CN107979099A - One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method - Google Patents

One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method Download PDF

Info

Publication number
CN107979099A
CN107979099A CN201711267438.6A CN201711267438A CN107979099A CN 107979099 A CN107979099 A CN 107979099A CN 201711267438 A CN201711267438 A CN 201711267438A CN 107979099 A CN107979099 A CN 107979099A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
msup
upfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711267438.6A
Other languages
Chinese (zh)
Inventor
刘海涛
李旭
郝思鹏
秦高烽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201711267438.6A priority Critical patent/CN107979099A/en
Publication of CN107979099A publication Critical patent/CN107979099A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/002Flicker reduction, e.g. compensation of flicker introduced by non-linear load

Abstract

The invention discloses one kind to be based on fractional order PIλUPFC suppress sub-synchronous oscillation method, initially set up THE UPFC UPFC mathematical models under two-phase synchronous rotary d q coordinate systems, voltage and current containing subsynchronous component in circuit is obtained by measuring device, the component for assessing subsynchronous voltage and current is calculated with low-pass filter, based on fractional order PIλController design UPFC control strategies, offset the subsynchronous component that THE UPFC UPFC is produced and injected in the subsynchronous electric current of circuit and voltage and circuit, achieve the purpose that suppression system sub-synchronous oscillation.The present invention does not have to obtain distal end generator speed deviation or set end voltage signal, is easy to actual implementation, relatively reliable, fractional order PIλThe dynamic property of controller is outstanding, and robust performance is more preferable, the effect for reaching suppression system sub-synchronous oscillation that can more protrude.

Description

One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method
Technical field
UPFC the present invention relates to field of power suppresses sub-synchronous oscillation method, and in particular to one kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method.
Background technology
Series capacitor compensation is used in high pressure and UHV transmission line, can effectively improve system stability limit, Increase the distance of transmission, additionally it is possible to improve the capacity of transimission power, but the transmission line of electricity containing series compensator and steamer are sent out When motor is connected, sub-synchronous oscillation can be produced, suppresses when vibration is serious the whole shafting system of generator can be caused thorough not in time Bottom is damaged;With the rapid development of Power Electronic Technique, there are many researchs to be directed to utilizing and solved during advanced power electronics Sub-synchronous oscillation problem, but how subsynchronous component accurately is obtained from measuring signal, which kind of control & protection strategy can be kept away It is main problem to exempt from system sub-synchronous oscillation problem.
The content of the invention
In order to give full play to the ability of THE UPFC UPFC, the subsynchronous of THE UPFC UPFC is improved Rejection ability is vibrated, the technical problem to be solved in the present invention is to provide one kind to be based on fractional order PIλUPFC suppress subsynchronous to shake Oscillation method.
To solve the above problems, the technical solution adopted in the present invention is:
One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method, comprise the following steps:
Step 1:Establish mathematical models of the THE UPFC UPFC under two-phase synchronous rotary d-q coordinate systems;
Step 2:Establish the calculating assessment system of subsynchronous component, obtain in circuit the electric current containing subsynchronous component and Voltage signal;
Step 3:Suppression sub-synchronous oscillation controllers of the THE UPFC UPFC based on fractional order PI is established, makes system The subsynchronous component that one flow controller UPFC produced and injected in the subsynchronous electric current of circuit and voltage and circuit offsets, and reaches The purpose of suppression system sub-synchronous oscillation.
In step 1, the mathematical model under the two-phase synchronous rotary d-q coordinate systems of THE UPFC UPFC is:
Series side output voltage be:
Vsed=kmseVdc sin(Φ+γ) (2)
Vseq=kmseVdc cos(Φ+γ) (3)
Wherein:kmseFor the series side transverter index of modulation, Φ is the angle of series side line current, and γ notes for series side Enter the angle of voltage leading line electric current;
The voltage of side in parallel output is:
Vshd=kmshVdc sin(θ+α) (5)
Vshq=kmshVdc cos(θ+α) (6)
Wherein:kmshFor the transverter index of modulation in side in parallel, θ is side in parallel current angle, and α is that side in parallel injecting voltage surpasses The angle of preceding electric current;
The reactive current and watt current of THE UPFC UPFC parallel connections side injected system are respectively by busbar in parallel electricity Pressure and the control of DC bus-bar voltage controller, the reactive voltage and active voltage component of series side injected system are respectively by series line Road is active and reactive power flow controller controls.
In step 2, subsynchronous voltage rotates clockwise under synchronous coordinate system, it is assumed that generator amature vibrates angular frequency For wm, fundamental frequency angular speed is w0, introduce dqmCoordinate system represents and the rotating one group of new coordinate system of synchronizing voltage vector synchronization, then Have:
Following table f represents fundamental component, and sub represents subsynchronous component;
According to the relation of above formula fundamental component and subsynchronous component, by it is low with filtering can from the line voltage distribution of acquisition and Current signal obtains fundamental component and subsynchronous component, completes calculating and assessment to subsynchronous component, and relational expression is:
Wherein:P represents differential operator, Hf(p)、Hsub(p) be respectively fundamental component and subsynchronous component low-pass filtering Device;
Formula (10) is changed:
The same subsynchronous current component expression formula of pattern (11) is changed is into synchronous rotary d-q coordinate systems:
By formula (8) and (12) can calculate measurement voltage in fundamental component and subsynchronous component, formula (9) and (13) fundamental component and subsynchronous component in measurement electric current can be calculated.
In step 3, the mathematical model that THE UPFC UPFC suppresses sub-synchronous oscillation controller is:
Wherein:R、LTWith L " be respectively THE UPFC UPFC parallel connections busbar to synchronous generator resistance value, change The leakage reactance of depressor and the subsynchronous reactance value of synchronous generator, upper table * represent the reference value of respective amount, Kp、KiIt is fraction with λ Rank PIλThe real number exponent number of the proportionality constant of controller, integral constant and integrator.
In the above-mentioned technical solutions, THE UPFC UPFC selects the three-phase transverter of 48 pulses.
In the above-mentioned technical solutions, sublevel number PIλThe parameter tuning of controller by magnitude margin method, phase margin method, Dominant pole method, optimum control rule method, block-scheme method, genetic algorithm or limit search method.
The beneficial effect that the present invention is reached:
1. directly take the electric current of measurement circuit, voltage to be used as foundation to extract subsynchronous signal component, it is easy to implement, it is secondary same Walk component and calculate appraisal procedure, more rapidly, accurately, reliably, improve UPFC sub-synchronous oscillations suppress controller accurate and Rapidity;
2. it is based on sublevel number PIλUPFC sub-synchronous oscillations suppress controller, can more fast and accurately control unification The voltage and current that flow controller UPFC injected systems are adapted, the subsynchronous component of more preferable suppression system, proposes control System strategy is more rationally accurate, reduces the burden of UPFC connection in series-parallel side.
Brief description of the drawings
Fig. 1 is that THE UPFC UPFC of the present invention suppresses sub-synchronous oscillation controller overall pattern.
Fig. 2 is IEEE the first standard sub-synchronous oscillation research models of the invention containing THE UPFC UPFC devices Line chart.
Fig. 3 is the calculating subsynchronous component block diagram of the invention based on low-pass filtering.
Fig. 4 is that the present invention is based on fractional order PIλSuppress the subsynchronous component shunt voltage component control block diagram that shakes.
Fig. 5 is that the present invention is based on fractional order PIλSuppress the subsynchronous component parallel-current component control block diagram that shakes.
Embodiment
In order to deepen the understanding of the present invention, detailed description of the present invention embodiment below in conjunction with the accompanying drawings, the reality Apply example to be only used for explaining the present invention, do not restrict the protection scope of the present invention.
One kind of the present invention is based on fractional order PIλUPFC suppress sub-synchronous oscillation method, comprise the following steps:
Step 1:Establish mathematical models of the THE UPFC UPFC under two-phase synchronous rotary d-q coordinate systems;
The three-phase transverter composition of THE UPFC UPFC preferably 48 pulses, mainly control signal, control method Change, 48 pulses are exactly 4 cascades of side transverter in parallel, and series side 4 is cascaded, and number in parallel more multiple-harmonic is more Few, control is more accurate, effect is more preferable, and the present invention considers cost and actual production, 48 pulse of reasonable selection;6 based on basis Pulse transverter, using secondary coupling circuit and to shift to transformer built-up, in order to reduces harmonic component;
Mathematical model under the two-phase synchronous rotary d-q coordinate systems of UPFC is:
Series side output voltage be:
Vsed=kmseVdc sin(Φ+γ) (2)
Vseq=kmseVdc cos(Φ+γ) (3)
Wherein:kmseFor the series side transverter index of modulation, Φ is the angle of series side line current, and γ notes for series side Enter the angle of voltage leading line electric current;
The voltage of side in parallel output is:
Vshd=kmshVdc sin(θ+α) (5)
Vshq=kmshVdc cos(θ+α) (6)
Wherein:kmshFor the transverter index of modulation in side in parallel, θ is side in parallel current angle, and α is that side in parallel injecting voltage surpasses The angle of preceding electric current;
The reactive current and watt current of THE UPFC UPFC parallel connections side injected system are respectively by busbar in parallel electricity Pressure and the control of DC bus-bar voltage controller, the reactive voltage and active voltage component of series side injected system are respectively by series line Road is active and reactive power flow controller controls;
Step 2:The calculating assessment system of subsynchronous component is established, obtains subsynchronous point contained in route survey signal The electric current and voltage signal of amount;
Subsynchronous voltage rotates clockwise under synchronous coordinate system, it is assumed that generator amature vibration angular frequency is wm, fundamental frequency Angular speed is w0, introduce dqmCoordinate system represents and the rotating one group of new coordinate system of synchronizing voltage vector synchronization, then has:
Following table f represents fundamental component, and sub represents subsynchronous component;
According to the relation of above formula fundamental component and subsynchronous component, by it is low with filtering can from the line voltage distribution of acquisition and Current signal obtains fundamental component and subsynchronous component, completes calculating and assessment to subsynchronous component, and relational expression is:
Wherein:P represents differential operator, Hf(p)、Hsub(p) be respectively fundamental component and subsynchronous component low-pass filtering Device;
Formula (10) is changed:
The same subsynchronous current component expression formula of pattern (11) is changed is into synchronous rotary d-q coordinate systems:
By formula (8) and (12) can calculate measurement voltage in fundamental component and subsynchronous component, formula (9) and (13) fundamental component and subsynchronous component in measurement electric current can be calculated, computing block diagram is as shown in Figure 3;
Shown in Fig. 1, step 3:Establish THE UPFC UPFC and be based on fractional order PIλSuppression sub-synchronous oscillation control Device processed, makes THE UPFC UPFC produce and inject the subsynchronous component phase in the subsynchronous electric current of circuit and voltage and circuit Offset, achieve the purpose that suppression system sub-synchronous oscillation;
THE UPFC UPFC suppress sub-synchronous oscillation controller mathematical model be:
Wherein:R、LTWith L " be respectively THE UPFC UPFC parallel connections busbar to synchronous generator resistance value, change The leakage reactance of depressor and the subsynchronous reactance value of synchronous generator, upper table * represent the reference value of respective amount, Kp、KiIt is fraction with λ Rank PIλThe real number exponent number of the proportionality constant of controller, integral constant and integrator;Specific voltage control logic is realized such as Fig. 4 institutes Show, current steering logic is realized as shown in Figure 5.
Fig. 2 is IEEE the first standard sub-synchronous oscillation research model line charts for being incorporated to THE UPFC UPFC, defeated Electric line impedance RL+XL, XSYSFor Infinite bus system equivalent reactance, circuit current-limiting reactor is XC, transformer reactance XT, device system One flow controller UPFC is installed in high voltage side of transformer two buss lines, and wherein module G, LPB, LPA, IP, HP is respectively to send out Motor, low pressure (LP) cylinder B, low pressure (LP) cylinder A, intermediate pressure cylinder, high pressure cylinder mass block, that is, study the mass block of the generator shafting of sub-synchronous oscillation Spring model.
Above-mentioned sublevel number PIλThe parameter tuning of controller can pass through magnitude margin method, phase margin method, dominant pole Method, optimum control rule method, block-scheme method, genetic algorithm or limit search method.
The present invention does not have to the speed error signal for obtaining distal end generator, directly using where THE UPFC UPFC The voltage and current signal containing sub-synchronous oscillation component of line scan pickup coil side, is easy to actual implementation, relatively reliable;Pass through measuring device The voltage and current containing subsynchronous component in circuit is obtained, is calculated with low-pass filter and assesses subsynchronous voltage and current Component;And it is based on fractional order PIλThe controller that UPFC suppresses subsynchronous concussion is devised, the dynamic property of fraction solution controller is excellent Show, robust performance is more preferable, and the effect for reaching suppression system sub-synchronous oscillation that can more protrude, gives full play to Unified Power Flow control The value of device UPFC processed.

Claims (6)

1. one kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method, it is characterised in that comprise the following steps:
Step 1:Establish mathematical models of the THE UPFC UPFC under two-phase synchronous rotary d-q coordinate systems;
Step 2:The calculating assessment system of subsynchronous component is established, obtains electric current and voltage containing subsynchronous component in circuit Signal;
Step 3:Suppression sub-synchronous oscillation controllers of the THE UPFC UPFC based on fractional order PI is established, makes unified tide The subsynchronous component that stream controller UPFC produced and injected in the subsynchronous electric current of circuit and voltage and circuit offsets, and reaches suppression The purpose of system sub-synchronous oscillation.
2. a kind of according to claim 1 be based on fractional order PIλUPFC suppress sub-synchronous oscillation method, it is characterised in that: Mathematical model under the two-phase synchronous rotary d-q coordinate systems of THE UPFC UPFC is:
Series side output voltage be:
<mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>d</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>q</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Vsed=kmseVdcsin(Φ+γ) (2)
Vseq=kmseVdccos(Φ+γ) (3)
Wherein:kmseFor the series side transverter index of modulation, Φ is the angle of series side line current, and γ is series side injection electricity Press the angle of leading line electric current;
The voltage of side in parallel output is:
<mrow> <msub> <mi>V</mi> <mrow> <mi>s</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>d</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>V</mi> <mrow> <mi>s</mi> <mi>h</mi> <mi>q</mi> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Vshd=kmshVdcsin(θ+α) (5)
Vshq=kmshVdccos(θ+α) (6)
Wherein:kmshFor the transverter index of modulation in side in parallel, θ is side in parallel current angle, and α is that side in parallel injecting voltage is electric in advance The angle of stream;
The reactive current and watt current of THE UPFC UPFC parallel connections side injected system respectively by busbar voltage in parallel and DC bus-bar voltage controller controls, and the reactive voltage and active voltage component of series side injected system are had by series circuit respectively Work(and the control of reactive power flow controller.
3. a kind of according to claim 1 be based on fractional order PIλUPFC suppress sub-synchronous oscillation method, it is characterised in that:
Subsynchronous voltage rotates clockwise under synchronous coordinate system, it is assumed that generator amature vibration angular frequency is wm, fundamental frequency angular speed For w0, introduce dqmCoordinate system represents and the rotating one group of new coordinate system of synchronizing voltage vector synchronization, then has:
<mrow> <msubsup> <mi>v</mi> <mi>s</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Following table f represents fundamental component, and sub represents subsynchronous component;
, can be from the line voltage distribution and electric current of acquisition by low same filtering according to the relation of above formula fundamental component and subsynchronous component Signal obtains fundamental component and subsynchronous component, completes calculating and assessment to subsynchronous component, and relational expression is:
<mrow> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>v</mi> <mi>s</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>i</mi> <mi>f</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msup> <mi>i</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>v</mi> <mi>s</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>P</mi> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msup> <mi>i</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>-</mo> <msubsup> <mi>i</mi> <mi>f</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Wherein:P represents differential operator, Hf(p)、Hsub(p) be respectively fundamental component and subsynchronous component low-pass filter;
Formula (10) is changed:
<mrow> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>+</mo> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>v</mi> <mi>s</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>f</mi> </mrow> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
The same subsynchronous current component expression formula of pattern (11) is changed is into synchronous rotary d-q coordinate systems:
<mrow> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>H</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>+</mo> <msub> <mi>jw</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <msup> <mi>i</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>i</mi> <mi>f</mi> <mrow> <mi>d</mi> <mi>q</mi> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Fundamental component and subsynchronous component in measurement voltage, formula (9) and (13) can be calculated by formula (8) and (12) Fundamental component and subsynchronous component in measurement electric current can be calculated.
4. a kind of according to claim 1 be based on fractional order PIλUPFC suppress sub-synchronous oscillation method, it is characterised in that:
THE UPFC UPFC suppress sub-synchronous oscillation controller mathematical model be:
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>V</mi> <mrow> <mi>S</mi> <mi>S</mi> <mi>S</mi> <mi>C</mi> </mrow> <mrow> <msup> <msub> <mi>dq</mi> <mi>m</mi> </msub> <mo>*</mo> </msup> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mi>R</mi> <mo>+</mo> <mi>j</mi> <mo>(</mo> <mrow> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>w</mi> <mi>m</mi> </msub> </mrow> <mo>)</mo> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mi>T</mi> </msub> <mo>+</mo> <msup> <mi>L</mi> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>K</mi> <mi>i</mi> </msub> <msup> <mi>s</mi> <mi>&amp;lambda;</mi> </msup> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msup> <msub> <mi>dq</mi> <mi>m</mi> </msub> <mo>*</mo> </msup> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>i</mi> <mrow> <msub> <mi>STAT</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> </msub> </mrow> <mrow> <msup> <msub> <mi>dq</mi> <mi>m</mi> </msub> <mo>*</mo> </msup> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>R</mi> <mo>+</mo> <mi>j</mi> <mrow> <mo>(</mo> <msub> <mi>w</mi> <mn>0</mn> </msub> <mo>-</mo> <msub> <mi>w</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>T</mi> </msub> <mo>+</mo> <msup> <mi>L</mi> <mrow> <mo>,</mo> <mo>,</mo> </mrow> </msup> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mi>p</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>K</mi> <mi>i</mi> </msub> <msup> <mi>s</mi> <mi>&amp;lambda;</mi> </msup> </mfrac> <mo>&amp;lsqb;</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msub> <mi>dq</mi> <mi>m</mi> </msub> </mrow> </msubsup> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mo>,</mo> <mi>s</mi> <mi>u</mi> <mi>b</mi> </mrow> <mrow> <msup> <msub> <mi>dq</mi> <mi>m</mi> </msub> <mo>*</mo> </msup> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Wherein:R、LTAnd L " is respectively resistance value of the THE UPFC UPFC parallel connections busbar to synchronous generator, transformer The subsynchronous reactance value of leakage reactance and synchronous generator, upper table * represent the reference value of respective amount, Kp、KiIt is fractional order PI with λλControl The real number exponent number of the proportionality constant of device processed, integral constant and integrator.
5. a kind of according to claim 1 be based on fractional order PIλUPFC suppress sub-synchronous oscillation method, it is characterised in that: THE UPFC UPFC selects the three-phase transverter of 48 pulses.
6. a kind of according to claim 4 be based on fractional order PIλUPFC suppress sub-synchronous oscillation method, it is characterised in that: Sublevel number PIλThe parameter tuning of controller by magnitude margin method, phase margin method, dominant pole method, optimum control rule method, Block-scheme method, genetic algorithm or limit search method.
CN201711267438.6A 2017-12-05 2017-12-05 One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method Pending CN107979099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711267438.6A CN107979099A (en) 2017-12-05 2017-12-05 One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711267438.6A CN107979099A (en) 2017-12-05 2017-12-05 One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method

Publications (1)

Publication Number Publication Date
CN107979099A true CN107979099A (en) 2018-05-01

Family

ID=62009347

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711267438.6A Pending CN107979099A (en) 2017-12-05 2017-12-05 One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method

Country Status (1)

Country Link
CN (1) CN107979099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110401207A (en) * 2019-07-26 2019-11-01 南京工程学院 A kind of electric car micro-capacitance sensor charge and discharge frequency modulation method based on fractional calculus
CN110808610A (en) * 2019-11-11 2020-02-18 广西大学 Doubly-fed wind turbine optimization method based on proportional-integral-derivative control idea

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185342A1 (en) * 2011-08-03 2014-07-03 Diehl Aerospace Gmbh Electrical supply apparatus with current waveform signal and method for operating the electrical supply apparatus
CN105281324A (en) * 2015-10-10 2016-01-27 江苏省电力公司电力经济技术研究院 Subsynchronous oscillation assessment method of electric power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140185342A1 (en) * 2011-08-03 2014-07-03 Diehl Aerospace Gmbh Electrical supply apparatus with current waveform signal and method for operating the electrical supply apparatus
CN105281324A (en) * 2015-10-10 2016-01-27 江苏省电力公司电力经济技术研究院 Subsynchronous oscillation assessment method of electric power system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
D. KOTESWARA RAJU等: "Mitigation of Subsynchronous Resonance with Fractional-order PI based UPFC controller", 《MECHANICAL SYSTEMS AND SIGNAL PROCESSING》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110401207A (en) * 2019-07-26 2019-11-01 南京工程学院 A kind of electric car micro-capacitance sensor charge and discharge frequency modulation method based on fractional calculus
CN110401207B (en) * 2019-07-26 2022-12-16 南京工程学院 Electric vehicle micro-grid charging and discharging frequency modulation method based on fractional calculus
CN110808610A (en) * 2019-11-11 2020-02-18 广西大学 Doubly-fed wind turbine optimization method based on proportional-integral-derivative control idea
CN110808610B (en) * 2019-11-11 2022-04-01 广西大学 Doubly-fed wind turbine optimization method based on proportional-integral-derivative control idea

Similar Documents

Publication Publication Date Title
Bongiorno et al. On control of static synchronous series compensator for SSR mitigation
Bongiorno et al. A novel control strategy for subsynchronous resonance mitigation using SSSC
CN105515020B (en) A kind of suppression sub-synchronous oscillation control method and system based on SVG
CN107732939B (en) Subsynchronous oscillation suppression control method based on voltage source type converter decoupling control
CN104333022B (en) A kind of based on the SVG suppression grid-connected sub-synchronous oscillation method caused of blower fan
CN108847669B (en) Multi-synchronous rotation coordinate system-based multifunctional grid-connected inverter harmonic treatment method
CN105281350A (en) Micro power grid frequency control method and system
CN104868497A (en) Non-flux observation doubly-fed induction generator low voltage ride-through control method and system
CN108448643B (en) Virtual synchronous machine motor synchronizing under unbalanced power grid based on current resonance is incorporated into the power networks control method
CN103279590A (en) Initial self-correction computation method of interface power in electrical power system hybrid real-time simulation
CN107979099A (en) One kind is based on fractional order PIλUPFC suppress sub-synchronous oscillation method
CN109742963B (en) Single-phase pulse rectifier power grid voltage estimation method
CN107241042A (en) Pulsating High Frequency Injection signal extraction system and strategy based on EPLL in parallel
CN102611128B (en) Direct-current power modulating method for high-voltage direct-current power transmission system
CN106300386B (en) Inhibit the Frequency servo method of power grid sub-synchronous oscillation based on SVG dynamic
CN102570950B (en) Subsynchronous damping control system and subsynchronous damping control method for generator terminals
CN105281324B (en) A kind of sub-synchronous oscillation appraisal procedure of power system
CN113114062A (en) Control method and device of grid-connected converter and grid-connected converter
CN104809265B (en) Meter and the double-fed generator analogue system and method for crow bar protection
CN101358989A (en) Method for measuring rotate speed of synchronous generator based on circulation method
CN114006383B (en) Modeling and subsynchronous oscillation analysis method for doubly-fed wind turbine grid-connected system containing VSG
CN111416344A (en) Phase-locked loop modeling method and system based on time delay phase-shift orthogonal signal generator
CN104865523A (en) Doubly-fed generator simulation system and method
CN102355000A (en) Comprehensive control method of double-fed wind power system under asymmetrical grid voltage condition
CN108599262B (en) Improved virtual synchronous machine self-synchronization grid-connected operation control method under unbalanced power grid

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180501