CN107963899A - 一种熔融镍渣制备镁橄榄石的系统和方法 - Google Patents

一种熔融镍渣制备镁橄榄石的系统和方法 Download PDF

Info

Publication number
CN107963899A
CN107963899A CN201711317768.1A CN201711317768A CN107963899A CN 107963899 A CN107963899 A CN 107963899A CN 201711317768 A CN201711317768 A CN 201711317768A CN 107963899 A CN107963899 A CN 107963899A
Authority
CN
China
Prior art keywords
molten
melting
slag
molten iron
entrance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711317768.1A
Other languages
English (en)
Inventor
刘占华
王欣
王岩
经文波
曹志成
汪勤亚
吴道洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Province Metallurgical Design Institute Co Ltd
Original Assignee
Jiangsu Province Metallurgical Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Province Metallurgical Design Institute Co Ltd filed Critical Jiangsu Province Metallurgical Design Institute Co Ltd
Priority to CN201711317768.1A priority Critical patent/CN107963899A/zh
Publication of CN107963899A publication Critical patent/CN107963899A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供一种熔融镍渣制备镁橄榄石的系统,该系统包括旋转床、燃气熔分炉、矿热电炉。本发明同时还提供了一种熔融镍渣制备镁橄榄石的方法,该方法包括以下步骤:将褐煤在旋转床内进行热解,得到半焦和热解气;将熔融镍渣直接加入燃气熔分炉中,再向燃气熔分炉中加入半焦和助熔剂进行熔分,由此将熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁水和熔分渣;将熔分渣加入矿热电炉中,并且向矿热电炉中加入焦炭和镁质熔剂进行调渣和深还原,得到第二熔分铁水和熔融镁橄榄石。本发明将熔融镍渣通过燃气熔分炉、矿热炉处理,不仅利用了熔融镍渣的显热,还产出了低硫铁水。实现了熔融镍渣和褐煤的综合利用。

Description

一种熔融镍渣制备镁橄榄石的系统和方法
技术领域
本发明属于耐火材料技术领域,具体涉及一种熔融镍渣制备镁橄榄石的系统和方法。
背景技术
镍渣是在冶炼金属镍的过程中排放的一种工业废渣。采用闪速炉熔炼法生产1吨镍需排出6~16吨镍渣。目前我国每年约产生90万吨镍渣。镍渣的化学成分与高炉矿渣类似,但在含量上有所差异。镍渣中铁主要以硅酸铁形式存在,少量以Fe2O3形式存在,是熔融物经水淬后形成的粒化炉渣,也有不经过水淬而直接外排的情况。熔融镍渣的温度为1100~1300℃,含有大量的显热。目前仍存在熔融镍渣的利用问题以及熔融镍渣固废资源的综合利用问题。
发明内容
针对上述问题,本发明提供一种熔融镍渣制备镁橄榄石的系统和方法,该系统和方法能够解决熔融镍渣的利用问题、褐煤提质综合利用的问题以及熔融镍渣固废资源的综合利用问题,并且可以制备得到低硫铁水和熔融镁橄榄石。
根据本发明的一方面,提供一种熔融镍渣制备镁橄榄石的系统,该系统包括:
旋转床,该旋转床具有褐煤入口、半焦出口和热解气出口;
燃气熔分炉,该燃气熔分炉具有熔融镍渣入口、半焦入口、助熔剂入口、热解气入口、第一熔分铁水出口和熔分渣出口,该半焦入口与旋转床的半焦出口相连,该热解气入口与旋转床的热解气出口相连;
矿热电炉,该矿热电炉具有熔分渣入口、焦炭入口、镁质熔剂入口、第二熔分铁水出口和镁橄榄石出口,该熔分渣入口与该燃气熔分炉的熔分渣出口相连。
根据本发明的一个实施例,该系统还包括精炼炉,精炼炉包括第一熔分铁水入口、第二熔分铁水入口、脱硫剂入口和低硫铁水出口,该第一熔分铁水入口与燃气熔分炉的第一熔分铁水出口相连,该第二熔分铁水入口与矿热电炉的第二熔分铁水出口相连。
根据本发明的一个实施例,旋转床为蓄热式旋转床。
根据本发明的另一方面,提供一种使用上述系统制备镁橄榄石的方法,该方法包括下列步骤:
1)将褐煤在旋转床内进行热解,得到半焦和热解气;
2)将熔融镍渣直接加入燃气熔分炉中,再向燃气熔分炉中加入半焦和助熔剂进行熔分,由此将熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁水和熔分渣;
3)将熔分渣加入矿热炉中,并且向矿热电炉中加入焦炭和镁质熔剂进行调渣和深还原,得到第二熔分铁水和熔融镁橄榄石。
根据本发明的一个实施例,该方法进一步包括将第一熔分铁水和第二熔分铁水加入精炼炉中,再向精炼炉中加入脱硫剂进行脱硫处理,得到脱硫铁水。
根据本发明的一个实施例,旋转床的热解温度为900~1000℃,热解时间为10~30分钟。
根据本发明的一个实施例,步骤2)中该熔融镍渣的组分包括35~45wt%Fe,0.5~1.0wt%S,30~35wt%SiO2,1~3wt%Al2O3,4~8wt%MgO以及1~4wt%CaO以及余量的杂质。
根据本发明的一个实施例,步骤2)中半焦的加入量为该熔融镍渣质量的30~40%,该助熔剂的加入量在熔融镍渣质量的10%以下。
根据本发明的一个实施例,步骤2)中燃气熔分炉的熔分温度为1550~1600℃,熔分时间为20~40分钟。
根据本发明的一个实施例,步骤3)中:
镁质熔剂为菱镁矿,菱镁矿中MgO含量大于45%,菱镁矿与熔融镍渣的质量比为1~1.5:1;
该焦炭的用量设定成使焦炭中的C与熔分渣里FeO中O的摩尔数比为1.0~1.1。
根据本发明的一个实施例,步骤3)中矿热电炉的反应温度为1800~1900℃,反应时间为10~20分钟。
根据本发明的一个实施例,褐煤中固定碳含量大于40%,挥发分含量大于35%,水分含量小于10%,灰分含量小于10%。
根据本发明的一个实施例,褐煤的粒度为6~20mm,优选为8~18mm,更优选为10~16mm。
根据本发明的一个实施例,褐煤在旋转床内的布料厚度为6~40mm。
根据本发明的一个实施例,半焦的固定碳含量为70~90%。
根据本发明的一个实施例,热解气中的可燃气含量在80~90%(体积),热值在3500kcal/Nm3以上。
根据本发明的一个实施例,助熔剂优选为菱镁矿和白云石等,其中菱镁矿中MgO含量大于45%、白云石中MgO含量在20%以上。
根据本发明的一个实施例,脱硫剂优选为氧化钙、碳酸钠和碳化钙。
通过使用本发明的上述系统和方法,可以获得以下多种有益效果:
(1)本发明将熔融镍渣通过燃气熔分炉、矿热炉处理,不仅利用了熔融镍渣的显热,还产出了低硫铁水;
(2)本发明在将熔融镍渣提铁的同时,还综合利用了其中的SiO2和MgO,制备得到熔融镁橄榄石;
(3)本发明实现了熔融镍渣和褐煤的综合利用。
附图说明
图1是根据本发明的熔融镍渣制备镁橄榄石系统的结构示意图;
图2是根据本发明的熔融镍渣制备镁橄榄石的方法的流程示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合具体实施例及附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的熔融镍渣制备镁橄榄石的系统主要包括旋转床100、燃气熔分炉200、矿热电炉300以及精炼炉400。
旋转床100具有褐煤入口、半焦出口和热解气出口。旋转床100可以采用蓄热式旋转床。
燃气熔分炉200具有熔融镍渣入口、半焦入口、助熔剂入口、热解气入口、第一熔分铁水出口和熔分渣出口,半焦入口与旋转床的半焦出口相连,热解气入口与旋转床100的热解气出口相连。
矿热电炉300具有熔分渣入口、焦炭入口、镁质熔剂入口、第二熔分铁水出口和镁橄榄石出口,熔分渣入口与燃气熔分炉200的熔分渣出口相连。
精炼炉400包括第一熔分铁水入口、第二熔分铁水入口、脱硫剂入口和低硫铁水出口,第一熔分铁水入口与燃气熔分炉200的第一熔分铁水出口相连,第二熔分铁水入口与矿热电炉300的第二熔分铁水出口相连。
参考图2,本发明还提供了一种制备镁橄榄石的方法,下面描述该方法的具体步骤。
首先将褐煤在旋转床100内进行热解,得到半焦和热解气。半焦可用作后续步骤的还原剂,热解气中的可燃气可用作燃气熔分炉的燃气。其中,褐煤中固定碳含量大于40%,挥发分含量大于35%,水分含量小于10%,灰分含量小于10%,由此,经热解后可产品固定碳含量高、热解气热值高。褐煤的粒度为6~20mm;进一步优选地,褐煤的粒度为8~18mm;更进一步优选地,褐煤的粒度为10~16mm,由此,粒状褐煤可在旋转床内进行热解,若粒度过大则影响热解效率,热解气产气率低,若粒度过小,在旋转床内布料一定厚度时,也会因透气性和传热问题,影响热解效率和热解气产率。褐煤在旋转床100内的布料厚度为6~40mm,旋转床100的热解温度为900~1000℃,热解时间为10~30分钟,由此,粒状褐煤可在旋转床100内快速热解,且热解产物主要以热解气为主,焦油等热解产物少。半焦的固定碳含量为70~90%,由此,可作为燃气熔分炉200还原反应的优质还原剂。热解气中H2、CO、CH4等可燃气含量(体积)在80~90%,热值在3500kcal/Nm3以上,由此,可进一步提高燃气熔分炉200的熔分温度和熔分效率,从而改善熔分效果。
接下来将熔融镍渣直接加入燃气熔分炉200中,再向燃气熔分炉200中加入助熔剂和热解得到的半焦进行熔分,由此将熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁水和熔分渣。熔融镍渣来自闪速炉或沉降电炉,其温度为1200~1300℃,其组分包括35~45wt%Fe,0.5~1.0wt%S,30~35wt%SiO2,1~3wt%Al2O3,4~8wt%MgO以及1~4wt%CaO以及余量的杂质,由此,熔融镍渣中的显热得到充分利用,且熔融镍渣中所含的30~35%的SiO2、4~8%的MgO可作为后续制备镁橄榄石的有用成分,从而在实现SiO2和MgO综合利用的同时,减少了后续菱镁矿的加入,有利于降低生产成本。半焦的加入量为熔融镍渣量的30~40%,由此,可使镍渣最大程度进行还原。助熔剂的加入量为熔融镍渣量的0~10%,助熔剂优选为菱镁矿和白云石等,其中菱镁矿中MgO含量大于45%、白云石中MgO含量在20%以上。燃气熔分炉200的熔分温度为1550~1600℃,熔分时间为20~40分钟。所得第一熔分铁水的铁含量在93%以上、硫含量为1.5~2.5%,熔分渣中铁含量为10~15%。
最后将熔分渣加入矿热电炉300中,并且向矿热电炉300中加入焦炭和镁质熔剂进行调渣和深还原,得到第二熔分铁水和熔融镁橄榄石。镁质熔剂优选为菱镁矿,其中菱镁矿中MgO含量大于45%,菱镁矿的加入量与熔融镍渣量的质量比为1~1.5,由此可使制备的熔融镁橄榄石中的MgO、SiO2含量达到理想要求。焦炭的用量按焦炭中的C与熔分渣里未还原FeO中O的摩尔数比为1.0~1.1,由此可使熔分渣中FeO最大程度的还原,同时不对熔融镁橄榄石的品质产生影响。矿热电炉的温度为1800~1900℃,保温时间为10~20分钟。第二熔分铁水的铁含量在90%以上、硫含量为0.1~0.5%。
经上述方法制备的熔融镁橄榄石中MgO 50~60%、SiO2 30~40%、Fe小于2%、Al2O3小于3%、CaO小于2%,其他杂质含量均小于1%,熔融镁橄榄石耐火度大于1750℃,荷重软化温度大于1600℃。
在本发明的一个优选实施例中,该方法还包括将燃气熔分炉200排出的第一熔分铁水和矿热电炉300排出的第二熔分铁水加入精炼炉400中,再向精炼炉400中加入脱硫剂进行脱硫处理,得到脱硫铁水。脱硫剂优选为氧化钙、碳酸钠和碳化钙。最终获得的脱硫铁水中铁含量约为95%、硫含量低于0.01%。
下面结合具体实施例来说明本发明的系统和方法。
实施例1
将粒度为6mm的褐煤铺12mm在旋转床100内热解,旋转床100的热解温度为900℃、热解时间为30分钟,得到固定碳含量为74%的半焦和热值为3550kcal/Nm3的热解气。其中,褐煤中固定碳含量为45%、挥发分含量为38%、水分含量为9%、灰分含量为8%,热解气中H2、CO、CH4等可燃气含量(体积)为80%。
将镍闪速炉排出的1200℃的熔融镍渣(熔融镍渣的成分具体参见表1)直接加入燃气熔分炉200中,再向燃气熔分炉200中加入40%的半焦以及10%的白云石进行熔分,其中白云石的MgO含量为20%,燃气熔分炉200的熔分温度为1550℃、熔分时间为40分钟,从而使熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁和熔分渣。
将熔分渣加入矿热电炉300中,按焦炭中的C与熔分渣里FeO中O的C/O摩尔比为1.1加入焦炭,按菱镁矿与熔融镍渣量的质量比为1.5:1加入菱镁矿。在矿热电炉300温度为1800℃、加热时间为20分钟的条件下,得到第二熔分铁水和熔融镁橄榄石。
将第一熔分铁和第二熔分铁水加入精炼炉400中,再加入氧化钙进行脱硫处理,以便得到脱硫铁水。
经上述方法处理所得第一熔分铁水的铁含量为93.5%、硫含量为2.5%,熔分渣中铁含量为15%;第二熔分铁水的铁含量为92%、硫含量为0.1%;熔融镁橄榄石中MgO 59~60%、SiO2 30~31%、TFe小于2%、Al2O3小于2%、CaO小于1%,其他杂质含量均小于1%,熔融镁橄榄石耐火度大于1800℃、荷重软化温度大于1650℃;脱硫铁水中铁含量为96%、硫含量低于0.009%。
表1熔融镍渣多元素分析(%)
成分 TFe FeO CaO MgO SiO2 Al2O3 S P Na2O K2O Ni Pb Zn Cu
含量 44.71 47.33 1.04 4.05 33.48 0.93 0.99 0.009 0.83 0.19 0.35 痕迹 0.038 0.21
实施例2
将粒度为8mm的褐煤铺16mm在旋转床100内热解,旋转床100的热解温度为950℃、热解时间为20分钟,得到固定碳含量为80%的半焦和热值为3550kcal/Nm3的热解气。其中,褐煤中固定碳含量为48%、挥发分含量为40%、水分含量为6%、灰分含量为6%,热解气中H2、CO、CH4等可燃气含量(体积)为85%。
将镍闪速炉排出的1250℃的熔融镍渣(熔融镍渣的成分具体参见表2)直接加入燃气熔分炉200中,再向燃气熔分炉200中加入35%的半焦以及5%的白云石进行熔分,其中白云石的MgO含量为21%,燃气熔分炉200的熔分温度为1580℃、熔分时间为30分钟,从而使熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁和熔分渣。
将熔分渣加入矿热电炉300中,按焦炭中的C与熔分渣里FeO中O的C/O摩尔比为1.1加入焦炭,按菱镁矿与熔融镍渣量的质量比为1.3:1加入菱镁矿。在矿热电炉300温度为1850℃、加热时间为15分钟的条件下,得到第二熔分铁水和熔融镁橄榄石。
将第一熔分铁水和第二熔分铁水加入精炼炉400中,再加入氧化钙进行脱硫处理,以便得到脱硫铁水。
经上述方法处理所得第一熔分铁水的铁含量为94%、硫含量为2%,熔分渣中铁含量为13%;第二熔分铁水的铁含量为91%、硫含量为0.3%,熔融镁橄榄石中MgO 55~56%、SiO2 31~32%、TFe小于1%、Al2O3小于2.5%、CaO小于1.5%,其他杂质含量均小于1%,熔融镁橄榄石耐火度大于1730℃、荷重软化温度大于1630℃;脱硫铁水中铁含量为95.5%、硫含量低于0.008%。
表2熔融镍渣多元素分析(%)
成分 TFe FeO CaO MgO SiO2 Al2O3 S P Na2O K2O Ni Pb Zn Cu
含量 39.78 44.79 1.97 5.65 32.97 1.89 0.73 0.015 1.29 0.26 0.36 痕迹 0.046 0.24
实施例3
将粒度为20mm的褐煤铺40mm在旋转床100内热解,旋转床100的热解温度为1000℃、热解时间为10分钟,得到固定碳含量为90%的半焦和热值为3580kcal/Nm3的热解气。其中,褐煤中固定碳含量为55%、挥发分含量为38%、水分含量为2%、灰分含量为5%,热解气中H2、CO、CH4等可燃气含量(体积)为90%。
将镍闪速炉排出的1300℃的熔融镍渣(熔融镍渣的成分具体参见表3)直接加入燃气熔分炉200中,再向燃气熔分炉200中加入30%的半焦以及2%的白云石进行熔分,其中白云石的MgO含量为21.5%,燃气熔分炉200的熔分温度为1600℃、熔分时间为20分钟,从而使熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁和熔分渣。
将熔分渣加入矿热电炉300中,按焦炭中的C与熔分渣里FeO中O的C/O摩尔比为1.1加入焦炭,按菱镁矿与熔融镍渣量的质量比为1:1加入菱镁矿。在矿热电炉温度为1900℃、加热时间为10分钟的条件下,得到第二熔分铁水和熔融镁橄榄石。
将第一熔分铁水和第二熔分铁水加入精炼炉400中,再加入氧化钙进行脱硫处理,以便得到脱硫铁水。
经上述方法处理所得第一熔分铁水的铁含量为95%、硫含量为1.5%,熔分渣中铁含量为10%;第二熔分铁水的铁含量为90%、硫含量为0.5%,熔融镁橄榄石中MgO 50~51%、SiO2 35~36%、TFe小于0.5%、Al2O3小于3%、CaO小于2%,其他杂质含量均小于1%,熔融镁橄榄石耐火度大于1750℃、荷重软化温度大于1600℃;脱硫铁水中铁含量为95%、硫含量为0.007%。
表3熔融镍渣多元素分析(%)
成分 TFe FeO CaO MgO SiO2 Al2O3 S P Na2O K2O Ni Pb Zn Cu
含量 35.21 36.48 3.47 7.96 30.08 2.97 0.53 0.026 1.59 0.74 0.45 痕迹 0.051 0.38
实施例4
将粒度为13mm的褐煤铺6mm在旋转床100内热解,旋转床100的热解温度950℃、热解时间为20分钟,得到固定碳含量为70%的半焦和热值为3550kcal/Nm3的热解气。其中,褐煤中固定碳含量为45%、挥发分含量为38%、水分含量为8%、灰分含量为9%,热解气中H2、CO、CH4等可燃气含量(体积)为83%。
将镍沉降电炉排出的1250℃的熔融镍渣(熔融镍渣的成分具体参见表4)直接加入燃气熔分炉200中,再向燃气熔分炉200中加入32%的半焦以及1%的菱镁矿进行熔分,其中菱镁矿的MgO含量为47%,燃气熔分炉200的熔分温度为1590℃、熔分时间为35分钟,从而使熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁和熔分渣。
将熔分渣加入矿热电炉300中,按焦炭中的C与熔分渣里FeO中O的C/O摩尔比为1加入焦炭,按菱镁矿与熔融镍渣量的质量比为1:1加入菱镁矿。在矿热电炉300温度为1800℃、加热时间为16分钟的条件下,得到第二熔分铁水和熔融镁橄榄石。
将第二熔分铁水加入精炼炉400中,再加入氧化钙进行脱硫处理,以便得到脱硫铁水。
经上述方法处理所得第一熔分铁水的铁含量为93.8%、硫含量为2.1%,熔分渣中铁含量为14%;第二熔分铁水的铁含量为92%、硫含量为0.25%,熔融镁橄榄石中MgO56%、SiO2 32%、TFe为1.2%、Al2O3为2.2%、CaO为1.3%,其他杂质含量均小于1%,熔融镁橄榄石耐火度大于1750℃、荷重软化温度大于1630℃;脱硫铁水中铁含量为95.5%、硫含量低于0.008%。
表4熔融镍渣多元素分析(%)
成分 TFe FeO CaO MgO SiO2 Al2O3 S P Na2O K2O Ni Pb Zn Cu
含量 36.21 37.48 3.27 7.94 32.08 2.77 0.43 0.032 1.57 0.64 0.43 痕迹 0.056 0.32
以上所述实施例仅表达了本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (10)

1.一种熔融镍渣制备镁橄榄石的系统,其特征在于,包括:
旋转床,所述旋转床具有褐煤入口、半焦出口和热解气出口;
燃气熔分炉,所述燃气熔分炉具有熔融镍渣入口、半焦入口、助熔剂入口、热解气入口、第一熔分铁水出口和熔分渣出口,所述半焦入口与旋转床的半焦出口相连,所述热解气入口与旋转床的热解气出口相连;
矿热电炉,所述矿热电炉具有熔分渣入口、焦炭入口、镁质熔剂入口、第二熔分铁水出口和镁橄榄石出口,所述熔分渣入口与所述燃气熔分炉的熔分渣出口相连。
2.根据权利要求1所述的系统,其特征在于,所述系统还包括精炼炉,所述精炼炉包括第一熔分铁水入口、第二熔分铁水入口、脱硫剂入口和低硫铁水出口,所述第一熔分铁水入口与燃气熔分炉的第一熔分铁水出口相连,所述第二熔分铁水入口与矿热电炉的第二熔分铁水出口相连。
3.一种使用如权利要求1或2所述的系统制备镁橄榄石的方法,其特征在于,包括下列步骤:
1)将褐煤在旋转床内进行热解,得到半焦和热解气;
2)将熔融镍渣直接加入燃气熔分炉中,再向燃气熔分炉中加入半焦和助熔剂进行熔分,由此将熔融镍渣中的硅酸铁还原为金属铁,经渣铁分离后得到第一熔分铁水和熔分渣;
3)将熔分渣加入矿热电炉中,并且向矿热电炉中加入焦炭和镁质熔剂进行调渣和深还原,得到第二熔分铁水和熔融镁橄榄石。
4.根据权利要求3所述的方法,其特征在于,所述方法进一步包括将第一熔分铁水和第二熔分铁水加入精炼炉中,再向精炼炉中加入脱硫剂进行脱硫处理,得到脱硫铁水。
5.根据权利要求3所述的方法,其特征在于,旋转床的热解温度为900~1000℃,热解时间为10~30分钟。
6.根据权利要求3所述的方法,其特征在于,步骤2)中所述熔融镍渣的组分包括35~45wt%Fe,0.5~1.0wt%S,30~35wt%SiO2,1~3wt%Al2O3,4~8wt%MgO以及1~4wt%CaO以及余量的杂质。
7.根据权利要求3所述的方法,其特征在于,步骤2)中半焦的加入量为熔融镍渣质量的30~40%,助熔剂的加入量在熔融镍渣质量的10%以下。
8.根据权利要求3所述的方法,其特征在于,步骤2)中燃气熔分炉的熔分温度为1550~1600℃,熔分时间为20~40分钟。
9.根据权利要求3所述的方法,其特征在于,步骤3)中:
镁质熔剂为菱镁矿,菱镁矿中MgO含量大于45%,菱镁矿与熔融镍渣的质量比为1~1.5:1;
所述焦炭的用量设定成使焦炭中的C与熔分渣里FeO中O的摩尔数比为1.0~1.1。
10.根据权利要求3所述的方法,其特征在于,步骤3)中矿热电炉的反应温度为1800~1900℃,反应时间为10~20分钟。
CN201711317768.1A 2017-12-12 2017-12-12 一种熔融镍渣制备镁橄榄石的系统和方法 Pending CN107963899A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711317768.1A CN107963899A (zh) 2017-12-12 2017-12-12 一种熔融镍渣制备镁橄榄石的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711317768.1A CN107963899A (zh) 2017-12-12 2017-12-12 一种熔融镍渣制备镁橄榄石的系统和方法

Publications (1)

Publication Number Publication Date
CN107963899A true CN107963899A (zh) 2018-04-27

Family

ID=61994245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711317768.1A Pending CN107963899A (zh) 2017-12-12 2017-12-12 一种熔融镍渣制备镁橄榄石的系统和方法

Country Status (1)

Country Link
CN (1) CN107963899A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250435A (zh) * 2020-10-22 2021-01-22 彰武县联信铸造硅砂有限公司 一种镁橄榄石球形砂及其制备方法和用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112250435A (zh) * 2020-10-22 2021-01-22 彰武县联信铸造硅砂有限公司 一种镁橄榄石球形砂及其制备方法和用途

Similar Documents

Publication Publication Date Title
CN103468961B (zh) 一种密闭冲天炉处理钢铁厂含锌、铅粉尘工艺方法
CN102586636B (zh) 钼镍矿直接还原熔炼制取钼镍合金的方法
CN104119939B (zh) 一种炼铁用热压铁焦及其制备方法
CN105112663B (zh) 一种高碳铬铁与兰炭的联合生产工艺
CN103451451A (zh) 一种利用富氧热风竖炉处理红土镍矿生产镍铁合金工艺
CN103146913B (zh) 一种冲天炉处理钢铁厂含铁粉尘的方法
CN106521148A (zh) 一种采用易熔铬粉矿制备高碳铬铁的方法
CN102399922B (zh) 高炉炼铁方法
CN103866131A (zh) 一种含锌高炉除尘灰再资源化处理方法
CN101492752A (zh) 含煤球团还原-熔融炼铁方法
CN101109027A (zh) 一种氧化铁皮生产粒铁的方法
CN102634614A (zh) 一种含锌钢铁冶炼中间渣的资源化处理方法
CN102344981A (zh) 含硼铁精矿铁硼分离直接还原工艺
CN103667700A (zh) 用碳质组合还原剂冶炼高碳铬铁的生产方法
CN102912209A (zh) 红土氧化镍矿转底炉煤基还原生产珠镍铁工艺
CN105219954A (zh) 一种不锈钢除尘灰的回收利用方法
CN107604157B (zh) 一种利用热态转炉渣制备高炉用铁碳复合团块的方法
CN105755195A (zh) 一种从高硅铁矿直接制备钢水的方法
CN207877601U (zh) 一种熔融镍渣制备镁橄榄石的系统
CN102689882A (zh) 一种低品位磷矿转底炉法生产黄磷的方法
CN102851512B (zh) 一种提钒尾渣还原熔炼生产铁合金的方法
CN103695632A (zh) 一种使用铁矿尾渣调节熔分还原改性炉造渣碱度的方法
CN107963899A (zh) 一种熔融镍渣制备镁橄榄石的系统和方法
CN107142120A (zh) 一种高反应性焦炭及其制备方法
CN105925744B (zh) 一种低温下利用钢铁厂粉尘生产珠铁的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination