CN107979462B - 基于正交频分复用的量子密钥分配系统及其实现方法 - Google Patents

基于正交频分复用的量子密钥分配系统及其实现方法 Download PDF

Info

Publication number
CN107979462B
CN107979462B CN201711485728.8A CN201711485728A CN107979462B CN 107979462 B CN107979462 B CN 107979462B CN 201711485728 A CN201711485728 A CN 201711485728A CN 107979462 B CN107979462 B CN 107979462B
Authority
CN
China
Prior art keywords
signal
phase
modulator
analog
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711485728.8A
Other languages
English (en)
Other versions
CN107979462A (zh
Inventor
郭迎
赵微
李嘉伟
谢才浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201711485728.8A priority Critical patent/CN107979462B/zh
Publication of CN107979462A publication Critical patent/CN107979462A/zh
Application granted granted Critical
Publication of CN107979462B publication Critical patent/CN107979462B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/70Photonic quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • H04L9/0858Details about key distillation or coding, e.g. reconciliation, error correction, privacy amplification, polarisation coding or phase coding

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了基于正交频分复用的量子密钥分配系统及其实现方法,发送端将第一外腔可调谐激光器产生的脉冲激光经过正交频分复用技术处理后,经过光纤通道进行远距离传输后由接收端接收,接收端进行解调,获得最终安全的密钥。本发明推进了量子密码的实用化,同时能有效提高在量子通信过程中量子信号的传输效率。

Description

基于正交频分复用的量子密钥分配系统及其实现方法
技术领域
本发明属于量子密钥分发技术领域,涉及一种基于正交频分复用的量子密钥分配系统及其实现方法。
背景技术
随着互联网的大范围普及,人类之间的信息传递达到了前所未有的数量和频率,各种隐私信息越来越多地被暴露在互联网上,因此,人类对保密通信的需求也到了前所未有的高度。
量子通信是指利用量子纠缠效应进行信息传递的一种新型的通讯方式。量子通信是20世纪80年代开始发展起来的新型交叉学科,是量子论和信息论相结合的新的研究领域。量子通信主要涉及:量子密码通信、量子远程传态和量子密集编码等。量子密钥分配(QKD)是1984年物理学家Bennett和密码学家Brassard提出了基于量子力学测量原理的BB84协议,量子密钥分配从根本上保证了密钥的安全性。在光学系统中QKD协议是通过四种量子态来传输信息的。该方案的实施是靠经典信道和量子信道两个信道来实现的,其中前者的作用是使Alice和Bob进行通信密码的协商,也就是在该信道上传递控制信息;后者的作用是使Alice和Bob双方进行量子通信。
在国家安全、金融等信息安全领域,量子保密通信技术也开始发挥作用。2004年奥地利银行作为世界上首个采用量子通信的银行;2007年瑞士全国大选的选票结果传送过程也采用了量子保密通信技术,以保证结果的绝对安全。量子通信不仅在军事、国防等领域具有重要的作用,而且会极大地促进国民经济的发展。自1993年美国IBM的研究人员提出量子通信理论,美国国家科学基金会、国防高级设计计划局都会此项目进行了深入的研究。瑞士、法国等欧美国家也成立公司开始对量子通信进行商业研发。
然而通过大量实验发现,量子密钥分配在长距离通信上速率很低。目前针对数据的高效密钥协商算法并不完善,这从很大程度上限制了安全传输距离。因此,如何提高量子密钥的传输效率,成为了现在研究的热点与难点。
发明内容
为了达到上述目的,本发明提供一种基于正交频分复用的量子密钥分配系统及其实现方法,解决了现有技术中量子密钥分配在长距离通信上速率很低的问题。
本发明所采用的技术方案是,基于正交频分复用的量子密钥分配系统,包括:
发送端,用于连续变量初始密钥分发,量子信号经过光纤通道进行远距离传输至接收端;
接收端,用于连续变量密钥测量,接收端对接收到的量子信号进行测量,获得最终安全的密钥。
进一步的,所述发送端包括:
第一外腔可调谐激光器,用于产生脉冲激光,并发送至强度调制器;
强度调制器,用于对第一外腔可调谐激光器产生的脉冲激光进行强度调制;
相位调制器,用于对强度调制器发出的脉冲激光进行相位调制,并将光发送至光学I/Q调制器;
移相器,用来控制相位调制器具体调相的大小;
频率合成器,用来控制任意波形发生器、移相器和强度调制器的频率,使其三个的频率保持一致;
任意波形发生器,用作信号源,产生两路信号即模拟同相信号、模拟正交信号,并将其发送至光学I/Q调制器;
光学I/Q调制器,用于将模拟同相信号和模拟正交信号以及相位调制器发送的脉冲激光进行正交频分复用的调制,调制后输出一束两个偏振方向正交的光,并将光送至第一偏振分束器;
第一偏振分束器,用于将光学I/Q调制器发出的光分成两束线偏振光;
偏振合束器,用于将两束偏振方向正交的线偏振光合成一束,即为量子信号,通过量子信道传输至接收端。
进一步的,所述接收端包括:
第二偏振分束器,用于将偏振合束器送至的量子信号,分成两束线偏振光,然后将两束线偏振光分别送至光学混波器;
第二外腔可调谐激光器,用于产生本振光,并将本振光送至光学混波器;
光学混波器,用于将第二偏振分束器分离的线偏振光和第二外腔可调谐激光器产生的本振光进行干涉,实现对单信号的相位和幅度信息提取;
第一平衡接收器,用于接收从光学混波器发出的数字信号,将模拟同相信号发送给时域取样示波器;
第二平衡接收器,用于接收从光学混波器发出的数字信号,将模拟正交信号发送给时域取样示波器;
时域取样示波器,用于将接收到的模拟同相信号和模拟正交信号变换成图像。
本发明所采用的另一技术方案是,基于正交频分复用的量子密钥分配系统的实现方法,具体按照以下步骤进行:
步骤A、连续变量初始密钥分发步骤:发送端将第一外腔可调谐激光器产生的脉冲激光进行强度和相位调制后,对其进行正交频分复用技术处理,正交频分复用技术通过光学I/Q调制器实现,光学I/Q调制器同时对任意波形发生器发出的模拟同相信号和模拟正交信号也进行正交频分复用技术处理,光学I/Q调制器将信号转换成在频域上复用的正交信号,最后输出一束两个偏振方向正交的光,通过第一偏振分束器和偏振合束器后送入光纤信道进行远距离传输至接收端;
步骤B、连续变量密钥测量步骤:接收端将接收的信号先经过第二偏振分束器,第二偏振分束器将一束两个偏振方向的光分成两束线偏振光,然后将两束线偏振光送至光学混波器,光学混波器将第二偏振分束器分离的线偏振光和第二外腔可调谐激光器产生的本振光进行干涉,实现对单信号相位和幅度信息的接收和提取,第一平衡接收器接收从光学混波器发出的数字信号,将模拟同相信号发送给时域取样示波器,第二平衡接收器接收从光学混波器发出的数字信号,将模拟正交信号发送给时域取样示波器,时域取样示波器接收到的模拟同相信号和模拟正交信号变换成图像,获得最终安全的密钥。
本发明的有益效果是:提供了一种基于正交频分复用的量子密钥分配系统及其实现方法,在发送端利用正交频分复用技术,有效提高在量子通信过程中量子信号的传输效率,并推进了量子密码的实用化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是基于正交频分复用的量子密钥分配系统的结构设置图;
图2是正交频分复用技术的原理图。
图中,1.第一外腔可调谐激光器,2.强度调制器,3.相位调制器,4.频率合成器,5.第一偏振分束器,6.偏振合束器,7.任意波形发生器,8.光学I/Q调制器,9.第二偏振分束器,10.第二外腔可调谐激光器,11.光学混波器,12.第一平衡接收器,13.时域取样示波器,14.第二平衡接收器,15.移相器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
基于正交频分复用的量子密钥分配系统,包括:
发送端,用于连续变量初始密钥分发,量子信号经过光纤通道进行远距离传输至接收端;
接收端,用于连续变量密钥测量,接收端对接收到的量子信号进行测量,获得最终安全的密钥。
如图1所示,发送端包括:
第一外腔可调谐激光器1,用于产生脉冲激光,并发送至强度调制器2;
强度调制器2,用于对第一外腔可调谐激光器1产生的脉冲激光进行强度调制;
相位调制器3,用于对强度调制器2发出的脉冲激光进行相位调制,并将光发送至光学I/Q调制器8;
移相器15,用来控制相位调制器3具体调相的大小;
频率合成器4,用来控制任意波形发生器7、移相器15和强度调制器2的频率,使其三个的频率保持一致;
任意波形发生器7,用作信号源,产生两路信号即模拟同相信号(I)、模拟正交信号(Q),并将其发送至光学I/Q调制器8,任意波形发生器7采样时钟被频率合成器4锁定在根据不同需要可调控的频率范围内;
光学I/Q调制器8,用于将模拟同相信号和模拟正交信号以及相位调制器3发送的脉冲激光进行正交频分复用的调制,调制后输出一束两个偏振方向正交的光,并将光送至第一偏振分束器5;
第一偏振分束器5,用于将光学I/Q调制器8发出的光分成两束线偏振光;
偏振合束器6,用于将两束偏振方向正交的线偏振光合成一束,即为量子信号,通过量子信道传输至接收端,光正交通过第一偏振分束器5和偏振合束器6,能够产生一个符号的延迟,模拟极化分集发射机,节省频带资源;
接收端包括:
第二偏振分束器9,用于将偏振合束器6送至的量子信号,分成两束线偏振光,然后将两束线偏振光分别送至光学混波器11;
第二外腔可调谐激光器10,用于产生本振光,并将本振光送至光学混波器11;
光学混波器11,用于将第二偏振分束器9分离的线偏振光和第二外腔可调谐激光器10产生的本振光进行干涉,实现对单信号的相位和幅度信息提取;
第一平衡接收器12,用于接收从光学混波器11发出的数字信号,将模拟同相信号发送给时域取样示波器13;
第二平衡接收器14,用于接收从光学混波器11发出的数字信号,将模拟正交信号发送给时域取样示波器13;
时域取样示波器13,用于将接收到的模拟同相信号和模拟正交信号变换成图像。
一种基于正交频分复用的量子密钥分配系统的实现方法应用一种基于正交频分复用的量子密钥分配系统,具体按照以下步骤进行:
步骤A、连续变量初始密钥分发步骤:发送端将第一外腔可调谐激光器1产生的脉冲激光进行强度和相位调制后,对其进行正交频分复用技术处理,正交频分复用技术通过光学I/Q调制器8实现,光学I/Q调制器8同时对任意波形发生器7发出的模拟同相信号和模拟正交信号也进行正交频分复用技术处理,图2是光学I/Q调制器8运用正交频分复用技术中对信号进行处理的具体过程,在光学I/Q调制器8中,通过比特映射、串并转换、逆傅里叶变换、增加循环前缀、数模转换等步骤,将信号转换成在频域上复用的正交信号,最后输出一束两个偏振方向正交的光,通过第一偏振分束器5和偏振合束器6后送入光纤信道进行远距离传输至接收端;
步骤B、连续变量密钥测量步骤:接收端将接收的信号先经过第二偏振分束器9,第二偏振分束器9将一束两个偏振方向的光分成两束线偏振光,然后将两束线偏振光送至光学混波器11,光学混波器11将第二偏振分束器9分离的线偏振光和第二外腔可调谐激光器10产生的本振光进行干涉,实现对单信号相位和幅度信息的接收和提取,第一平衡接收器12接收从光学混波器11发出的数字信号,将模拟同相信号发送给时域取样示波器13,第二平衡接收器14接收从光学混波器11发出的数字信号,将模拟正交信号发送给时域取样示波器13,时域取样示波器13接收到的模拟同相信号和模拟正交信号变换成图像,获得最终安全的密钥。
通过在发送端将脉冲激光利用正交频分复用技术处理后,经过光纤通道进行远距离传输后由接收端接收,接收端进行解调,获得最终安全的密钥,有效提高在量子通信过程中量子信号的传输效率。
本说明书中的各个实施例均采用相关的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (1)

1.一种基于正交频分复用的量子密钥分配系统的实现方法,其特征在于,
采用基于正交频分复用的量子密钥分配系统,包括:
发送端,用于连续变量初始密钥分发,量子信号经过光纤通道进行远距离传输至接收端;
接收端,用于连续变量密钥测量,接收端对接收到的量子信号进行测量,获得最终安全的密钥;
所述发送端包括:
第一外腔可调谐激光器(1),用于产生脉冲激光,并发送至强度调制器(2);
强度调制器(2),用于对第一外腔可调谐激光器(1)产生的脉冲激光进行强度调制;
相位调制器(3),用于对强度调制器(2)发出的脉冲激光进行相位调制,并将光发送至光学I/Q调制器(8);
移相器(15),用来控制相位调制器(3)具体调相的大小;
频率合成器(4),用来控制任意波形发生器(7)、移相器(15)和强度调制器(2)的频率,使其三个的频率保持一致;
任意波形发生器(7),用作信号源,产生两路信号即模拟同相信号、模拟正交信号,并将其发送至光学I/Q调制器(8);
光学I/Q调制器(8),用于将模拟同相信号和模拟正交信号以及相位调制器(3)发送的脉冲激光进行正交频分复用的调制,调制后输出一束两个偏振方向正交的光,并将光送至第一偏振分束器(5);
第一偏振分束器(5),用于将光学I/Q调制器(8)发出的光分成两束线偏振光;
偏振合束器(6),用于将两束偏振方向正交的线偏振光合成一束,即为量子信号,通过量子信道传输至接收端;
所述接收端包括:
第二偏振分束器(9),用于将偏振合束器(6)送至的量子信号,分成两束线偏振光,然后将两束线偏振光分别送至光学混波器(11);
第二外腔可调谐激光器(10),用于产生本振光,并将本振光送至光学混波器(11);
光学混波器(11),用于将第二偏振分束器(9)分离的线偏振光和第二外腔可调谐激光器(10)产生的本振光进行干涉,实现对单信号的相位和幅度信息提取;
第一平衡接收器(12),用于接收从光学混波器(11)发出的数字信号,将模拟同相信号发送给时域取样示波器(13);
第二平衡接收器(14),用于接收从光学混波器(11)发出的数字信号,将模拟正交信号发送给时域取样示波器(13);
时域取样示波器(13),用于将接收到的模拟同相信号和模拟正交信号变换成图像;
具体按照以下步骤进行:
步骤A、连续变量初始密钥分发步骤:发送端将第一外腔可调谐激光器(1)产生的脉冲激光进行强度和相位调制后,对其进行正交频分复用技术处理,正交频分复用技术通过光学I/Q调制器(8)实现,光学I/Q调制器(8)同时对任意波形发生器(7)发出的模拟同相信号和模拟正交信号也进行正交频分复用技术处理,光学I/Q调制器(8)将信号转换成在频域上复用的正交信号,最后输出一束两个偏振方向正交的光,通过第一偏振分束器(5)和偏振合束器(6)后送入光纤信道进行远距离传输至接收端;
步骤B、连续变量密钥测量步骤:接收端将接收的信号先经过第二偏振分束器(9),第二偏振分束器(9)将一束两个偏振方向的光分成两束线偏振光,然后将两束线偏振光送至光学混波器(11),光学混波器(11)将第二偏振分束器(9)分离的线偏振光和第二外腔可调谐激光器(10)产生的本振光进行干涉,实现对单信号相位和幅度信息的接收和提取,第一平衡接收器(12)接收从光学混波器(11)发出的数字信号,将模拟同相信号发送给时域取样示波器(13),第二平衡接收器(14)接收从光学混波器(11)发出的数字信号,将模拟正交信号发送给时域取样示波器(13),时域取样示波器(13)接收到的模拟同相信号和模拟正交信号变换成图像,获得最终安全的密钥。
CN201711485728.8A 2017-12-29 2017-12-29 基于正交频分复用的量子密钥分配系统及其实现方法 Expired - Fee Related CN107979462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711485728.8A CN107979462B (zh) 2017-12-29 2017-12-29 基于正交频分复用的量子密钥分配系统及其实现方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711485728.8A CN107979462B (zh) 2017-12-29 2017-12-29 基于正交频分复用的量子密钥分配系统及其实现方法

Publications (2)

Publication Number Publication Date
CN107979462A CN107979462A (zh) 2018-05-01
CN107979462B true CN107979462B (zh) 2020-07-14

Family

ID=62005552

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711485728.8A Expired - Fee Related CN107979462B (zh) 2017-12-29 2017-12-29 基于正交频分复用的量子密钥分配系统及其实现方法

Country Status (1)

Country Link
CN (1) CN107979462B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109707585B (zh) * 2018-12-20 2020-07-07 浙江大学 一种基于相控阵控制的激光推进方法
CN111327369B (zh) * 2020-03-13 2021-07-02 电子科技大学 一种光纤通信波段的频域复用量子通道基础链路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107853A (zh) * 2013-01-23 2013-05-15 河北四方通信设备有限公司 基于数字相干接收机的光通信系统及输出信号的处理方法
CN103401832A (zh) * 2013-08-12 2013-11-20 武汉邮电科学研究院 包含数据的光信号的发送设备和接收设备及方法
CN104297936A (zh) * 2014-07-28 2015-01-21 中国科学院西安光学精密机械研究所 一种自由空间90°光混频器
CN107070560A (zh) * 2017-04-21 2017-08-18 中南大学 连续变量量子密钥分配系统的偏振补偿实现装置及其方法
CN107453820A (zh) * 2017-09-12 2017-12-08 中南大学 基于独立时钟源的连续变量量子密钥分发系统及实现方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461751B2 (en) * 2012-12-18 2016-10-04 Ciena Corporation Frequency domain multiplex optical transmission
US9203555B2 (en) * 2014-02-13 2015-12-01 Nec Laboratories America, Inc. Optimum signal constellation design and mapping for few-mode fiber based LDPC-coded CO-OFDM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103107853A (zh) * 2013-01-23 2013-05-15 河北四方通信设备有限公司 基于数字相干接收机的光通信系统及输出信号的处理方法
CN103401832A (zh) * 2013-08-12 2013-11-20 武汉邮电科学研究院 包含数据的光信号的发送设备和接收设备及方法
CN104297936A (zh) * 2014-07-28 2015-01-21 中国科学院西安光学精密机械研究所 一种自由空间90°光混频器
CN107070560A (zh) * 2017-04-21 2017-08-18 中南大学 连续变量量子密钥分配系统的偏振补偿实现装置及其方法
CN107453820A (zh) * 2017-09-12 2017-12-08 中南大学 基于独立时钟源的连续变量量子密钥分发系统及实现方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于正交频分复用的连续变量量子密钥分发方案;董颖娣;;《量子光学学报》;20161125(第4期);全文 *
量子与经典融合安全通信关键技术研究;郭邦红;《信息安全与通信保密》;20150710(第7期);全文 *

Also Published As

Publication number Publication date
CN107979462A (zh) 2018-05-01

Similar Documents

Publication Publication Date Title
CN107113169B (zh) 来自于短期安全加密量子通信的具有永久安全性的通信
CN106685658B (zh) 一种基于连续变量测量设备无关的量子密钥分发系统及其方法
Zhang et al. Joint PAPR reduction and physical layer security enhancement in OFDMA-PON
Cheng et al. Security-enhanced OFDM-PON using hybrid chaotic system
Zhang et al. Chaos coding-based QAM IQ-encryption for improved security in OFDMA-PON
CN106850213B (zh) 一种量子密钥分配系统与方法
JP6693643B2 (ja) 元鍵復元装置および方法
CN107086891B (zh) 连续变量量子密钥分发系统的相位补偿实现方法
CN106788984B (zh) 一种量子通信方法和装置
CN107508665A (zh) 一种高维度混沌激光保密通信系统
CN111245595A (zh) 一种基于混沌随机密钥分发的光学保密通信系统
CN106856429B (zh) 一种基于接收端偏振分束的量子密钥分配系统与方法
CN108964873B (zh) 混沌光网络的物理层防护方法、系统、组网方法及网络
CN109039475A (zh) 基于自由空间的连续变量量子密钥分发方法及系统
CN107979462B (zh) 基于正交频分复用的量子密钥分配系统及其实现方法
CN107483196A (zh) 基于连续变量量子密钥分发的数据流加密系统及其实现方法
Zhao et al. Synchronized random bit sequences generation based on analog-digital hybrid electro-optic chaotic sources
KR102225679B1 (ko) 시분할 쿼드러쳐 호모다인 연속변수 양자 암호 키분배 시스템
Ortigosa-Blanch et al. Subcarrier multiplexing optical quantum key distribution
US7512237B1 (en) Encryption for optical communications using dynamic subcarrier multiplexing
JP6850516B2 (ja) 信号処理装置
Guo et al. Accelerated key distribution method for endogenously secure optical communication by synchronized chaotic system based on fiber channel feature
CN115118418A (zh) 一种基于锁频技术的本地本振连续变量量子密钥分发系统及方法
Hajomer et al. High-rate continuous-variable measurement-device-independent quantum key distribution
WO2021206060A1 (ja) 信号処理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200714

Termination date: 20201229

CF01 Termination of patent right due to non-payment of annual fee