CN107946893A - The saturable absorber device of gradual change multimode single mode structure based on microcavity built in single mode - Google Patents
The saturable absorber device of gradual change multimode single mode structure based on microcavity built in single mode Download PDFInfo
- Publication number
- CN107946893A CN107946893A CN201711189394.XA CN201711189394A CN107946893A CN 107946893 A CN107946893 A CN 107946893A CN 201711189394 A CN201711189394 A CN 201711189394A CN 107946893 A CN107946893 A CN 107946893A
- Authority
- CN
- China
- Prior art keywords
- mode
- fiber
- graded
- microcavity
- saturable absorber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 60
- 230000008859 change Effects 0.000 title description 3
- 239000000835 fiber Substances 0.000 claims abstract description 83
- 239000013307 optical fiber Substances 0.000 claims description 19
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 8
- 238000005253 cladding Methods 0.000 claims description 5
- 230000004927 fusion Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 claims description 3
- 238000003466 welding Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 2
- 238000005459 micromachining Methods 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 230000003287 optical effect Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 230000009022 nonlinear effect Effects 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910021389 graphene Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000009021 linear effect Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/11—Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
- H01S3/1106—Mode locking
- H01S3/1112—Passive mode locking
- H01S3/1115—Passive mode locking using intracavity saturable absorbers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02295—Microstructured optical fibre
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/028—Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
- G02B6/0288—Multimode fibre, e.g. graded index core for compensating modal dispersion
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Lasers (AREA)
Abstract
本发明公开了一种基于单模‑内置微腔的渐变多模‑单模结构的可饱和吸收体器件,采用全光纤结构,由第一单模光纤、第二单模光纤和内置微腔的渐变折射率多模光纤组合而成。该可饱和吸收体的特性是由内置微腔的渐变折射率多模光纤决定的,由于其较强的非线性多模干涉效应所导致的光强相关的特定损耗关系,使得脉冲两翼被损耗而峰值处能够通过,从而获得超短锁模脉冲。该可饱和吸收体具有成本低廉、结构简单、机械性能优秀等优点,同时能够极大地降低了光纤中的能量密度,提高损伤阈值,能够进一步的应用到高功率的超短脉冲锁模光纤激光器中。
The invention discloses a saturable absorber device based on a single-mode-built-in microcavity graded multimode-single-mode structure, which adopts an all-fiber structure and consists of a first single-mode fiber, a second single-mode fiber and a built-in microcavity. Combination of graded index multimode fiber. The characteristics of the saturable absorber are determined by the graded index multimode fiber with built-in microcavity. Due to the specific loss relationship related to the light intensity caused by its strong nonlinear multimode interference effect, the two wings of the pulse are lost and the The peak can pass through, thus obtaining ultra-short mode-locked pulses. The saturable absorber has the advantages of low cost, simple structure, and excellent mechanical properties. At the same time, it can greatly reduce the energy density in the fiber and increase the damage threshold. It can be further applied to high-power ultrashort pulse mode-locked fiber lasers. .
Description
技术领域technical field
本发明涉及属于激光技术及非线性光学领域。尤其是一种基于单模-内置微腔的渐变多模-单模结构的可饱和吸收体。The invention relates to the fields of laser technology and nonlinear optics. In particular, a saturable absorber based on a single-mode-built-in microcavity graded multimode-single-mode structure.
背景技术Background technique
可饱和吸收体器件是实现被动锁模超短脉冲光纤激光器最为关键的光学器件。这种器件能够满足特定的损耗关系,即当通过该器件的脉冲能量增强时,其光学损耗变小,透过率增大。目前,常用的可饱和吸收体器件包括半导体可饱和吸收镜(SESAM)、碳纳米管、以石墨烯为代表的新型二维材料以及基于非线性偏振旋转(NPR)效应的等效可饱和吸收体。然而,这些常见的可饱和吸收体仍然存在着一定的缺陷,例如:SESAM的响应时间通常只能达到皮秒量级,使得它们在产生飞秒量级的超短脉冲方面不太理想,并且与光纤之间较大的耦合损耗会限制激光转化效率的提升。碳纳米管和石墨烯等可饱和吸收体材料容易被污染,长期可靠性较差以及较低的损伤阈值等材料缺陷也极大的限制了激光器的输出功率与使用寿命。基于NPR的可饱和吸收体对外界环境的扰动比较敏感,一般在实验室环境下使用。可靠的可饱和吸收体的需要具有快速响应时间(弛豫时间)、高稳定性、长期可靠性、易用性、适当的饱和通量和低损耗等良好特性。Saturable absorber devices are the most critical optical devices for passively mode-locked ultrashort pulse fiber lasers. This kind of device can meet a specific loss relationship, that is, when the pulse energy passing through the device increases, its optical loss becomes smaller and the transmittance increases. At present, commonly used saturable absorber devices include semiconductor saturable absorber mirror (SESAM), carbon nanotubes, new two-dimensional materials represented by graphene, and equivalent saturable absorbers based on the nonlinear polarization rotation (NPR) effect. . However, these common saturable absorbers still have certain defects. For example, the response time of SESAM can only reach the picosecond level, which makes them not ideal for generating ultrashort pulses of femtosecond level. The large coupling loss between fibers will limit the improvement of laser conversion efficiency. Saturable absorber materials such as carbon nanotubes and graphene are easily contaminated, and material defects such as poor long-term reliability and low damage threshold also greatly limit the output power and service life of lasers. NPR-based saturable absorbers are sensitive to disturbances in the external environment and are generally used in laboratory environments. Reliable saturable absorbers need to have good properties such as fast response time (relaxation time), high stability, long-term reliability, ease of use, appropriate saturation flux, and low loss.
近年来,多模光纤中的多模干涉效应已得到深入研究并已成功应用于各种光纤器件,在线性应用上,包括了波束整形器,传感器和滤波器等。其中,渐变折射率多模光纤由于具有自激发的高阶模数量少、模式色散小等优势,受到了越来越广泛的关注。由于渐变折射率多模光纤可以减少模式色散,并且其模式的传播常数是等距的,所以其光信号自聚焦长度可以很短,甚至小于1mm,因此,渐变折射率多模光纤中的非线性效应(如:四波混频、自相位调制以及交叉相位调制等)非常丰富。目前,在非线性效应方面,基于渐变折射率多模光纤实现了贝塞尔光束和超连续谱等多种应用,这些应用都为利用渐变折射率光纤制作可饱和吸收体提供了理论支撑。而且用渐变折射率多模光纤制作的可饱和吸收体比如石墨烯等二维材料和半导体可饱和吸收镜在结构上更加简单,并且损伤阈值高,同时由于光纤的材料以石英为主较之其他的可饱和吸收体不容易老化,是一种制作可饱和吸收体非常可靠的材料。In recent years, the multimode interference effect in multimode fiber has been deeply studied and successfully applied to various fiber optic devices, including beam shapers, sensors and filters in linear applications. Among them, graded-index multimode fiber has attracted more and more attention due to its advantages of less self-excited high-order modes and small modal dispersion. Since the graded-index multimode fiber can reduce the modal dispersion, and the propagation constants of its modes are equidistant, the self-focusing length of the optical signal can be very short, even less than 1 mm. Therefore, the nonlinearity in the graded-index multimode fiber Effects such as four-wave mixing, self-phase modulation, and cross-phase modulation are abundant. At present, in terms of nonlinear effects, a variety of applications such as Bessel beams and supercontinuum have been realized based on graded-index multimode fibers. These applications provide theoretical support for the use of graded-index fibers to fabricate saturable absorbers. Moreover, saturable absorbers made of graded-index multimode fibers, such as two-dimensional materials such as graphene, and semiconductor saturable absorber mirrors are simpler in structure and have a higher damage threshold. The high-quality saturable absorber is not easy to age, and it is a very reliable material for making a saturable absorber.
发明内容Contents of the invention
本发明设计了一种成本较低、结构简单、性能稳定的可饱和吸收体,提供一种基于内置微腔的渐变折射率多模光纤的可饱和吸收体器件及其制备方法,以及将该可饱和吸收器器件应用到全光纤的锁模光纤激光器中获得超短脉冲输出。本发明的其中一个目的是是解决现有的可饱和吸收体所存在的技术问题,提供一种宽波段、高损伤阈值的可饱和吸收体器件;另一个目的是利用可饱和吸收体器件实现被动锁模光纤激光器,从而获得超短脉冲的输出。The invention designs a saturable absorber with low cost, simple structure and stable performance, provides a saturable absorber device based on a graded-index multimode optical fiber with a built-in microcavity and a preparation method thereof, and the saturable absorber device The saturable absorber device is applied to an all-fiber mode-locked fiber laser to obtain ultrashort pulse output. One of the purposes of the present invention is to solve the technical problems existing in the existing saturable absorber, and to provide a saturable absorber device with a wide band and high damage threshold; another purpose is to use the saturable absorber device to realize passive Mode-locked fiber lasers to obtain ultrashort pulse output.
为了实现上述的目的,本发明采取了如下技术方案:内置微腔的渐变折射率多模光纤的可饱和吸收体器件,包括依次熔接的第一单模光纤(1-1)、端面带微孔的渐变折射率多模光纤(2),以及第二单模光纤(1-2)。其中,第一单模光纤与带微孔的渐变折射率光纤熔接后形成微腔(3)。In order to achieve the above-mentioned purpose, the present invention adopts the following technical scheme: a saturable absorber device for a graded-index multimode fiber with a built-in microcavity, including the first single-mode fiber (1-1) which is sequentially welded, and a microhole on the end surface A graded-index multimode fiber (2), and a second single-mode fiber (1-2). Wherein, the first single-mode optical fiber is welded with the graded-index optical fiber with microholes to form a microcavity (3).
作为优选方案,所述的第一单模光纤与第二单模光纤为同种单模光纤。As a preferred solution, the first single-mode fiber and the second single-mode fiber are the same type of single-mode fiber.
作为优选方案,所述的渐变折射率多模光纤采用纤芯/包层比为62.5μm/125μm或者50μm /125μm的光纤。As a preferred solution, the graded-index multimode optical fiber adopts an optical fiber with a core/cladding ratio of 62.5 μm/125 μm or 50 μm/125 μm.
作为优选方案,所述的渐变折射率多模光纤长度大于15cm。As a preferred solution, the length of the graded-index multimode optical fiber is greater than 15 cm.
本发明提供了基于单模-内置微腔的渐变多模-单模结构的可饱和吸收体器件的制备方法,包括如下步骤:The invention provides a method for preparing a saturable absorber device based on a single-mode-built-in microcavity gradient multimode-single-mode structure, comprising the following steps:
步骤一:在渐变折射率多模光纤的其中一个端面上制作出一个位于纤芯处的微孔;Step 1: making a microhole at the fiber core on one of the end faces of the graded-index multimode fiber;
步骤二:用熔接机将渐变折射率多模光纤端面带有微孔的一端与第一单模光纤熔接形成微腔;Step 2: using a fusion splicer to weld the end of the graded-index multimode fiber end face with the microhole to the first single-mode fiber to form a microcavity;
步骤三:将渐变折射率多模光纤的另一端与第二单模光纤用熔接机熔接起来。Step 3: Splicing the other end of the graded-index multimode fiber and the second single-mode fiber with a fusion splicer.
作为优选方案,所述渐变折射率多模光纤的端面微孔可采用氢氟酸腐蚀或者飞秒激光微加工的方法获得。As a preferred solution, the microholes on the end face of the graded-index multimode optical fiber can be obtained by hydrofluoric acid etching or femtosecond laser micromachining.
作为优选方案,所述的可饱和吸收体中的微腔直径小于等于45μm。As a preferred solution, the diameter of the microcavity in the saturable absorber is less than or equal to 45 μm.
本发明的主要原理:由于渐变折射率多模光纤中的自相位调制以及交叉相位调制等非线性效应会引起等效折射率的改变,最终使得渐变折射率多模光纤中高峰值功率下的自聚焦长度与低峰值功率下的不同。而渐变折射率多模光纤的模场分布不同,会影响非线性效应的强度,因此对端面带微腔的渐变折射率多模光纤的扰动会影响进入渐变折射率多模光纤光信号的模场分布。而当基模的比例达到合适的程度时,就会使得激光从渐变折射率多模光纤到单模光纤中的高峰值功率的光信号恰好自聚焦到单模光纤的纤芯处,而低峰值功率的光信号进入单模光纤的包层中仅为损耗而衰减。此特性相当于可饱和吸收体。The main principle of the present invention: due to nonlinear effects such as self-phase modulation and cross-phase modulation in the graded-index multimode fiber, the equivalent refractive index will change, and finally the self-phase modulation under high peak power in the graded-index multimode fiber The focal length differs from that at low peak power. However, the mode field distribution of the graded index multimode fiber is different, which will affect the intensity of the nonlinear effect, so the perturbation of the graded index multimode fiber with a microcavity on the end face will affect the mode field of the optical signal entering the graded index multimode fiber distributed. When the ratio of the fundamental mode reaches an appropriate level, the high peak power optical signal of the laser from the graded index multimode fiber to the single mode fiber is just self-focused to the core of the single mode fiber, while the low peak power The optical signal of high power enters the cladding of the single-mode fiber and is only attenuated by loss. This property corresponds to a saturable absorber.
与现有技术相比,本发明的基于“单模-内置微腔的渐变多模-单模结构”可饱和吸收体的可饱和吸收体器件,带来的有益效果是:Compared with the prior art, the saturable absorber device based on the "single-mode-built-in microcavity graded multi-mode-single-mode structure" saturable absorber device of the present invention has the following beneficial effects:
(1)上述可饱和吸收体中微腔的直径可以通过改变腐蚀或者飞秒加工的具体参数实现精确控制,从而改善该可饱和吸收体的特性,进而可以优化激光器的输出参数。(1) The diameter of the microcavity in the above-mentioned saturable absorber can be precisely controlled by changing the specific parameters of corrosion or femtosecond processing, thereby improving the characteristics of the saturable absorber, and then optimizing the output parameters of the laser.
(2)上述可饱和吸收体具有成本低廉,结构简单,机械性能优秀等优点,易于大规模批量生产。(2) The above-mentioned saturable absorber has the advantages of low cost, simple structure, excellent mechanical properties, etc., and is easy to be mass-produced on a large scale.
(3)上述可饱和吸收体具有非常优异的光学特性,多模光纤的采用可以极大地降低了光纤中的能量密度,损伤阈值高,并且能够进一步的应用到高功率的超短脉冲锁模光纤激光器中。(3) The above-mentioned saturable absorber has very excellent optical properties. The use of multimode fiber can greatly reduce the energy density in the fiber, and the damage threshold is high, and can be further applied to high-power ultrashort pulse mode-locked fiber in the laser.
(4)通过对多模光纤长度、纤芯尺寸的合理设计,使得上述可饱和吸收体器件能够在很宽的光谱范围内实现较低损耗的传输。(4) Through the reasonable design of the length and core size of the multimode fiber, the above-mentioned saturable absorber device can achieve low-loss transmission in a wide spectral range.
附图说明Description of drawings
图1为本发明所述可饱和吸收体结构示意图。Fig. 1 is a schematic diagram of the structure of the saturable absorber of the present invention.
图2为单模-内置微腔的渐变多模-单模饱和吸收体饱和吸收特性测量图。Fig. 2 is a measurement chart of saturated absorption characteristics of a single-mode-built-in microcavity gradient multimode-single-mode saturable absorber.
图3为本发明光纤激光器的结构示意图。Fig. 3 is a schematic structural diagram of the fiber laser of the present invention.
图4是基于单模-内置微腔的渐变多模-单模可饱和吸收体被动锁模光纤激光器脉冲序列输出。Figure 4 is the pulse sequence output of a passively mode-locked fiber laser based on a single-mode-built-in microcavity with a graded multimode-single-mode saturable absorber.
图5是激光器在图4脉冲状态下的脉宽测量图。Fig. 5 is a pulse width measurement diagram of the laser in the pulsed state of Fig. 4 .
具体实施方式Detailed ways
本发明的主要思想是:由于渐变折射率多模光纤中的自相位调制以及交叉相位调制等非线性效应会引起等效折射率的改变,最终使得渐变折射率多模光纤中高峰值功率下的自聚焦长度与低峰值功率下的不同。而渐变折射率多模光纤的模场分布不同,会影响非线性效应的强度,因此对端面带微腔的渐变折射率多模光纤的扰动会影响进入渐变折射率多模光纤光信号的模场分布。而当基模的比例达到合适的程度时,就会使得激光从渐变折射率多模光纤到单模光纤中的高峰值功率的光信号恰好自聚焦到单模光纤的纤芯处,而低峰值功率的光信号进入单模光纤的包层中仅为损耗而衰减。此特性相当于可饱和吸收体。The main idea of the present invention is: due to nonlinear effects such as self-phase modulation and cross-phase modulation in the graded-index multimode fiber, the equivalent refractive index will change, and finally the graded-index multimode fiber under high peak power The autofocus length differs from that at low peak power. However, the mode field distribution of the graded index multimode fiber is different, which will affect the intensity of the nonlinear effect, so the perturbation of the graded index multimode fiber with a microcavity on the end face will affect the mode field of the optical signal entering the graded index multimode fiber distributed. When the ratio of the fundamental mode reaches an appropriate level, the high peak power optical signal of the laser from the graded index multimode fiber to the single mode fiber is just self-focused to the core of the single mode fiber, while the low peak power The optical signal of high power enters the cladding of the single-mode fiber and is only attenuated by loss. This property corresponds to a saturable absorber.
本发明的“单模-内置微腔的渐变多模-单模结构”可饱和吸收体制备的具体过程为:The specific process of preparing the "single-mode-gradient multi-mode-single-mode structure with built-in microcavity" saturable absorber of the present invention is as follows:
1.将一段23cm的纤芯为62.5μm的渐变折射率光纤(62.5/125μm,康宁)两端切平。1. Cleave both ends of a 23 cm section of graded-index optical fiber (62.5/125 μm, Corning) with a core of 62.5 μm flat.
2.将其中一个端面用氢氟酸腐蚀5分钟,由于氢氟酸对光纤包层和纤芯的腐蚀速度不同,因此,多模光纤经过腐蚀后,纤芯处会形成一个微孔。2. Corrode one of the end faces with hydrofluoric acid for 5 minutes. Since hydrofluoric acid corrodes the fiber cladding and fiber core at different rates, a micropore will be formed at the fiber core after the multimode fiber is corroded.
3.用熔接机将多模光纤被腐蚀的一端与单模光纤相熔接。熔接机的放电时间为800ms,熔接后形成一个直径为45μm的微腔。3. Use a fusion splicer to fuse the corroded end of the multimode fiber with the single-mode fiber. The discharge time of the welding machine is 800ms, and a microcavity with a diameter of 45 μm is formed after welding.
4.将渐变折射率多模光纤的另一端与一段单模光纤熔接,即得到单模-内置微腔的渐变多模-单模结构的可饱和吸收体。4. Splice the other end of the graded index multimode fiber with a section of single mode fiber to obtain a saturable absorber with a graded multimode-single-mode structure of single-mode-built-in microcavity.
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例中,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。Specific embodiments of the present invention are given below, and it should be noted that the present invention is not limited to the following specific embodiments, and all equivalent transformations done on the basis of the technical solutions of the present application all fall within the protection scope of the present invention.
实施例1Example 1
本实例给出一种基于单模-内置微腔的渐变多模-单模结构的可饱和吸收体,可饱和吸收体中带有微腔,渐变折射率多模光纤位于两段单模光纤之间。如图1所示。This example presents a saturable absorber based on a single-mode-built-in microcavity graded multimode-single-mode structure, with a microcavity in the saturable absorber, and a graded-index multimode fiber located between two sections of single-mode fiber between. As shown in Figure 1.
本实例利用单模-内置微腔的渐变多模-单模结构的可饱和吸收体中的非线性效应和自聚焦效应进行测量,以1.5μm波段飞秒激光器作为测试光源,通过调节光纤激光器的输出功率来测量可饱和吸收体的调制深度如图2所示,随入射光功率的增加,材料的透过率趋于饱和。测量结果用简化的饱和吸收模型进行拟合:QUOTE ;其中,ΔT、Isat和Tns分别表示调制深度、饱和功率以及非饱和吸收系数,通过拟合得到材料的调制深度为2.0%。In this example, the non-linear effect and self-focusing effect in the saturable absorber with single-mode-built-in microcavity graded multimode-single-mode structure are used to measure the nonlinear effect and self-focusing effect, and the 1.5μm band femtosecond laser is used as the test light source. By adjusting the fiber laser Output power to measure the modulation depth of a saturable absorber As shown in Figure 2, as the incident light power increases, the transmittance of the material tends to saturate. The measurements were fitted with a simplified saturable absorption model: QUOTE ; Among them, ΔT, I sat and T ns represent the modulation depth, saturation power and unsaturated absorption coefficient, respectively, and the modulation depth of the material is 2.0% through fitting.
实施例2Example 2
本实施例给出了一种基于单模-内置微腔的渐变多模-单模可饱和吸收体的被动锁模光纤激光器,包括波长为1480nm泵浦源(4)、波分复用器(5)、增益光纤(6)、隔离器(7)、偏振控制器(8)、单模-内置微腔的渐变多模-单模可饱和吸收体(9)和光纤耦合器(10),光纤耦合器(10)包括10%输出端口和90%输出端口,其中单模-内置微腔的渐变多模-单模可饱和吸收体(9)与实施例1相同。This embodiment provides a passive mode-locked fiber laser based on a single-mode-built-in microcavity graded multimode-single-mode saturable absorber, including a pump source (4) with a wavelength of 1480nm, a wavelength division multiplexer ( 5), gain fiber (6), isolator (7), polarization controller (8), single-mode-graded multimode-single-mode saturable absorber with built-in microcavity (9) and fiber coupler (10), The fiber coupler (10) includes a 10% output port and a 90% output port, wherein the single-mode-gradient multimode-single-mode saturable absorber (9) with a built-in microcavity is the same as that in Embodiment 1.
波分复用器(5)、增益光纤(6)、隔离器(7)、偏振控制器(8)、单模-内置微腔的渐变多模-单模可饱和吸收体(9)和光纤耦合器(10)的90%输出端口依次连接成环状,形成环形激光谐振腔,如图2所示。激光二极管泵浦源1连接在波分复用器2的输入端。Wavelength division multiplexer (5), gain fiber (6), isolator (7), polarization controller (8), single-mode-graded multimode-single-mode saturable absorber with built-in microcavity (9) and optical fiber 90% of the output ports of the coupler (10) are sequentially connected in a ring shape to form a ring laser resonator, as shown in FIG. 2 . The laser diode pumping source 1 is connected to the input end of the wavelength division multiplexer 2 .
如图3所示,单模-内置微腔的渐变多模-单模作为可饱和吸收体实现被动锁模光纤激光器运转中,当泵浦功率为92.3mW时的锁模脉冲输出如图4所示,从图中可以看出,腔内的锁模脉冲工作在一个相对稳定的状态,脉冲间隔为70.9ns,相应的脉冲重复频率为14.34MHz。图5所示为当锁模光纤激光器处于稳定锁模脉冲输出时的脉宽,其值为528fs。As shown in Figure 3, the single-mode-built-in microcavity graded multimode-single-mode is used as a saturable absorber to realize passive mode-locked fiber laser operation. When the pump power is 92.3mW, the mode-locked pulse output is shown in Figure 4. It can be seen from the figure that the mode-locked pulse in the cavity works in a relatively stable state, the pulse interval is 70.9ns, and the corresponding pulse repetition frequency is 14.34MHz. Figure 5 shows the pulse width when the mode-locked fiber laser is in stable mode-locked pulse output, and its value is 528fs.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711189394.XA CN107946893A (en) | 2017-11-24 | 2017-11-24 | The saturable absorber device of gradual change multimode single mode structure based on microcavity built in single mode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711189394.XA CN107946893A (en) | 2017-11-24 | 2017-11-24 | The saturable absorber device of gradual change multimode single mode structure based on microcavity built in single mode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107946893A true CN107946893A (en) | 2018-04-20 |
Family
ID=61949629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711189394.XA Pending CN107946893A (en) | 2017-11-24 | 2017-11-24 | The saturable absorber device of gradual change multimode single mode structure based on microcavity built in single mode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107946893A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109616862A (en) * | 2019-02-01 | 2019-04-12 | 长春理工大学 | A Mode-locked Pulsed Fiber Laser Based on SMS Structure |
CN109917510A (en) * | 2019-03-21 | 2019-06-21 | 哈尔滨工程大学 | A Self-Focusing Fiber Array for Integrating Field of View Units |
CN111999815A (en) * | 2020-07-24 | 2020-11-27 | 华南师范大学 | A tunable fiber filter based on few-mode-multi-mode-few-mode structure |
CN112563873A (en) * | 2020-11-24 | 2021-03-26 | 华南师范大学 | Solution of high-energy Q-switched mode-locked multimode fiber laser |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060209908A1 (en) * | 2003-10-24 | 2006-09-21 | Nkt Research & Innovation A/S | An Optical System For Providing Short Laser-Pulses |
US7180657B1 (en) * | 2005-03-17 | 2007-02-20 | Orbits Lightwave, Inc. | Devices using high precision in-fiber atomic frequency reference |
CN101825479A (en) * | 2010-04-15 | 2010-09-08 | 电子科技大学 | Method for manufacturing composite fiber F-P sensor based on self-focusing effect |
CN102680429A (en) * | 2012-05-30 | 2012-09-19 | 四川大学 | Subminiature microcavity gas sensor |
CN103311788A (en) * | 2013-06-28 | 2013-09-18 | 厦门大学 | Preparation method of bottle-type optical micro resonant cavity |
CN103441416A (en) * | 2013-08-27 | 2013-12-11 | 北京工业大学 | Liquid saturable absorber mode locking optical fiber laser |
EP2690724A2 (en) * | 2012-07-25 | 2014-01-29 | UAB "Ekspla" | Saturable absorber for fiber laser mode-locking, fiber Bragg grating with a saturable absorption property and mode-locked fiber laser |
CN103647210A (en) * | 2013-12-13 | 2014-03-19 | 复旦大学 | Gradual change waveguide based graphene saturable absorber and preparation method thereof |
US8761211B2 (en) * | 1998-11-25 | 2014-06-24 | Imra America, Inc. | Multi-mode fiber amplifier |
CN104112972A (en) * | 2014-07-24 | 2014-10-22 | 宁波大学 | Chalcogenide glass based spherical micro-cavity laser manufacture method |
CN104733993A (en) * | 2015-04-16 | 2015-06-24 | 西北核技术研究所 | Saturable absorption optical fiber based all-fiber multi-wavelength passive Q-switched laser |
CN104779513A (en) * | 2015-04-30 | 2015-07-15 | 南开大学 | Tunable micro-cavity laser apparatus based on micro-structure optical fiber |
CN104852259A (en) * | 2015-05-22 | 2015-08-19 | 哈尔滨工程大学 | Liquid drop whispering gallery mode laser and manufacturing method thereof |
US9244218B2 (en) * | 2011-08-10 | 2016-01-26 | Ofs Fitel, Llc | Few moded fiber device employing mode conversion |
CN105356208A (en) * | 2015-11-27 | 2016-02-24 | 北京航空航天大学 | Micro-nano fiber laser based on microfiber phase-shifted Bragg grating (MPSBG) |
CN105591273A (en) * | 2016-03-16 | 2016-05-18 | 佛山科学技术学院 | Pulse optical fiber laser and method for realizing time domain pulse slicing by using the same |
CN106374332A (en) * | 2016-11-09 | 2017-02-01 | 南京诺派激光技术有限公司 | Saturable absorption device based on silicon quantum dot thin film and application thereof in fiber pulse laser device |
CN107154576A (en) * | 2017-06-29 | 2017-09-12 | 中国计量大学 | 2 μm of dissipative solitons mode locked fiber lasers based on SMF SIMF GIMF SMF optical fiber structures |
CN107230927A (en) * | 2017-06-29 | 2017-10-03 | 中国计量大学 | 2 μm of mode locked fiber lasers based on SMF SIMF GIMF SMF optical fiber structures |
-
2017
- 2017-11-24 CN CN201711189394.XA patent/CN107946893A/en active Pending
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8761211B2 (en) * | 1998-11-25 | 2014-06-24 | Imra America, Inc. | Multi-mode fiber amplifier |
US20060209908A1 (en) * | 2003-10-24 | 2006-09-21 | Nkt Research & Innovation A/S | An Optical System For Providing Short Laser-Pulses |
US7180657B1 (en) * | 2005-03-17 | 2007-02-20 | Orbits Lightwave, Inc. | Devices using high precision in-fiber atomic frequency reference |
CN101825479A (en) * | 2010-04-15 | 2010-09-08 | 电子科技大学 | Method for manufacturing composite fiber F-P sensor based on self-focusing effect |
US9244218B2 (en) * | 2011-08-10 | 2016-01-26 | Ofs Fitel, Llc | Few moded fiber device employing mode conversion |
CN102680429A (en) * | 2012-05-30 | 2012-09-19 | 四川大学 | Subminiature microcavity gas sensor |
EP2690724A2 (en) * | 2012-07-25 | 2014-01-29 | UAB "Ekspla" | Saturable absorber for fiber laser mode-locking, fiber Bragg grating with a saturable absorption property and mode-locked fiber laser |
CN103311788A (en) * | 2013-06-28 | 2013-09-18 | 厦门大学 | Preparation method of bottle-type optical micro resonant cavity |
CN103441416A (en) * | 2013-08-27 | 2013-12-11 | 北京工业大学 | Liquid saturable absorber mode locking optical fiber laser |
CN103647210A (en) * | 2013-12-13 | 2014-03-19 | 复旦大学 | Gradual change waveguide based graphene saturable absorber and preparation method thereof |
CN104112972A (en) * | 2014-07-24 | 2014-10-22 | 宁波大学 | Chalcogenide glass based spherical micro-cavity laser manufacture method |
CN104733993A (en) * | 2015-04-16 | 2015-06-24 | 西北核技术研究所 | Saturable absorption optical fiber based all-fiber multi-wavelength passive Q-switched laser |
CN104779513A (en) * | 2015-04-30 | 2015-07-15 | 南开大学 | Tunable micro-cavity laser apparatus based on micro-structure optical fiber |
CN104852259A (en) * | 2015-05-22 | 2015-08-19 | 哈尔滨工程大学 | Liquid drop whispering gallery mode laser and manufacturing method thereof |
CN105356208A (en) * | 2015-11-27 | 2016-02-24 | 北京航空航天大学 | Micro-nano fiber laser based on microfiber phase-shifted Bragg grating (MPSBG) |
CN105591273A (en) * | 2016-03-16 | 2016-05-18 | 佛山科学技术学院 | Pulse optical fiber laser and method for realizing time domain pulse slicing by using the same |
CN106374332A (en) * | 2016-11-09 | 2017-02-01 | 南京诺派激光技术有限公司 | Saturable absorption device based on silicon quantum dot thin film and application thereof in fiber pulse laser device |
CN107154576A (en) * | 2017-06-29 | 2017-09-12 | 中国计量大学 | 2 μm of dissipative solitons mode locked fiber lasers based on SMF SIMF GIMF SMF optical fiber structures |
CN107230927A (en) * | 2017-06-29 | 2017-10-03 | 中国计量大学 | 2 μm of mode locked fiber lasers based on SMF SIMF GIMF SMF optical fiber structures |
Non-Patent Citations (2)
Title |
---|
ELHAM NAZEMOSADAT等: "《Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber》", 《JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B OPTICAL PHYSICS》 * |
时菲菲等: "《基于光纤微腔的温度及折射率同时测量型传感器》", 《光子学报》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109616862A (en) * | 2019-02-01 | 2019-04-12 | 长春理工大学 | A Mode-locked Pulsed Fiber Laser Based on SMS Structure |
CN109917510A (en) * | 2019-03-21 | 2019-06-21 | 哈尔滨工程大学 | A Self-Focusing Fiber Array for Integrating Field of View Units |
CN111999815A (en) * | 2020-07-24 | 2020-11-27 | 华南师范大学 | A tunable fiber filter based on few-mode-multi-mode-few-mode structure |
CN111999815B (en) * | 2020-07-24 | 2022-09-30 | 华南师范大学 | A tunable fiber filter based on few-mode-multi-mode-few-mode structure |
CN112563873A (en) * | 2020-11-24 | 2021-03-26 | 华南师范大学 | Solution of high-energy Q-switched mode-locked multimode fiber laser |
CN112563873B (en) * | 2020-11-24 | 2022-04-26 | 华南师范大学 | A kind of preparation method of saturable absorber and multimode fiber laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109616862B (en) | A kind of mode locking pulse optical fiber laser of based on SMS structure | |
CN110768094A (en) | A mode-locked fiber laser based on a tapered multimode fiber saturable absorber | |
CN103414093B (en) | An all-fiber pulsed laser | |
CN108321671A (en) | A kind of passive mode-locking fiber laser based on graded index multimode fiber saturable absorber | |
CN107154576B (en) | 2 μm of dissipative solitons mode locked fiber lasers based on SMF-SIMF-GIMF-SMF optical fiber structure | |
CN109038187A (en) | A kind of tunable wave length graphene oxide mode-locked all fibre mixes thulium laser | |
CN107946893A (en) | The saturable absorber device of gradual change multimode single mode structure based on microcavity built in single mode | |
CN102368584A (en) | Passive mode-locking ultrashort pulse all-fiber laser with waveband of 2.0 microns | |
CN110838670B (en) | Dispersion-controlled all-fiber supercontinuum generation device and application | |
Zhang et al. | All-fiber saturable absorber using nonlinear multimode interference in a chalcogenide fiber | |
CN110277728A (en) | Passively mode-locked fiber laser based on saturable absorber in few-mode fiber | |
CN108011288A (en) | Dispersion management type femtosecond mode locking pulse optical fiber laser based on single-walled carbon nanotube | |
CN105470791A (en) | Space structure optical fiber laser based on two-dimensional nanomaterial mode locking | |
CN103944048A (en) | Femtosecond laser device based on single cladding neodymium optical fibers and ring cavity and manufacturing method | |
CN108390248A (en) | A kind of dual wavelength and tunable wave length passive mode-locking fiber laser | |
CN104733993A (en) | Saturable absorption optical fiber based all-fiber multi-wavelength passive Q-switched laser | |
CN106785844A (en) | A kind of two-dimension nano materials mode-locked all-fiber laser of use mirror structure | |
CN109273972B (en) | An all-fiber femtosecond laser | |
CN116316011A (en) | A state-switchable all-fiber mode-locked laser and its implementation method | |
Rudy et al. | Thulium-doped germanosilicate mode-locked fiber lasers | |
CN105896249A (en) | High-power broadband tunable soliton-self-similar pulse mode-locked fiber laser | |
CN101771236A (en) | Chirped pulse amplification fiber laser system without stretcher | |
CN109361140B (en) | A 2μm Dissipative Soliton Resonant Mode-Locked Fiber Laser | |
CN110112639A (en) | All -fiber mode-locked laser based on the micro-nano fiber polarizer | |
CN114188805A (en) | Space-time mode-locked fiber laser with all-fiber structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180420 |