CN107966428B - 一种提高微型拉曼光谱仪分辨率的方法 - Google Patents

一种提高微型拉曼光谱仪分辨率的方法 Download PDF

Info

Publication number
CN107966428B
CN107966428B CN201610907171.1A CN201610907171A CN107966428B CN 107966428 B CN107966428 B CN 107966428B CN 201610907171 A CN201610907171 A CN 201610907171A CN 107966428 B CN107966428 B CN 107966428B
Authority
CN
China
Prior art keywords
resolution
raman
deconvolution
laser
spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610907171.1A
Other languages
English (en)
Other versions
CN107966428A (zh
Inventor
姚志湘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sipat Beijing Technology Co Ltd
Original Assignee
Sipat Beijing Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sipat Beijing Technology Co Ltd filed Critical Sipat Beijing Technology Co Ltd
Priority to CN201610907171.1A priority Critical patent/CN107966428B/zh
Publication of CN107966428A publication Critical patent/CN107966428A/zh
Application granted granted Critical
Publication of CN107966428B publication Critical patent/CN107966428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本发明采用激光‑狭缝分布函数,通过反卷积来提高微型拉曼光谱仪分辨率,从数据处理方法上提升拉曼光谱的分辨性能。

Description

一种提高微型拉曼光谱仪分辨率的方法
技术领域
本发明公布了一种提高微型拉曼光谱仪分辨率的方法,特别适用于一种采用激光-狭缝分布函数反卷积提高微型拉曼光谱仪分辨率的方法。
背景技术
近年来,随着激光技术和微型光谱仪技术的成熟,使得微型激光拉曼光谱仪得到快速发展,在化学、材料科学的研究中获得了广泛应用。但是这类拉曼光谱仪的分辨率一直徘徊在10cm-1数量级范围,无法满足更精密的分析和测量,对于更精密的分辨率要求,还必须采用价格居高不下的大型高分辨光谱仪。
如果仅采用改良硬件的方式,目前的微型光谱仪无法突破4cm-1的门槛,其原因在于激光线宽和光谱仪的入射狭缝都存在物理尺寸。通过提高激光器性能可以将激光线宽降至很窄,但会推高仪器造价;而另一更重要的因素是入射狭缝宽度,由于拉曼光非常弱,无法将狭缝降至很低,通常无法低于10微米,导致了目前微型光谱仪对拉曼光谱分辨率测量的上限。
本发明采用激光-狭缝分布函数,通过反卷积来提高微型拉曼光谱仪分辨率,从数据处理方法上提升拉曼光谱的分辨性能。
发明内容
真实的拉曼信号R,测量的是以激发波长为起点的反斯托克斯散射。但是激光并非严格处于唯一波长点,处在分布函数l(d)范围内的光子都会引起拉曼散射,叠加致使分辨率下降;另外,具有宽度的狭缝也使得光发射位置不唯一,展宽了接收位置。
如果,定义激光谱线分布函数l(d 1 )和狭缝分布sl(d 2 );由于激光谱线分布,激励出的拉曼信号为R 1 ,有:
Figure DEST_PATH_IMAGE001
即,在波长λ处的实际拉曼散射响应是按照激光强度分布的不同波长激光的累加,换言之,实际拉曼响应R 1 是真实响应R和激光谱线分布l(d 1 的卷积。
考虑狭缝因素,R 1 又进一步受到影响,在光谱仪上采集到的信号R 2 为:
R 1 带入R 2 中并改写为卷积形式,即:
Figure DEST_PATH_IMAGE003
其中,L是激光谱线分布函数l和狭缝宽度的卷积,本发明称为激光-狭缝分布函数;在光谱仪上测量到的实际光谱R 2 是真实光谱R和函数L的卷积。通过确定L,再对R 2 进行反卷积,就可以得到真实光谱R,提高分辨率。
步骤:
1.通过重复测量直接的拉曼信号R 2 ,求取均值,得到信噪比增强后的R 2 值。
2.对R 2 数据系列插值至小于0.2cm-1读数间隔,得到新的R 2 序列值。
3.采用更小狭缝的光谱仪,测量激光,通过拟合和平滑,确定激光谱线分布函数l
4.用单一矩形方波模拟狭缝分布sl,计算sll的卷积L
5.计算R 2 L的反卷积,考察反卷积输出效果。
6.如果输出存在失真和显著噪声,调整sl分布的宽度,重新回到步骤3,直至得到满意输出效果。
7.保存L序列值,保留为该台微型拉曼仪的分辨率提升参数。
8.后续测量,完成步骤1和2后,采用L序列值,计算输出反卷积结果,即为提升分辨率后的拉曼谱图。
本发明将光谱分辨率提升至小于1cm-1,极大增加了目前微型拉曼光谱仪的性能,显著增强仪器性价比。
附图说明
图1通常微型拉曼光谱仪测得CCL4光谱;
图2激光谱线分布;
图3是459cm-1周围的插值滤波效果;
图4被校正的光谱仪所对应的L系列值;
图5通过反卷积得到的CCl4在459cm-1周围的三重峰;
图6乙醇完全分离拉曼光谱。
实施案例
四氯化碳的拉曼光谱常用来检验仪器的分辨率。其处于459cm-1谱带,由C-Cl35和C-Cl37的伸缩震动引起456-462cm-1的三重峰能够清晰分辨,可认为光谱分辨率小于1cm-1
通常微型拉曼光谱仪,其拉曼光谱如图1(采用峰宽<0.1nm 的532nm激光激发,仪器CCD点数3648,入射狭缝宽20微米),图中459cm-1处只能看到单一出峰。图2是激光谱线分布。
首先,按照0.1cm-1的精度,将CCl4原始光谱插值、滤波降噪,图3是459cm-1周围的插值滤波效果。
定义sl函数的初值,计算其与l函数的卷积L。反复试算,考察R 2 反卷积结果,直到得到满意的L。图4为被校正的光谱仪所对应的L系列值。
图5是通过反卷积得到的CCl4在459cm-1周围的三重峰,表明其拉曼分辨率已提升至小于1cm-1
另外对此台仪器的乙醇光谱,利用该L函数反卷积,分辨率提升后,重叠峰被完全分离,见图6。
本发明突破了微型拉曼光谱仪分辨率瓶颈,有效、准确提升了仪器精密度,使微型拉曼光谱仪能够精细解析被测物的结构信息,极大提升了仪器性能。

Claims (1)

1.一种采用激光-狭缝分布函数反卷积提高微型拉曼光谱仪分辨率的方法:采用激光-狭缝分布函数,通过反卷积来提高微型拉曼光谱仪分辨率,从数据处理方法上提升拉曼光谱的分辨性能;
方法计算步骤如下:
1)通过重复测量直接的拉曼信号R2,求取均值,得到信噪比增强后的R2值;
2)对R2数据系列插值至小于0.2cm-1读数间隔,得到新的R2序列值;
3)采用更小狭缝的光谱仪,测量激光,通过拟合和平滑,确定激光谱线分布函数l;
4)用单一矩形方波模拟狭缝分布sl,计算sl与l的卷积L;
5)计算R2对L的反卷积,考察反卷积输出效果;
6)如果输出存在失真和显著噪声,调整sl分布的宽度,重新回到步骤3,直至得到满意输出效果;
7)保存L序列值,保留为该台微型拉曼仪的分辨率提升参数;
8)后续测量,完成步骤1和2后,采用L序列值,计算输出反卷积结果,即为提升分辨率后的拉曼谱图。
CN201610907171.1A 2016-10-19 2016-10-19 一种提高微型拉曼光谱仪分辨率的方法 Active CN107966428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610907171.1A CN107966428B (zh) 2016-10-19 2016-10-19 一种提高微型拉曼光谱仪分辨率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610907171.1A CN107966428B (zh) 2016-10-19 2016-10-19 一种提高微型拉曼光谱仪分辨率的方法

Publications (2)

Publication Number Publication Date
CN107966428A CN107966428A (zh) 2018-04-27
CN107966428B true CN107966428B (zh) 2020-01-03

Family

ID=61996885

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610907171.1A Active CN107966428B (zh) 2016-10-19 2016-10-19 一种提高微型拉曼光谱仪分辨率的方法

Country Status (1)

Country Link
CN (1) CN107966428B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109187488B (zh) * 2018-09-30 2020-08-04 姚志湘 用于不同分辨率的拉曼光谱定性比对处理方法
CN110162740B (zh) * 2019-05-14 2023-03-31 广西科技大学 一种用于光谱分辨增强的逆矩阵迭代反卷积方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901014A (zh) * 2014-03-10 2014-07-02 华南师范大学 多元线性回归拟合获得真实的细胞拉曼光谱的方法
WO2014125819A1 (ja) * 2013-02-13 2014-08-21 アトナープ株式会社 解析装置
CN104458696A (zh) * 2014-12-02 2015-03-25 天津大学 基于数字微镜元件的微型固化拉曼光谱仪
CN105784734A (zh) * 2016-03-02 2016-07-20 中国科学院上海应用物理研究所 一种闪烁体探测系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6101024A (en) * 1998-03-24 2000-08-08 Xtera Communications, Inc. Nonlinear fiber amplifiers used for a 1430-1530nm low-loss window in optical fibers
WO2011069067A1 (en) * 2009-12-04 2011-06-09 The Trustees Of Columbia University In The City Of New York Spectral and temporal laser fluorescence analysis such as for natural aquatic environments
CN103134789B (zh) * 2012-11-21 2015-05-20 华中科技大学 一种基于Laplacian-Markov场的光谱恢复方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125819A1 (ja) * 2013-02-13 2014-08-21 アトナープ株式会社 解析装置
CN103901014A (zh) * 2014-03-10 2014-07-02 华南师范大学 多元线性回归拟合获得真实的细胞拉曼光谱的方法
CN104458696A (zh) * 2014-12-02 2015-03-25 天津大学 基于数字微镜元件的微型固化拉曼光谱仪
CN105784734A (zh) * 2016-03-02 2016-07-20 中国科学院上海应用物理研究所 一种闪烁体探测系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于Laplacia-Markov先验数据的加权光谱反卷积模型;张娇 等;《红外与激光工程》;20140113;第12卷(第一期);第3464-3469页 *

Also Published As

Publication number Publication date
CN107966428A (zh) 2018-04-27

Similar Documents

Publication Publication Date Title
CN105424185B (zh) 一种计算机辅助的全波段光谱仪波长标定方法
Kumar et al. Analysis of dilute aqueous multifluorophoric mixtures using excitation–emission matrix fluorescence (EEMF) and total synchronous fluorescence (TSF) spectroscopy: a comparative evaluation
JP6091493B2 (ja) 試料に存在する成分を決定するための分光装置と分光法
Andrade et al. Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy
US9816934B2 (en) Laser induced breakdown spectroscopy (LIBS) apparatus with automatic wavelength calibration
US11530950B2 (en) Spectral analysis system, mobile device having a spectral analysis system, method for determining a correction function for the imaging correction of a spectrum captured by a spectral analysis system, and computer program
CN107966428B (zh) 一种提高微型拉曼光谱仪分辨率的方法
CN110987903B (zh) 一种libs基体效应校正方法及其应用
WO2020228047A1 (zh) 一种用于光谱分辨增强的逆矩阵迭代反卷积方法
Liu et al. An improved method based on a new wavelet transform for overlapped peak detection on spectrum obtained by portable Raman system
Parigger et al. Radial electron density measurements in laser-induced plasma from Abel inverted hydrogen Balmer beta line profiles
Chen et al. High spectral specificity of local chemical components characterization with multichannel shift-excitation Raman spectroscopy
CN108169215B (zh) 一种发射光谱仪积分时间上限的设定方法
JPH03144346A (ja) 原子放出分光器による濃度測定方法
Sung et al. Fast three‐dimensional chemical imaging by interferometric multiplex coherent anti‐Stokes Raman scattering microscopy
CN102103079B (zh) 一种光谱分析方法
US10627289B1 (en) Raman signal position correction using relative integration parameters
CN104236710B (zh) 一种手持式光源颜色照度测量仪的光谱超分辨方法
JPH0829255A (ja) 波形解析装置
Raj et al. Accurate intensity calibration of multichannel spectrometers using Raman intensity ratios
US20230017097A1 (en) Detecting outliers and anomalies for ocd metrology machine learning
Zang et al. A high-performance spectrometer with two spectral channels sharing the same BSI-CMOS detector
Ko et al. Analysis of high-resolution spectra from a hybrid interferometric/dispersive spectrometer
TWI723867B (zh) 用以產生高解析度圖譜的動態數據校正方法及裝置
CN117168619B (zh) 一种星载高光谱成像仪光谱定标方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant