CN107972877A - 一种氢燃料飞机 - Google Patents

一种氢燃料飞机 Download PDF

Info

Publication number
CN107972877A
CN107972877A CN201711431036.5A CN201711431036A CN107972877A CN 107972877 A CN107972877 A CN 107972877A CN 201711431036 A CN201711431036 A CN 201711431036A CN 107972877 A CN107972877 A CN 107972877A
Authority
CN
China
Prior art keywords
pipeline
hydrogen fuel
liquid hydrogen
storage tank
wing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711431036.5A
Other languages
English (en)
Other versions
CN107972877B (zh
Inventor
陶洋
罗新福
范长海
赵忠良
刘志勇
张兆
刘光远
张诣
郭秋亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Original Assignee
High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center filed Critical High Speed Aerodynamics Research Institute of China Aerodynamics Research and Development Center
Priority to CN201711431036.5A priority Critical patent/CN107972877B/zh
Publication of CN107972877A publication Critical patent/CN107972877A/zh
Application granted granted Critical
Publication of CN107972877B publication Critical patent/CN107972877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D37/00Arrangements in connection with fuel supply for power plant
    • B64D37/30Fuel systems for specific fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

本发明公开一种氢燃料飞机。该氢燃料飞机包括:液氢燃料储箱、液氢输送管路、机翼和机身;液氢燃料储箱位于机身的下层空间内;液氢燃料储箱包括多个储箱,分别位于机身的前部、中部和后部;液氢输送管路包括第一管路和第二管路;第一管路包括多个管道,第一管路的管道用于连通相邻的两个储箱;第二管路的进口与机身中部的液氢燃料储箱连接;第二管路的出口连接发动机的燃料进口,第二管路的管道固定在机翼的前缘部分。本发明的氢燃料飞机采用液氢为燃料,无污染,节能减排。通过液氢输送管道的合理布置,利用液氢气化过程中吸热来降低机翼前缘的温度,推迟机翼表面流动转捩的发生,进而减小飞机所受到的阻力,提升飞机性能、提高经济性。

Description

一种氢燃料飞机
技术领域
本发明涉及飞机领域,特别是涉及一种氢燃料飞机。
背景技术
现代飞机主要以石油类产品为燃料。石油作为一种不可再生能源在全球范围内面临着枯竭的危险。同时,石油类燃料的燃烧对环境造成极大的污染,对地球温室效应的产生负有重要责任。未来飞机设计对节能减排等提出了更高的要求,各种代用燃料方案应运而生。
氢从水中提取、燃烧后又生成水,是与石油燃料不同的“可再生式”能源。氢能源的主要优点有:燃烧热值高,每千克氢燃烧后放出142.35千焦的热量,约为石油的3倍,究竟的3.9倍、焦炭的4.5倍;清洁无污染;资源丰富,浩瀚海洋中蕴藏的氢约有1.4×1017吨,潜热能是地球上矿物燃料的9000倍。因此,本发明提供一种氢燃料飞机,以氢为燃料,实现节能减排的效果。
发明内容
本发明的目的是提供一种氢燃料飞机,实现节能减排、降低污染的效果。
为实现上述目的,本发明提供了如下方案:
一种氢燃料飞机,所述氢燃料飞机包括:液氢燃料储箱、液氢输送管路、机翼和机身;所述液氢燃料储箱位于所述机身的下层空间内;
所述液氢燃料储箱包括多个储箱,分别位于所述机身的前部、中部和后部;
所述液氢输送管路包括第一管路和第二管路;
所述第一管路包括多个管道,所述第一管路的管道用于连通相邻的两个储箱;
所述第二管路的进口与所述机身中部的储箱连接;所述第二管路的出口连接发动机的燃料进口,所述第二管路的管道固定在所述机翼的前缘部分。
可选的,所述液氢燃料储箱具体包括:内壁面、中间填充层和外壁面;所述内壁面为三氟氯乙烯或者聚乙烯材料;所述中间填充层为泡沫填充层;所述外壁面为钛合金材料。
可选的,所述第二管路的管道为U形的管道。
可选的,所述第二管路的管道为迂回形的管道。
可选的,所述机翼的后掠角角度为17度,所述机翼的翼型为层流翼型。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
采用液氢为燃料,无污染,节能减排。由于液氢在燃烧前需要气化,这个过程中需要吸收大量的热量,本发明通过液氢输送管道的合理布置,利用液氢气化过程中吸热来降低机翼前缘的温度,利用所产生的温度梯度来推迟机翼表面流动的转捩的发生,在机翼表面实现更大范围的层流流动,进而减小飞机所受到的阻力,提升飞机性能、提高经济性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明氢燃料飞机实施例1的结构示意图;
图2为本发明氢燃料飞机实施例2的结构示意图;
图3为本发明氢燃料飞机的液氢燃料储箱的结构示意图;
图4为本发明氢燃料飞机中对机翼截面转捩位置推迟效果的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明氢燃料飞机实施例1的结构示意图。为了使本发明的特征明显易懂,图1只是标注了重要组件,其他关于氢燃料飞机的具体组件,图1中并未标示。如图1所示,所述氢燃料飞机包括:
液氢燃料储箱(1-1、1-2、1-3)、液氢输送管路(2-1和2-2)、机翼3和机身4;所述液氢燃料储箱位于所述机身的下层空间内。
所述液氢燃料储箱包括多个储箱,分别位于所述机身4的前部、中部和后部;图中以3个为例,液氢燃料储箱1-1位于机身4的前部,液氢燃料储箱1-2位于机身4的中部,液氢燃料储箱1-3位于机身4的后部。燃料储箱的结构分为内壁面、中间填充层、外壁面三层,内壁面采用耐低温材料,例如三氟氯乙烯或者超高分子量聚乙烯材料,中间填充层为泡沫填充用于降低热传递保持液氢低温,外壁面采用具有较高刚度和强度的材料来确保燃料箱的坚固,例如钛合金材料。
所述液氢输送管路包括第一管路2-1和第二管路2-2;所述第一管路2-1包括多个管道,所述第一管路2-1的管道用于连通相邻的两个储箱;所述第二管路2-2的进口与所述机身4中部的液氢燃料储箱1-2连接;所述第二管路2-2的出口连接发动机的燃料进口5,所述第二管路2-2的管道固定在所述机翼的前缘部分。本实施例中的第二管路2-2的管道为U形的管道。
本发明中机翼3的后掠角角度为17度,机翼3的翼型为层流翼型。在大型客机进化过程的早期,后掠翼概念的引入,通过提高临界马赫数来减弱激波强度推迟阻力发散,使得高跨音速(Mach 0.8-0.85)飞行成为可能,但是若超过阻力发散马赫数,气动效率就大大降低。后掠翼与超临界翼型的结合,从很大程度上提高了阻力发散马赫数,使得具有较高效率的高跨音速飞行得以实现,这也致使了大型客机的后掠角锁定在30°左右的范围内。另一方面,在大型客机飞行雷诺数(约108量级)条件下,后掠翼及其绕超临界翼型的表面压强分布使得绕机翼附面层不可避免的具有湍流性质,导致摩擦阻力大大高于层流附面层,这是因为后掠翼易促使前缘附着线转捩及附面层展向流的不稳定性。研究表明,当后掠角低于25°时,决定转捩的主要因素是Tollmien-Schlichting(T-S)不稳定性。当后掠角大于30°时,横流不稳定性就开始体现出来。附着线的不稳定性不仅与后掠角有关,而且也会受到机翼前缘半径的影响。所以,虽然后掠翼对提高阻力发散马赫数有正面影响,但同时也严重的局限了自然层流翼型及机翼的应用。后掠角较大时的优点是飞机的巡航马赫数可以比较高,但是后掠角较大机翼表面流态会受到横流转捩的影响(cross flow transition),不利于层流化的实现,所以机翼前缘后掠角减小到17°,并采用层流翼型,减弱横流转捩的影响,有利于机翼表面层流化的实现,同时需要适当的降低飞机的巡航马赫数。
根据本发明提供的具体实施例,本发明公开了以下技术效果:利用机身下层空间存储液氢燃料,上层空间用于装货物或者人员乘坐。分别设置前、中、后三个燃料储箱,燃料储箱分为内壁面、中间泡沫填充层、外壁面三层,内壁面采用耐低温材料,中间层为泡沫填充用于降低热传递保持液氢低温,外壁面采用具有较高刚度和强度的材料来确保燃料箱的坚固;通过将机翼后掠角减小到17°来减弱横流转捩对机翼流动的影响;将液氢通过管道在机翼靠近前缘的部位进行循环,通过吸收热量造成机翼前缘附近机翼翼面温度低于来流静温,从而推迟转捩的发生,达到减小摩擦阻力、提升飞机飞行品质的效果。
图2为本发明氢燃料飞机实施例2的结构示意图。图中标号与图1中对应,其中,与图1不同的是:本实施例中第二管路2-2的管道为迂回形的管道。
图3为本发明氢燃料飞机的液氢燃料储箱的结构示意图。如图所示,液氢燃料储箱的结构分为内壁面、绝热泡沫填充层(中间填充层)、外壁面三层。
图4为本发明氢燃料飞机中对机翼截面转捩位置推迟效果的示意图。如图所示,将液氢通过管道在机翼靠近前缘的部位进行循环,通过吸收热量使得机翼前缘附近机翼翼面温度低于来流静温,从而推迟转捩的发生,达到减小摩擦阻力、提升飞机飞行品质的效果。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (5)

1.一种氢燃料飞机,其特征在于,所述氢燃料飞机包括:液氢燃料储箱、液氢输送管路、机翼和机身;所述液氢燃料储箱位于所述机身的下层空间内;
所述液氢燃料储箱包括多个储箱,分别位于所述机身的前部、中部和后部;
所述液氢输送管路包括第一管路和第二管路;
所述第一管路包括多个管道,所述第一管路的管道用于连通相邻的两个储箱;
所述第二管路的进口与所述机身中部的储箱连接;所述第二管路的出口连接发动机的燃料进口,所述第二管路的管道固定在所述机翼的前缘部分。
2.根据权利要求1所述的氢燃料飞机,其特征在于,所述液氢燃料储箱具体包括:内壁面、中间填充层和外壁面;所述内壁面为三氟氯乙烯或者聚乙烯材料;所述中间填充层为泡沫填充层;所述外壁面为钛合金材料。
3.根据权利要求1所述的氢燃料飞机,其特征在于,所述第二管路的管道为U形的管道。
4.根据权利要求1所述的氢燃料飞机,其特征在于,所述第二管路的管道为迂回形的管道。
5.根据权利要求1所述的氢燃料飞机,其特征在于,所述机翼的后掠角角度为17度,所述机翼的翼型为层流翼型。
CN201711431036.5A 2017-12-26 2017-12-26 一种氢燃料飞机 Active CN107972877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711431036.5A CN107972877B (zh) 2017-12-26 2017-12-26 一种氢燃料飞机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711431036.5A CN107972877B (zh) 2017-12-26 2017-12-26 一种氢燃料飞机

Publications (2)

Publication Number Publication Date
CN107972877A true CN107972877A (zh) 2018-05-01
CN107972877B CN107972877B (zh) 2024-03-15

Family

ID=62007620

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711431036.5A Active CN107972877B (zh) 2017-12-26 2017-12-26 一种氢燃料飞机

Country Status (1)

Country Link
CN (1) CN107972877B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111409840A (zh) * 2020-04-09 2020-07-14 深圳中科微管科技有限公司 氢动力无人驾驶飞行器的储氢容器
US11807383B2 (en) 2021-01-19 2023-11-07 Rolls-Royce Plc Aircraft with hydrogen storage tanks
US11905028B2 (en) 2021-01-19 2024-02-20 Rolls-Royce Plc Aircraft comprising hydrogen storage tanks

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94007124A (ru) * 1993-10-29 1996-04-20 Авиационный научно-технический комплекс им.А.Н.Туполева (RU) Способ подачи топлива в случае отказа двигателя и/или топливопровода и система для его осуществления
CN1556009A (zh) * 2003-12-30 2004-12-22 上海交通大学 燃氢高速飞机的液氢燃料携带和换热系统
US20080006743A1 (en) * 2006-07-05 2008-01-10 Miller Gerald D Long endurance hydrogen powered vehicle
CN101779031A (zh) * 2007-06-19 2010-07-14 海琼克斯科技公司 根据需要通过电解制造的作为内燃发动机的部分混合燃料源的氢气和氧气
CN103587706A (zh) * 2013-11-14 2014-02-19 北京机电工程研究所 一种低雷达回波散射的飞行器油箱部件及其制备方法
CN105683643A (zh) * 2013-07-29 2016-06-15 康姆顿合伙制公司 燃料罐
CN207712306U (zh) * 2017-12-26 2018-08-10 中国空气动力研究与发展中心高速空气动力研究所 一种氢燃料飞机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94007124A (ru) * 1993-10-29 1996-04-20 Авиационный научно-технический комплекс им.А.Н.Туполева (RU) Способ подачи топлива в случае отказа двигателя и/или топливопровода и система для его осуществления
CN1556009A (zh) * 2003-12-30 2004-12-22 上海交通大学 燃氢高速飞机的液氢燃料携带和换热系统
US20080006743A1 (en) * 2006-07-05 2008-01-10 Miller Gerald D Long endurance hydrogen powered vehicle
CN101779031A (zh) * 2007-06-19 2010-07-14 海琼克斯科技公司 根据需要通过电解制造的作为内燃发动机的部分混合燃料源的氢气和氧气
CN105683643A (zh) * 2013-07-29 2016-06-15 康姆顿合伙制公司 燃料罐
CN103587706A (zh) * 2013-11-14 2014-02-19 北京机电工程研究所 一种低雷达回波散射的飞行器油箱部件及其制备方法
CN207712306U (zh) * 2017-12-26 2018-08-10 中国空气动力研究与发展中心高速空气动力研究所 一种氢燃料飞机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111409840A (zh) * 2020-04-09 2020-07-14 深圳中科微管科技有限公司 氢动力无人驾驶飞行器的储氢容器
US11807383B2 (en) 2021-01-19 2023-11-07 Rolls-Royce Plc Aircraft with hydrogen storage tanks
US11905028B2 (en) 2021-01-19 2024-02-20 Rolls-Royce Plc Aircraft comprising hydrogen storage tanks

Also Published As

Publication number Publication date
CN107972877B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
CN207712306U (zh) 一种氢燃料飞机
CN107972877A (zh) 一种氢燃料飞机
Goundar et al. Design of a horizontal axis tidal current turbine
Lin Control of turbulent boundary-layer separation using micro-vortex generators
Ren et al. Design and hydrodynamic analysis of horizontal axis tidal stream turbines with winglets
Wang et al. Rotor airfoil profile optimization for alleviating dynamic stall characteristics
CN103559390B (zh) 一种基于平均失效指数的复合材料π形胶接连接结构拉伸强度预测方法
Wimshurst et al. Computational analysis of blockage designed tidal turbine rotors
Niknahad et al. Numerical study and comparison of turbulent parameters of simple, triangular, and circular vortex generators equipped airfoil model
Abdelghany et al. Air craft winglet design and performance: Cant angle effect
Zhang et al. Investigation of aerodynamic forces and flow field of an H-type vertical axis wind turbine based on bionic airfoil
Catalano et al. Performance improvements of a regional aircraft by riblets and natural laminar flow
Zheng et al. Enhancing subsonic performance of delta wing at low angles of attack
Meng et al. Structural design and analysis of a composite wing with high aspect ratio
Mele et al. Effect of body shape on riblets performance
Catalano et al. Effects of riblets on the performances of a regional aircraft configuration in NLF conditions
Yang et al. Effects of design parameters on longitudinal static stability for WIG craft
CN107264774B (zh) 一种采用前缘支撑翼的m形翼高亚声速飞行器气动布局
Zahedi Nejad et al. Conceptual duct shape design for horizontal-axis hydrokinetic turbines
CN102384042A (zh) 翼环、四种翼环机构、两种翼环飞机暨翼环对拉风电机构
Demasi et al. Minimum induced drag conditions for winglets: The best winglet design concept
Abdelghany et al. Winglet Cant and Sweep Angles Effect on Aircraft Wing Performance
CN105752315A (zh) 兼顾跨声速和高超声速气动性能的新概念翼型
McKegney et al. Bio-inspired design of leading-edge tubercles on wind turbine blades
Lee et al. Aerodynamics and vortex flowfield of a slender delta wing with apex flap and tip flap

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant