨16小时,烘干后在1150oC保温4小时,合成钨青铜单相BSFN粉体;将BSFN粉体在去离子水中再次高能球磨12小时,然后将浆料进行流延成0.3mm的膜,以0.75oC/min升温速率升温到90oC,保温24小时,然后冷却到室温,获得BSFN陶瓷厚膜坯体。再将烘干后的BSFN陶瓷厚膜坯体切割成边长10mm的方片,在1200oC微波烧结法(2.45GHz)保温0.5小时,随炉冷却至室温,获得的BSFN多铁性单相钨青铜陶瓷厚膜。其室温性能如下:介电常数(f=1kHz)=160;剩余极化强度Pr=1.85μC/cm2,矫顽场Ec=13. 68kV/cm;剩余磁化强度=0.30emu/g,矫顽磁场Hc=1650Oe。
实施例3
化学组成表达式Ba4Sm2Fe2Nb8O30(BSFN)。以BaCO3、Sm2O3、Nb2O5、Fe2O3电子级粉末为制备陶瓷厚膜的原料,按照分子式称量配料,在去离子水中高能球磨24小时,烘干后在1150oC保温3小时,合成钨青铜单相BSFN粉体;将BSFN粉体在去离子水中再次高能球磨16小时,然后将浆料进行流延成0.2mm的膜,以0.7oC/min升温速率升温到90oC,保温24小时,然后冷却到室温,获得BSFN陶瓷厚膜坯体。再将烘干后的BSFN陶瓷厚膜坯体切割成边长10mm的方片,在1250oC微波烧结法(2.45GHz)保温15分钟,随炉冷却至室温,获得的BSFN多铁性单相钨青铜陶瓷厚膜。其室温性能如下:介电常数(f=1kHz)=182;剩余极化强度Pr=2.12μC/cm2,矫顽场Ec=14. 78kV/cm;剩余磁化强度=0.24emu/g,矫顽磁场Hc=950Oe。
实施例4
化学组成表达式Ba4Sm2Fe2Nb8O30(BSFN)。以BaCO3、Sm2O3、Nb2O5、Fe2O3电子级粉末为制备陶瓷厚膜的原料,按照分子式称量配料,在去离子水中高能球磨24小时,烘干后在1100oC保温6小时,合成钨青铜单相BSFN粉体;将BSFN粉体在去离子水中再次高能球磨8小时,然后将浆料进行流延成0.2mm的膜,以0.3oC/min升温速率升温到90oC,保温24小时,然后冷却到室温,获得BSFN陶瓷厚膜坯体。再将烘干后的BSFN陶瓷厚膜坯体切割成边长10mm的方片,在1300oC微波烧结法(2.45GHz)保温15分钟,随炉冷却至室温,获得的BSFN多铁性单相钨青铜陶瓷厚膜。其室温性能如下:介电常数(f=1kHz)=152;剩余极化强度Pr=1.42μC/cm2,矫顽场Ec=12. 08kV/cm;剩余磁化强度=0.20emu/g,矫顽磁场Hc=900Oe。
实施例5
化学组成表达式Ba4Sm2Fe2Nb8O30(BSFN)。以BaCO3、Sm2O3、Nb2O5、Fe2O3电子级粉末为制备陶瓷厚膜的原料,按照分子式称量配料,在去离子水中高能球磨12小时,烘干后在1200oC保温2小时,合成钨青铜单相BSFN粉体;将BSFN粉体在去离子水中再次高能球磨16小时,然后将浆料进行流延成0.1mm的膜,以0.1oC/min升温速率升温到90oC,保温24小时,然后冷却到室温,获得BSFN陶瓷厚膜坯体。再将烘干后的BSFN陶瓷厚膜坯体切割成边长10mm的方片,在1200oC微波烧结法(2.45GHz)保温1小时,随炉冷却至室温,获得的BSFN多铁性单相钨青铜陶瓷厚膜。其室温性能如下:介电常数(f=1kHz)=166;剩余极化强度Pr=1.92μC/cm2,矫顽场Ec=11. 26kV/cm;剩余磁化强度=0.18emu/g,矫顽磁场Hc=825Oe。
图1为本实施例4制备的陶瓷厚膜的典型电滞回线,其具有高的剩余极化强度剩余极化强度Pr=1.42μC/cm2和矫顽场Ec=12. 08kV/cm,表明该陶瓷具有典型的电滞回线,室温下为典型的铁电体。图2磁滞回线说明制备的微波烧结制备的BSFN陶瓷厚膜具有强的铁磁性:高的剩余磁化强度=0.20emu/g和矫顽磁场Hc=900Oe;说明其为室温下典型的铁磁体。图3所示为本实施例4制备的钨青铜纯相室温多铁性陶瓷的电镜照片,由图可知其具有致密的显微结构。图4所示的XRD图谱中所有衍射峰对应于四方钨青铜相,表明本发明陶瓷为钨青铜纯相陶瓷。由以上信息表明本发明制备的陶瓷材料为钨青铜纯相室温多铁性材料,并且具有优异的室温铁电、铁磁性能。
本发明主要涉及多铁性材料领域,可根据需要制成不同形式的器件。以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (4)

1.一种钨青铜纯相室温多铁性陶瓷厚膜的制备方法,其特征在于:所述多铁性陶瓷厚膜的化学组成表达式Ba4Sm2Fe2Nb8O30,缩写BSFN, 其制备方法包括如下步骤:
1)以BaCO3、Sm2O3、Nb2O5、Fe2O3电子级粉末为制备陶瓷厚膜的原料,按照分子式称量配料,在去离子水或者酒精中高能球磨8-24小时,烘干后在1100-1200oC保温2-6小时,合成钨青铜单相BSFN粉体;
2)将BSFN粉体在去离子水中再次高能球磨8-16小时,然后将浆料进行流延成0.1-0.5mm的膜,以0.1-1oC/min升温速率升温到90oC,保温24小时,然后冷却到室温,获得BSFN陶瓷厚膜坯体;
3)将BSFN陶瓷厚膜坯体切割成边长10mm的方片,利用微波烧结法,在1200-1300oC保温15分钟-1小时,随炉冷却至室温,得到所述钨青铜纯相室温多铁性陶瓷厚膜,其中微波烧结频率2.45GHz。
2.根据权利要求1所述的钨青铜纯相室温多铁性陶瓷厚膜的制备方法,其特征在于:所述多铁性陶瓷厚膜的晶体结构为钨青铜结构。
3.根据权利要求1所述的钨青铜纯相室温多铁性陶瓷厚膜的制备方法,其特征在于:所述多铁性陶瓷厚膜的介电常数(f=1kHz)>150;剩余极化强度Pr>1.20μC/cm2,矫顽场Ec>10.00kV/cm;剩余磁化强度Mr>0.16emu/g,矫顽磁场Hc>800Oe。
4.如权利要求1-3任一所述的制备方法制得的钨青铜纯相室温多铁性陶瓷厚膜。
CN201711262128.5A 2017-12-04 2017-12-04 一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法 Pending CN107986784A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711262128.5A CN107986784A (zh) 2017-12-04 2017-12-04 一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711262128.5A CN107986784A (zh) 2017-12-04 2017-12-04 一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法

Publications (1)

Publication Number Publication Date
CN107986784A true CN107986784A (zh) 2018-05-04

Family

ID=62035417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711262128.5A Pending CN107986784A (zh) 2017-12-04 2017-12-04 一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107986784A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675789A (zh) * 2018-06-27 2018-10-19 桂林理工大学 一种新型铁基陶瓷电容器材料及其制备方法
CN111087023A (zh) * 2019-11-28 2020-05-01 郑州轻工业大学 室温多铁材料Ba4SmFe0.5Nb9.5O30的制备方法及制得的室温多铁材料

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108675789A (zh) * 2018-06-27 2018-10-19 桂林理工大学 一种新型铁基陶瓷电容器材料及其制备方法
CN111087023A (zh) * 2019-11-28 2020-05-01 郑州轻工业大学 室温多铁材料Ba4SmFe0.5Nb9.5O30的制备方法及制得的室温多铁材料
CN111087023B (zh) * 2019-11-28 2022-05-20 郑州轻工业大学 室温多铁材料Ba4SmFe0.5Nb9.5O30的制备方法及制得的室温多铁材料

Similar Documents

Publication Publication Date Title
Song et al. A comparative study of dielectric, ferroelectric and magnetic properties of BiFeO3 multiferroic ceramics synthesized by conventional and spark plasma sintering techniques
Xu et al. Structural, electric and multiferroic properties of Sm-doped BiFeO3 thin films prepared by the sol–gelprocess
Schileo Recent developments in ceramic multiferroic composites based on core/shell and other heterostructures obtained by sol–gel routes
Zuo et al. Phase Transitional Behavior and Piezoelectric Properties of Lead‐Free (Na0. 5K0. 5) NbO3–(Bi0. 5K0. 5) TiO3 Ceramics
Cheng et al. Enhanced insulating and piezoelectric properties of BiFeO3‐BaTiO3‐Bi0. 5Na0. 5TiO3 ceramics with high Curie temperature
Wang et al. The dielectric, strain and energy storage density of BNT-BKHxT1− x piezoelectric ceramics
Miah et al. Synthesis and enhancement of multiferroic properties of (x) Ba0. 95Sr0. 05TiO3–(1− x) BiFe0. 90Dy0. 10O3 ceramics
Rawat et al. Structural, dielectric, ferroelectric and magnetic properties of (x) CoFe 2 O 4-(1-x) BaTiO 3 composite
Bai et al. Enhanced ferroelectricity and magnetism of quenched (1− x) BiFeO 3-x BaTiO 3 ceramics
Badapanda et al. Electric field induced strain, switching and energy storage behaviour of lead free Barium Zirconium Titanate ceramic
Cen et al. Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO 3–BaTiO 3 high-temperature ceramics
Li et al. Structure, ferroelectric, piezoelectric, and ferromagnetic properties of BiFeO3‐BaTiO3‐Bi0. 5Na0. 5TiO3 lead‐free multiferroic ceramics
Zhang et al. Microstructure and electrical properties of niobium doped Bi4Ti3O12 layer-structured piezoelectric ceramics
Dai et al. Structural, dielectric and magnetic properties of Mn modified xBiFeO3-(1− x) BaTiO3 ceramics
Kulkarni et al. Dielectric and magnetoelectric properties of (x) Ni0. 8Co0. 1Cu0. 1Fe2O4/(1− x) PbZr0. 8Ti0. 2O3 composites
Kaswan et al. Crystal structure refinement, enhanced magnetic and dielectric properties of Na0. 5Bi0. 5TiO3 modified Bi0. 8Ba0. 2FeO3 ceramics
Peng et al. Multi-phase structure and electrical properties of Bi 0.5 Li 0.5 ZrO 3 doping K 0.48 Na 0.56 NbO 3 lead-free piezoelectric ceramics
Gai et al. The effect of (Li, Ce) doping in Aurivillius phase material (Na0. 52K0. 42Li0. 06) 0.5 Bi2. 5 (Nb1. 88Sb0. 06Ta0. 06) O9
CN107986784A (zh) 一种钨青铜纯相室温多铁性陶瓷厚膜及其制备方法
Kim et al. Multiferroic property and crystal structural transition of BiFeO 3-SrTiO 3 ceramics
CN107840659A (zh) 一种钨青铜纯相室温多铁性陶瓷及其制备方法
Srinivas et al. Enhanced ferroelectricity and magnetoelectricity in 0.75 BaTiO3-0.25 BaFe12O19 by spark plasma sintering
Kanamadi et al. Synthesis and characterization of CoFe 2 O 4–Ba 0.9 Sr 0.1 TiO 3 magnetoelectric composites with dielectric and magnetic properties
KR102148944B1 (ko) 상온 다강성 물질, 그의 제조방법 및 그를 포함하는 전자장치
CN104402426A (zh) 一种新型铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504