CN107944194B - 一种基于矢量网络的地形湿度指数模拟方法 - Google Patents

一种基于矢量网络的地形湿度指数模拟方法 Download PDF

Info

Publication number
CN107944194B
CN107944194B CN201711353830.2A CN201711353830A CN107944194B CN 107944194 B CN107944194 B CN 107944194B CN 201711353830 A CN201711353830 A CN 201711353830A CN 107944194 B CN107944194 B CN 107944194B
Authority
CN
China
Prior art keywords
vector network
terrain
index
slope
terrain humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711353830.2A
Other languages
English (en)
Other versions
CN107944194A (zh
Inventor
陈玉敏
吴钱娇
张静祎
陈娒杰
李慧芳
方涛
杨帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201711353830.2A priority Critical patent/CN107944194B/zh
Publication of CN107944194A publication Critical patent/CN107944194A/zh
Application granted granted Critical
Publication of CN107944194B publication Critical patent/CN107944194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于矢量网络的地形湿度指数模拟方法,首先利用DEM生成规则三角面的矢量网络,然后利用三角面网络TFN算法从矢量网络上获取汇水累积量,之后利用一种新算法从矢量网络上获得坡向和坡度,最后将由汇水累积量和坡向计算得到的单位汇水面积SCA和坡度相结合模拟地形湿度指数。本发明不仅提出了一种新的坡向和坡度计算方法,而且将其与TFN算法相结合得到了一种新的地形湿度指数模拟方法,提高了地形湿度指数的模拟精度,保证了土壤湿度的合理分布,满足了实际应用中的精度需求。

Description

一种基于矢量网络的地形湿度指数模拟方法
技术领域
本发明属于数字地形分析技术领域,特别涉及一种基于矢量网络的地形湿度指数模拟方法。
背景技术
Beven和Kirkby(文献1)提出了地形湿度指数,它是一种常用的通过量化汇水累积量和局部地形的坡度来描述土壤湿度和表面饱和度空间分布特征的地形指标。自从地形湿度指数被提出,广泛应用于水文(文献2、3)、农业(文献4、5)、生态(文献6、7)等其他领域(文献8、9)。地形湿度指数的模拟精度在实际应用中是至关重要的且许多研究者仍致力于地形湿度指数模拟精度的提高。
地形湿度指数的模拟主要包括单位汇水面积(SCA)和坡度的模拟。目前用于模拟地形湿度指数中的SCA方法主要包括单流向算法和多流向算法。在单流向算法中,D8算法(文献10)是最常用的算法,该算法是将像元中的所有流量全部流向其周围八个像元中具有最大坡降的一个像元中。Dinf算法(文献11)也是比较常用的算法,它将网格划分成三角面,并将其八个三角面中具有最大坡度的三角面的水流方向视为像元的水流方向。随机八方向算法(Rho8)(文献12)有时也被用于模拟地形湿度指数,该算法是通过随机参数的引入,在周围的八个网格中随机选择水流汇聚的像元点。这些方法简单、高效并且在凹坡面上具有较强的处理优势,但是它们过于简化水流在坡面上的流动情况且未考虑到水流漫散。为了解决这些问题,多流向算法被用于模拟地形湿度指数。最早的FD8算法(文献13)和FMFD算法(文献14)都是根据各自的计算公式分配该网格中的流量到其周围所有的下游网格中的流量。TMFD算法(文献15)是将FD8和Dinf相结合得到的,该算法就是一个考虑了多流向的Dinf算法。相对于单流向算法,这些算法在处理平面或者凸坡面时具有优势,更适用于模拟SCA,尤其是在水流漫散区域,但是流量的精确分配仍然是难题且在平坦地区表现较差。
对于地形湿度指数中的坡度计算方法而言,三阶反距离平方权差分算法(文献16)是最常用的算法,该算法通过计算网格单元到其八个相邻单元在x和y方向上的变化率来获得坡度。该方法简单高效但可能不能较好地描述水流,因为它只考虑了一个单元距离内的下坡地形。为了更好的描述水流情况,Hjerdt等(文献17)提出了通过计算预设的垂直距离与相应的水平移动距离的比例来模拟坡度。但该方法依赖于预设的垂直距离。
另外,还有很多研究者提出了改进的地形湿度指数模拟算法。例如,Yong等(文献18)提出了NMFD算法,该算法改进了计算汇水面积的数学方程并且能更加精确地计算有效等高线长度。另外,该算法还利用TFD算法计算平坦区域的坡度。Qin等(文献19)提出了一种新的地形湿度指数模拟方法,该算法分别利用自适应多流向算法和最大坡降算法模拟SCA和坡度。Ma等(文献20)将地形位置考虑进FD8得到了改进的FD8算法。尽管现在有许多的模拟地形湿度指数方法,但是它们对水流路径确定算法和坡度计算方法的依赖仍是一个关键问题。
现有的发明多数是关于地形湿度指数的应用。例如,史舟等(文献21)提出了一种基于低分辨率卫星遥感数据的环境变量动态筛选建模降尺度方法。它先将由1km分辨率的地形湿度指数、植被指数、数字高程模型、白天地表温、晚上地表温、坡度、坡向、坡长坡度聚合得到的25km分辨率的这8个环境变量因子作为自变量,25km的降水数据作为因变量,然后建立分区的多元回归模型,最后将1km的8个环境变量因子带入回归模型,得到1km的降水数据。最终能够比较准确地预测复杂地区的降水数据。董张玉等(文献22)提出了一种基于NDVI与LSWI相结合的湿度信息提取方法。该发明首先利用经过预处理的遥感数据计算得到NDVI和LSWI(湿度指数),然后建立湿度信息提取的决策模型,最终不受季节限制地实现了湿地信息提取,从而为生态环境的规划和管理等提供支撑依据。冯光胜等(文献23)提出了一种冲洪积扇信息的自动提取方法。该发明通过对遥感提取指数、植被指数和地形湿度指数经过彩色合成的图像进行主成分变换之后得到第一主成分灰度图像并对其进行阈值分割,最终能够更加精确地获得冲洪积扇信息。
通过对以上内容的了解,发现应用中地形湿度指数模拟精度的提高仍至关重要。因此,本发明旨在提出一种基于矢量网络的地形湿度指数模拟方法,提高地形湿度指数的模拟精度,满足实际应用中精度的需求。
文献1.K.J.Beven and M.J.Kirkby,1979.A physically based,variablecontributing area model of basin hydrology[J].Hydrological Sciences Bulletin,24(1),43–69;
文献2.Patricia Rull,2016.Hydrological modeling enhancement using GIS:An improved topographic wetness index for wetland detection[D].Sweden,Stockholm University;
文献3.Pei Tao,Qin Cheng-Zhi,Zhu A-Xing,Yang Lin,Luo Ming,Li Baolinand Zhou Chenghu,2010.Mapping soil organic matter using the topographicwetness index:A comparative study based on different flow-directionalgorithms and Kriging methods[J].Ecological Indicators,10,610-619;
文献4.B.P.Buchanan,M.Fleming,R.L.Schneider,B.K.Richards,J.Archibald,Z.Qiu,and M.T.Walter,2014.Evaluating topographic wetness indices acrosscentral New York agricultural landscapes[J].Hydrology and Earth SystemSciences 18,3279-3299;
文献5.A.Posluschny and K.Lambers,2007.Topographic Wetness Index andPrehistoric Land Use[C].CAA2007-Layers of Perception.Proceedings of the 35thInternational Conference on Computer Applications and Quantitative Methods inArchaeology(CAA),Berlin,Germany,April 2–6,2007;
文献6.A.Petroselli,F.Vessella,L.Cavagnuolo,G.Piovesan and B.Schirone,2013.Ecological behavior of Quercus suber and Quercus ilex inferred bytopographic wetness index(TWI)[J].Trees,27,1201-1215;
文献7.
Figure BDA0001510738170000031
Martin and
Figure BDA0001510738170000032
2010.Using topographicwetness index in vegetation ecology:does the algorithm matter?[J].AppliedVegetation Science,13,450-459;
文献8.M.Sujit,2015.Upslope Contributing Area,Topographic Wetness andLandsliding:A Case study of the Shivkhola Watershed,Darjiling Himalaya[J].International Research Journal of Earth Sciences 3,23-29;
文献9.R.D.Marjerison,H.Dahlke,Z.M.Easton,S.Seifert and M.T.Walter,2011.A Phosphorus Index transport factor based on variable source areahydrology for New York State.Journal of Soil&Water Conservation,66(3),149-157;
文献10.J.F.O’Callaghan and D.M.Mark,1984.The extraction of drainagenetworks from digital elevation data.Computer Vision Graphics Image Process,28,323–344;
文献11.David G.Tarboton,1997.A new method for the determination offlow directions and upslope areas in grid digital elevation models.WaterResources Research,33(2),662-670;
文献12.John Fairfield and Pierre Leymarie,1991.Drainage networks fromgrid digital elevation models.Water Resources Research,27(5),709–717;
文献13.P.Quinn,K.Beven,P.Chevalier and O.Planchon,1991.The predictionof hillslope flow paths for distributed hydrological modeling using digitalterrain models[J].Hydrological Processes,5,59–79;
文献14.T.G.Freeman,1991.Calculating catchment area with divergentflow based on a regular grid[J].Computers&Geosciences,17(3),413-422;
文献15.Jan Seibert and Brain L.Mcglynn,2007.A new triangular multipleflow direction algorithm for computing upslope areas from gridded digitalelevation models[J].Water Resources Research,43(4),306-320;
文献16.P.A.Burrough and R.A.McDonnell,1998.Principles of geographicinformation systems(p.333).New York:Oxford University Press;
文献17.K.N.Hjerdt,J.J.McDonnell,J.Seibert and A.Rodhe,2004.A newtopographic index to quantify downslope controls on local drainage[J].WaterResources Research 40,W05602;
文献18.Bin Yong,Li-Liang Ren,Yang Hong,Jonathan J.Gourley,Xi Chen,You-Jing Zhang,Xiao-Li Yang,Zeng-Xin Zhang and Wei-Guang Wang,2012.A novelmultiple flow direction algorithm for computing the topographic wetness index[J].Hydrology Research,43,135-145;
文献19.Cheng-Zhi Qin,A-Xing Zhu,Tao Pei,Bao-Lin Li,Thomas Scholten,Thorsten Behrens and Cheng-Hu Zhou,2011.An approach to computing topographicwetness index based on maximum downslope gradient[J].Precision Agriculture,12,32-43;
文献20.Ma Jianchao,Lin Guanfa,Chen Junming and Yang Liping,2010.AnImproved Topographic Wetness Index Considering Topographic Position[C].International Conference on Geoinformatics,1-4;
文献21.史舟,马自强,吕志强,刘用.一种基于低分辨率卫星遥感数据的环境变量动态筛选建模降尺度方法:中国,201610307333.8[P].2016-10-12;
文献22.董张玉,王宗明,刘殿伟,任春颖,贾明明,丁智.一种基于NDVI与LSWI相结合的湿地信息提取方法:中国,201310520474.4[P].2014-05-07;
文献23.冯光胜,杨树文,高山,顾湘生,李小和,赵新益,曹柏树.冲洪积扇信息的自动提取方法:中国,201110191094.1[P].2011-11-02.
发明内容
为了解决现有的地形湿度指数模拟算法无法满足实际应用需求中的精度需求问题,本发明提供了一种基于矢量网络的地形湿度指数模拟方法以实现高精度的地形湿度指数模拟。
本发明所采用的技术方案是:一种基于矢量网络的地形湿度指数模拟方法,其特征在于,包括以下步骤:
步骤1:利用DEM生成规则三角面的矢量网络;
步骤2:利用三角面网络TFN算法从矢量网络上获取汇水累积量,计算步骤1中所得到的矢量网络上每个三角面的水流方向,并选取每个三角面的重心为降雨源点,利用TFN算法追踪得到流水线路径,统计每个像元上通过的流水线数量,即是每个像元的汇水累积量;
步骤3:从步骤1中得到的矢量网络上获取坡向和坡度;
步骤4:利用步骤2中得到的汇水累积量和步骤3中得到的坡向计算单位汇水面积SCA;
步骤5:将步骤4中的SCA和步骤3中得到的坡度相结合模拟地形湿度指数。
依照本发明所提供基于矢量网络的地形湿度指数模拟方法,可以高精度地进行地形湿度指数模拟,从而解决现有算法无法满足实际应用中的精度需求问题。因为地形湿度指数是一个重要的复合地形属性,因此本发明特别应用于数字地形分析领域。
附图说明
图1为本发明实施例的流程图;
图2为本发明实施例的利用DEM生成规则三角面的矢量网络原理示意图;
图3为本发明实施例的利用三角面网络(TFN)算法从矢量网络上获取汇水累积量原理示意图;
图4为本发明实施例的利用新算法计算坡向和坡度的原理示意图;
图5为本发明实施例的基于矢量网络的地形湿度指数模拟方法精度评估示意图。
具体实施方法
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细描述,应当理解,此处所描述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
本发明要解决的核心问题是:利用矢量网络上每个三角面恒定的坡度和坡向解决了水流路径的不确定性和计算坡度坡向模型本身的误差问题,从而得到一个高精度的地形湿度指数模拟方法。
请见图1,本发明提供的一种基于矢量网络的地形湿度指数模拟方法,包括以下步骤:
步骤1:利用DEM生成规则三角面的矢量网络;
请见图2,具体实施时,用2x2的窗口将DEM剖分成规则三角面,将4个像元的中心点(假设为①②③④)连接起来形成三角面的公共边。利用双变量立方样条曲面来模拟P点的高程值(假设为a),计算①和③高程的平均值(假设为a1),计算②和④高程的平均值(假设为a2)。如果a1更接近于a,则连接①和③进行剖分,否则连接②和④进行剖分。
步骤2:利用三角面网络(TFN)算法从矢量网络上获取汇水累积量,计算步骤1中所得到的矢量网络上每个三角面的水流方向,并选取每个三角面的重心为降雨源点,利用TFN算法跟踪得到流水线路径,统计每个像元上通过的流水线数量,即是每个像元的汇水累积量;
请见图3,具体实施时,根据步骤1中得到的矢量网络上每个三角面三顶点的坐标值计算每个三角面的坡度和坡向,从而得到每个三角面的水流方向,每个三角面的坡向是三角面的水流方向,坡度表示的是水流长度。在此基础上,选取每个三角面的重心为降雨源点,结合每个三角面的水流方向,利用TFN算法追踪得到从每个降雨源点出发的所有水流路径,统计每个像元上通过的流水线数量。每个像元上经过的水流路径的数量即是每个像元的汇水累积量。更加详细的流水线追踪方法可参见Q.Zhou,P.
Figure BDA0001510738170000074
and Y.Chen,2011.Estimating surface flow paths on a digital elevation model using atriangular facet network[J].Water Resources Research,47(7),1-12。例如,图3中的以P为中心点的像元的汇水累积量即是5。
步骤3:利用新算法从步骤1中得到的矢量网络上获取坡向和坡度;
从矢量网络上获取坡向和坡度的新算法是通过遍历矢量网络上的三角面获得以待求坡向和坡度的像元中心点(假设为S)为顶点的所有三角面(假设为T1,T2,…,Tn,0<n≤8),这些三角面的坡向(假设为α12,...,αn,0<n≤8)和坡度(假设为β12,...,βn,0<n≤8)的平均值即是该像元的坡向(坡度),坡向
Figure BDA0001510738170000071
坡度
Figure BDA0001510738170000072
具体实施步骤如下:
步骤3.1:基于新算法从步骤1中得到的矢量网络上获取坡向;
请见图4,具体实施时,遍历步骤1中的矢量网络上每个三角面,寻找以像元中心点P为顶点的所有三角面,假设是如图4所示的6个三角面(①②③④⑤⑥),根据这6个三角面三个顶点的坐标值计算得到坡向(假设为α123456),那么P点坡向
Figure BDA0001510738170000073
步骤3.2:基于新算法从步骤1中得到的矢量网络上获取坡度。
请见图4,具体实施时,遍历步骤1中的矢量网络上每个三角面,寻找以像元中心点P为顶点的所有三角面,假设是如图4所示的6个三角面(①②③④⑤⑥),根据这6个三角面三个顶点的坐标值计算得到坡度(假设为β123456),那么P点坡度
Figure BDA0001510738170000081
步骤4:利用步骤2中得到的汇水累积量和步骤3中得到的坡向计算单位汇水面积(SCA);
具体实施时,利用步骤2计算得到的汇水累积量(假设为FlowAccum)和步骤3.1计算得到的坡向(假设为α),结合Costa-Cabral和Burges(1994)的公式SCA=FlowAccum*(g/2)/((fabs(cosα)+fabs(sinα)))计算得到SCA,其中g为DEM栅格单元大小。
步骤5:将步骤4中的SCA和步骤3中得到的坡度相结合模拟地形湿度指数。
具体实施时,将步骤4中计算得到的SCA和步骤3.2计算得到的坡度(假设为β),结合Beven和Kirkby(1979)的公式TWI=ln(SCA/tan(β))模拟得到地形湿度指数,其中TWI为地形湿度指数。
请见图5,本实施例对基于矢量网络的地形湿度指数模拟方法的精度进行评估,包括定量评价和定性评价:
定量评价,选择均方根误差(RMSE)为评价指标,与其他常用的地形湿度指数模拟方法进行对比验证基于矢量网络的地形湿度指数模拟方法的精度;
具体实施时,利用Zhou和Liu(2002)提出的四种数学曲面(凸椭球面、凹椭球面、平面和马鞍面)得到不同分辨率(例如1m,5m,10m,20m,…)的DEM,基于数学曲面的表达式分别计算得到不同数学曲面下不同分辨率下的理论地形湿度指数(理论值)。其他常用的地形湿度指数模拟方法:第一种是利用D8算法模拟SCA,利用三阶反距离平方权差分算法计算坡度,从而得到地形湿度指数;第二种方法是利用Dinf算法模拟SCA,利用三阶反距离平方权差分算法计算坡度,从而得到地形湿度指数;第三种方法是利用FD8算法模拟SCA,利用三阶反距离平方权差分算法计算坡度,从而得到地形湿度指数;第四种方法是利用自适应多流向算法模拟SCA,利用最大坡降算法计算坡度,从而得到地形湿度指数。利用这四种常用的地形湿度指数模拟方法和基于矢量网络的地形湿度指数模拟方法分别计算不同数学曲面下不同分辨率下的地形湿度指数(模拟值),计算每种方法在不同数学曲面下不同分辨率下的RMSE进行精度的定量评价。
在实例中,RMSE的计算公式如下:
Figure BDA0001510738170000091
其中,T′i是理论值,Ti是模拟值,n表示像元总数,下标i表示第i单元,该值越小表示模拟精度越高。
定性评价,地形湿度指数空间分布特征作为定性评价参考。
具体实施时,将基于矢量网络的地形湿度指数模拟方法和步骤6.1中四种常用的地形湿度指数模拟方法分别应用于真实的DEM数据,对计算得到的地形湿度指数空间分布特征(例如在河流的干流上会因为水流的汇集地形湿度指数偏高和在干流的周围因为水流的漫散地形湿度指数偏低等其他特征)进行分析从而进行精度的定性评价;如果基于矢量网络的地形湿度指数模拟方法所得到的地形湿度指数在河流干流和支流上相对偏高,在河流干流和支流周围相对偏低,在平坦地区基本相等,那表示基于矢量网络的地形湿度指数模拟方法的模拟精度更高。那是因为水流在河流干流和支流上容易汇聚使得地形湿度指数相当偏高;水流在河流干流和支流周围容易散漫使得地形湿度指数相对偏低;水流在平坦区域分布比较均匀使得地形湿度指数基本相等。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的描述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (4)

1.一种基于矢量网络的地形湿度指数模拟方法,其特征在于,包括以下步骤:
步骤1:利用DEM生成规则三角面的矢量网络;
步骤2:利用三角面网络TFN算法从矢量网络上获取汇水累积量,计算步骤1中所得到的矢量网络上每个三角面的水流方向,并选取每个三角面的重心为降雨源点,利用TFN算法追踪得到流水线路径,统计每个像元上通过的流水线数量,即是每个像元的汇水累积量;
步骤3:从步骤1中得到的矢量网络上获取坡向和坡度;
其中,通过遍历步骤1得到的矢量网络获得以待求坡向的像元中心点为顶点的所有三角面,这些三角面的坡向的平均值即是该像元的坡向;
其中,通过遍历步骤1得到的矢量网络获得以待求坡度的像元中心点为顶点的所有三角面,这些三角面的坡度的平均值即是该像元的坡度;
步骤4:利用步骤2中得到的汇水累积量和步骤3中得到的坡向计算单位汇水面积SCA;
SCA=FlowAccum*(g/2)/((fabs(cosα)+fabs(sinα)));
其中,FlowAccum为步骤2中得到的汇水累积量,α为步骤3中得到的坡向,g为DEM栅格单元大小;
步骤5:将步骤4中的SCA和步骤3中得到的坡度相结合模拟地形湿度TWI指数;
TWI=ln(SCA/tan(β));
其中,β为步骤3中得到的坡度。
2.根据权利要求1所述的基于矢量网络的地形湿度指数模拟方法,其特征在于:步骤6中,对地形湿度指数的精度评估,包括定量评价和定性评价;
所述定量评价,是选择均方根误差RMSE为评价指标,与其他地形湿度指数模拟方法进行对比验证基于矢量网络的地形湿度指数模拟方法的精度;
所述定性评价,是将地形湿度指数空间分布特征作为评价参考。
3.根据权利要求2所述的基于矢量网络的地形湿度指数模拟方法,其特征在于:所述的定量评价,是利用理论数学曲面得到不同分辨率的DEM,基于数学曲面的表达式计算不同曲面不同分辨率的理论地形湿度指数,将其与步骤5中计算的地形湿度指数和其他算法计算的比较地形湿度指数进行比较,计算不同数学曲面下不同分辨率下的均方根误差RMSE;RMSE值越小表示模拟精度越高。
4.根据权利要求2所述的基于矢量网络的地形湿度指数模拟方法,其特征在于:所述的定性评价,是将基于矢量网络的地形湿度指数模拟方法和其他方法分别应用于真实的DEM数据,通过对地形湿度指数空间分布特征的分析进行精度的定性评价。
CN201711353830.2A 2017-12-15 2017-12-15 一种基于矢量网络的地形湿度指数模拟方法 Active CN107944194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711353830.2A CN107944194B (zh) 2017-12-15 2017-12-15 一种基于矢量网络的地形湿度指数模拟方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711353830.2A CN107944194B (zh) 2017-12-15 2017-12-15 一种基于矢量网络的地形湿度指数模拟方法

Publications (2)

Publication Number Publication Date
CN107944194A CN107944194A (zh) 2018-04-20
CN107944194B true CN107944194B (zh) 2020-07-10

Family

ID=61943549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711353830.2A Active CN107944194B (zh) 2017-12-15 2017-12-15 一种基于矢量网络的地形湿度指数模拟方法

Country Status (1)

Country Link
CN (1) CN107944194B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102122395A (zh) * 2011-01-31 2011-07-13 武汉大学 一种保持地形特征的自适应尺度dem建模方法
CN102508961A (zh) * 2010-12-16 2012-06-20 南京大学 一种高分辨率的全分布式水文模型topx的设计方法
CN102722909A (zh) * 2012-05-28 2012-10-10 武汉大学 一种基于自适应尺度dem的流水线拓扑网络动态模拟方法
CN103236086A (zh) * 2013-04-24 2013-08-07 武汉大学 一种顾及地表水文上下文的多尺度dem建模方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9726782B2 (en) * 2012-11-30 2017-08-08 International Business Machines Corporation Methods, systems and computer program storage devices for generating a response to flooding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102508961A (zh) * 2010-12-16 2012-06-20 南京大学 一种高分辨率的全分布式水文模型topx的设计方法
CN102122395A (zh) * 2011-01-31 2011-07-13 武汉大学 一种保持地形特征的自适应尺度dem建模方法
CN102722909A (zh) * 2012-05-28 2012-10-10 武汉大学 一种基于自适应尺度dem的流水线拓扑网络动态模拟方法
CN103236086A (zh) * 2013-04-24 2013-08-07 武汉大学 一种顾及地表水文上下文的多尺度dem建模方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
流域土壤侵蚀评价地形指标体系及提取方法;李新艳;《中国优秀硕士学位论文全文数据库基础科学辑》;20141015(第10期);A008-21 *

Also Published As

Publication number Publication date
CN107944194A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
Liu et al. Mapping high resolution national soil information grids of China
Liu et al. High-resolution and three-dimensional mapping of soil texture of China
Liang et al. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China
Wei et al. Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China
Dai et al. Effects of DEM resolution on the accuracy of gully maps in loess hilly areas
CN110222911B (zh) 一种卫星遥感与地面数据协同的雨量站网优化布局方法
Gopinath et al. Automated extraction of watershed boundary and drainage network from SRTM and comparison with Survey of India toposheet
Xiong et al. Geomorphological inheritance for loess landform evolution in a severe soil erosion region of Loess Plateau of China based on digital elevation models
CN105354832B (zh) 一种山区卫星影像自动配准到地理底图上的方法
Bera et al. Mapping and monitoring of land use dynamics with their change hotspot in North 24-Parganas district, India: a geospatial-and statistical-based approach
Wen et al. Mapping soil organic carbon using auxiliary environmental covariates in a typical watershed in the Loess Plateau of China: a comparative study based on three kriging methods and a soil land inference model (SoLIM)
Wang et al. The isotropic organization of DEM structure and extraction of valley lines using hexagonal grid
Pathak et al. Assessment of annual water-balance models for diverse Indian watersheds
Gong et al. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images
Kumar et al. A multi-layer perceptron–Markov chain based LULC change analysis and prediction using remote sensing data in Prayagraj district, India
Eghrari et al. Land Subsidence Susceptibility Mapping Using Machine Learning Algorithms
Zheng et al. Extraction of impervious surface with Landsat based on machine learning in Chengdu urban, China
Sun et al. Deep learning for check dam area extraction with optical images and digital elevation model: A case study in the hilly and gully regions of the Loess Plateau, China
CN107944194B (zh) 一种基于矢量网络的地形湿度指数模拟方法
Rosli et al. Sustainable urban forestry potential based quantitative and qualitative measurement using geospatial technique
CN104809336A (zh) 一种考虑空间相关性的区域要素抽样方法
Kemal Determination of basin characteristics by using geographical information systems (GIS)
CN111178372B (zh) 基于遥感影像和地形数据的大区域尺度黄土塬面提取方法
Cheng et al. Clustering gully profiles for investigating the spatial variation in landform formation on the Chinese Loess Plateau
Wu et al. Simulations of spatial patterns and species distributions in sandy land using unmanned aerial vehicle images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant