CN107944181A - A kind of volume of traffic conversion method of aircraft loads and cement concrete road surface characteristic - Google Patents

A kind of volume of traffic conversion method of aircraft loads and cement concrete road surface characteristic Download PDF

Info

Publication number
CN107944181A
CN107944181A CN201711295551.5A CN201711295551A CN107944181A CN 107944181 A CN107944181 A CN 107944181A CN 201711295551 A CN201711295551 A CN 201711295551A CN 107944181 A CN107944181 A CN 107944181A
Authority
CN
China
Prior art keywords
mrow
msub
msup
mfrac
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711295551.5A
Other languages
Chinese (zh)
Inventor
翁兴中
寇雅楠
谢宇晨
郑飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Force Engineering University of PLA
Original Assignee
Air Force Engineering University of PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Force Engineering University of PLA filed Critical Air Force Engineering University of PLA
Priority to CN201711295551.5A priority Critical patent/CN107944181A/en
Publication of CN107944181A publication Critical patent/CN107944181A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)

Abstract

本发明公开了一种飞机荷载和水泥混凝土道面特性的交通量换算方法,其特征在于,包括以下步骤:步骤1、飞机荷载应力σp的确定,进而确定拟换算飞机荷载应力σp1,以及设计飞机荷载应力σp2;步骤2、水泥混凝土道面板疲劳方程确定,进而确定拟换算飞机作用下的水泥混凝土道面板疲劳方程,以及设计飞机作用下的水泥混凝土道面板疲劳方程;步骤3、交通量换算公式的确定。本发明解决在某一交通量组合时,采用不同飞机作为设计飞机进行飞机之间的交通量换算,由换算所得到设计飞机的交通量进行道面板厚度计算时导致板厚不一致的问题,保证交通换算符合交通量换算原则和换算结果的正确性。步骤简单、设计合理、实现方便、使用效果好。

The invention discloses a traffic conversion method for aircraft load and cement concrete pavement characteristics, which is characterized in that it comprises the following steps: step 1, determining the aircraft load stress σ p , and then determining the aircraft load stress σ p1 to be converted, and Design aircraft load stress σ p2 ; Step 2, determine the fatigue equation of the cement concrete pavement, and then determine the fatigue equation of the cement concrete pavement under the action of the aircraft to be converted, and the fatigue equation of the cement concrete pavement under the action of the design aircraft; Step 3, traffic Determination of the volume conversion formula. The invention solves the problem of inconsistency in plate thickness when the traffic volume of the designed aircraft obtained from the conversion is used to calculate the thickness of the road panel when different aircraft are used as the design aircraft for traffic volume conversion between aircrafts in a certain traffic volume combination, ensuring traffic The conversion conforms to the traffic volume conversion principle and the correctness of the conversion results. The steps are simple, the design is reasonable, the realization is convenient, and the use effect is good.

Description

一种飞机荷载和水泥混凝土道面特性的交通量换算方法A traffic volume conversion method for aircraft loads and cement concrete pavement characteristics

技术领域technical field

本发明涉及水泥混凝土道面结构设计技术领域,尤其涉及一种飞机荷载和水泥混凝土道面特性的交通量换算方法。The invention relates to the technical field of cement concrete pavement structural design, in particular to a method for converting aircraft load and traffic volume of cement concrete pavement characteristics.

背景技术Background technique

目前,国内外机场水泥混凝土交通量换算方法主要有美国联邦航空局(FAA)、国际民航组织的方法。这些方法在进行不同飞机之间的交通量换算时,在交通量换算公式中只有飞机荷载特性的参数,没有道面结构的参数,即只考虑了飞机荷载特性对交通量的作用,没有考虑水泥混凝土道面结构参数对交通量的作用,结果是:采用不同飞机作为设计飞机进行交通量换算时,计算出的道面板厚度是不一样的。由此无法判定计算结果的正确性,也不符合交通量换算原则中对于某一交通组合,不论以何种飞机作为设计飞机,进行飞机的交通量换算,由换算所得到的设计飞机作用次数计算出的道面结构厚度是相同所做的规定。因此,是一种不准确的交通量换算方法。At present, the conversion methods of cement concrete traffic volume at domestic and foreign airports mainly include the methods of the US Federal Aviation Administration (FAA) and the International Civil Aviation Organization. When these methods convert the traffic volume between different aircraft, there are only parameters of the aircraft load characteristics in the traffic volume conversion formula, and no parameters of the pavement structure, that is, only the effect of the aircraft load characteristics on the traffic volume is considered, and the cement is not considered. The effect of concrete pavement structure parameters on traffic volume, the result is: when using different aircraft as the design aircraft for traffic volume conversion, the calculated pavement slab thickness is not the same. Therefore, it is impossible to determine the correctness of the calculation results, and it does not conform to the principle of traffic volume conversion. For a certain traffic combination, no matter what kind of aircraft is used as the design aircraft, the traffic volume conversion of the aircraft is carried out, and the calculation of the number of times of the design aircraft is calculated based on the conversion. The pavement structure thickness is the same as that specified. Therefore, it is an inaccurate traffic volume conversion method.

发明内容Contents of the invention

有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种飞机荷载和水泥混凝土道面特性的交通量换算方法,解决在某一交通量组合时,采用不同飞机作为设计飞机进行飞机之间的交通量换算,由换算所得到设计飞机的交通量进行道面板厚度计算时导致板厚不一致的问题,保证交通换算符合交通量换算原则和换算结果的正确性。In view of the above-mentioned defects in the prior art, the technical problem to be solved by the present invention is to provide a traffic volume conversion method for aircraft load and cement concrete pavement characteristics, to solve the problem of using different aircraft as the design aircraft for a certain traffic volume combination. For the conversion of traffic volume between aircrafts, when the traffic volume of the designed aircraft obtained from the conversion is used to calculate the thickness of the road panel, the problem of plate thickness inconsistency is caused, so as to ensure that the traffic conversion conforms to the principle of traffic volume conversion and the correctness of the conversion results.

为实现上述目的,本发明提供了一种飞机荷载和水泥混凝土道面特性的交通量换算方法,包括以下步骤:To achieve the above object, the invention provides a traffic conversion method of aircraft load and cement concrete pavement characteristics, comprising the following steps:

步骤1、飞机荷载应力σp的确定,进而确定拟换算飞机荷载应力σp1,以及设计飞机荷载应力σp2Step 1. Determination of the aircraft load stress σ p , and then determine the aircraft load stress σ p1 to be converted and the design aircraft load stress σ p2 ;

步骤2、水泥混凝土道面板疲劳方程确定,进而确定拟换算飞机作用下的水泥混凝土道面板疲劳方程,以及设计飞机作用下的水泥混凝土道面板疲劳方程;Step 2, determining the fatigue equation of the cement concrete pavement, and then determining the fatigue equation of the cement concrete pavement under the action of the aircraft to be converted, and the fatigue equation of the cement concrete pavement under the action of the design aircraft;

步骤3、交通量换算公式的确定。Step 3. Determination of the traffic volume conversion formula.

进一步地,所述步骤1具体为:Further, the step 1 is specifically:

飞机起落架荷载在道面板纵缝边缘中点可以用下面公式进行计算:The aircraft landing gear load at the midpoint of the edge of the longitudinal joint of the pavement can be calculated by the following formula:

单轮起落架:Single wheel landing gear:

K=1 (2)K=1 (2)

双轮起落架:Two-wheel landing gear:

双轮双轴起落架Two-wheel twin-axle landing gear

式中:σp—最大荷载应力,MPa;where: σ p — maximum load stress, MPa;

h—面层板厚度,m;h—thickness of the surface layer, m;

r—荷载圆半径,m;r—the radius of the load circle, m;

p—考虑动力影响后一个机轮上的荷载,kN;p—the load on one wheel after considering the dynamic influence, kN;

q—胎压,MPa;q—tire pressure, MPa;

Tw—接缝传荷系数,当荷载作用在纵缝边缘时,为纵缝传荷系数TwxT w —joint load transfer coefficient, when the load acts on the edge of the longitudinal joint, it is the longitudinal joint load transfer coefficient T wx ;

Ec—水泥混凝土弹性模量,MPa;E c — modulus of elasticity of cement concrete, MPa;

Et—基层顶面当量回弹模量,MPa;E t —Equivalent rebound modulus of the top surface of the base layer, MPa;

R1—双轮荷载的轮距,m;R 1 — wheel base of double wheel load, m;

R2—双轴双轮荷载的轴距,m;R 2 —wheelbase of double-axle and double-wheel load, m;

K—荷载圆半径修正系数;K—load circle radius correction factor;

拟换算飞机主起落架产生的荷载应力σp1为:The load stress σ p1 produced by the main landing gear of the aircraft to be converted is:

式中:K1—拟换算飞机的荷载圆半径修正系数,按拟换算飞机主起落架的构型选择式(2)、(3)和(4)中的一个进行计算;In the formula: K 1 —the load circle radius correction factor of the aircraft to be converted, which is calculated according to the configuration of the main landing gear of the aircraft to be converted and selected from formulas (2), (3) and (4);

q1、r1—拟换算飞机主起落架荷载圆胎压(MPa)和荷载圆半径(m);q 1 , r 1 —the load circle tire pressure (MPa) and load circle radius (m) of the aircraft main landing gear to be converted;

设计飞机主起落架产生的荷载应力σp2为:The load stress σ p2 generated by the design aircraft main landing gear is:

式中:K2—设计飞机的荷载圆半径修正系数,按设计飞机主起落架的构型选择式(2)、(3)和(4)中的一个进行计算;In the formula: K 2 —the correction coefficient of the radius of the load circle of the designed aircraft, which shall be calculated according to the configuration of the main landing gear of the designed aircraft by selecting one of formulas (2), (3) and (4);

q2、r2—设计飞机主起落架荷载圆胎压(MPa)和荷载圆半径(m)。q 2 , r 2 —Design aircraft main landing gear load circle tire pressure (MPa) and load circle radius (m).

进一步地,所述步骤2具体为:Further, the step 2 is specifically:

考虑飞机荷载和温度共同作用下的水泥混凝土道面板的疲劳应力,当考虑荷载与温度共同作用时,疲劳方程需要采用双应力的疲劳方程,即考虑荷载和温度的作用,其疲劳方程形式为:Considering the fatigue stress of the cement concrete pavement under the joint action of aircraft load and temperature, when the joint action of load and temperature is considered, the fatigue equation needs to adopt the fatigue equation of double stress, that is, the effect of load and temperature is considered, and the form of the fatigue equation is:

式中:σp—飞机荷载作用在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p —the maximum stress produced by the aircraft load acting on the midpoint of the edge of the longitudinal joint of the pavement slab, MPa;

σtr—道面板纵缝边缘中点温度翘曲疲劳应力,MPa;σ tr —warping fatigue stress at the middle point temperature of the longitudinal seam edge of the panel, MPa;

N—荷载重复作用次数;N—the number of repetitions of the load;

fr—水泥混凝土的设计弯拉强度,MPa;f r —design flexural tensile strength of cement concrete, MPa;

a,b—回归系数;a, b—regression coefficient;

根据实测参数,通过校准分析得到了疲劳方程的回归系数值,a=1.25,b=0.024,则疲劳方程为:According to the measured parameters, the regression coefficient value of the fatigue equation is obtained through calibration analysis, a=1.25, b=0.024, then the fatigue equation is:

对于拟换算飞机主起落架产生的应力所对应的疲劳方程为:The fatigue equation corresponding to the stress generated by the main landing gear of the aircraft to be converted is:

lgσp1-lg(frtr)=lg1.25-0.024lgN1(10)lgσ p1 -lg(f rtr )=lg1.25-0.024lgN 1 (10)

式中:σp1—拟换算飞机主起落架在荷载在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p1 — the maximum stress produced by the main landing gear of the aircraft to be converted at the midpoint of the load at the edge of the longitudinal joint of the road deck, MPa;

N1—拟换算飞机的重复作用次数;N 1 —the number of repetitions of the aircraft to be converted;

对于设计飞机主起落架产生的应力所对应的疲劳方程为:The fatigue equation corresponding to the stress produced by the main landing gear of the designed aircraft is:

lgσp2-lg(frtr)=lg1.25-0.024lgN2 (11)lgσ p2 -lg(f rtr )=lg1.25-0.024lgN 2 (11)

式中:σp2—设计飞机主起落架在荷载在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p2 — the maximum stress produced by the main landing gear of the designed aircraft at the midpoint of the longitudinal joint edge of the runway slab when the load is applied, MPa;

N2—设计飞机的重复作用次数。N 2 —Number of repetitions of the designed aircraft.

进一步地,所述式(10)减去式(11),可得Further, subtracting formula (11) from formula (10), we can get

lgσp1-lgσp2=-0.024(lgN1-lgN2)(12)lgσ p1 -lgσ p2 = -0.024(lgN 1 -lgN 2 )(12)

由式(12)可得:From formula (12) can get:

式(5)除以式(6),可得Formula (5) divided by formula (6), we can get

将式(13)代入式(14)中,可得:Substituting formula (13) into formula (14), we can get:

which is

可以定义为不同起落架构型的换算系数,这样,通过式(17)就可以将拟换算飞机的重复作用次数(交通量)换算成设计飞机的重复作用次数(交通量);can be defined is the conversion coefficient of different landing gear configurations, so that the number of repeated actions (traffic volume) of the aircraft to be converted can be converted into the number of repeated actions (traffic volume) of the designed aircraft through formula (17);

该换算公式中的包括了式(2)、(3)和(4)中水泥混凝土道面的板厚h、水泥混凝土弹性模量Ec和基层顶面当量回弹模量Et,充分反映水泥混凝土道面结构特性对交通量换算的影响。In this conversion formula Including the slab thickness h of the cement concrete pavement in formulas (2), (3) and (4), the cement concrete elastic modulus E c and the equivalent rebound modulus E t of the top surface of the base, fully reflecting the cement concrete pavement structure Influence of characteristics on traffic volume conversion.

本发明的有益效果是:The beneficial effects of the present invention are:

本发明解决在某一交通量组合时,采用不同飞机作为设计飞机进行飞机之间的交通量换算,由换算所得到设计飞机的交通量进行道面板厚度计算时导致板厚不一致的问题,保证交通换算符合交通量换算原则和换算结果的正确性。步骤简单、设计合理、实现方便、使用效果好。The invention solves the problem of inconsistency in plate thickness when the traffic volume of the designed aircraft obtained from the conversion is used to calculate the thickness of the road panel when different aircraft are used as the design aircraft to convert the traffic volume between the aircraft when a certain traffic volume combination is used to ensure traffic. The conversion conforms to the traffic volume conversion principle and the correctness of the conversion results. The steps are simple, the design is reasonable, the realization is convenient, and the use effect is good.

以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。The idea, specific structure and technical effects of the present invention will be further described below in conjunction with the accompanying drawings, so as to fully understand the purpose, features and effects of the present invention.

附图说明Description of drawings

图1为本发明的方法流程框图。Fig. 1 is a flow chart of the method of the present invention.

图2为单轮起落架时机场水泥混凝土道面板的荷载应力计算示意图。Figure 2 is a schematic diagram of the load stress calculation of the airport cement concrete pavement when the single-wheel landing gear is used.

图3为双轮起落架时机场水泥混凝土道面板的荷载应力计算示意图。Figure 3 is a schematic diagram of the load stress calculation of the airport cement concrete pavement when the two-wheel landing gear is used.

图4为双轴双轮起落架时机场水泥混凝土道面板的荷载应力计算示意图。Figure 4 is a schematic diagram of the load stress calculation of the cement concrete pavement of the airport when the landing gear is double-axle and double-wheeled.

具体实施方式Detailed ways

如图2、3、4,分别为单轮起落架、双轮起落架、双轴双轮起落架飞机情形下水泥混凝土道面板的荷载应力计算示意图,施工机场道面由素水泥混凝土组成的道面,道面板1为矩形水泥混凝土板,道面板1之间的连接为各种接缝形式,飞机主起落架的形式分别为单轮、双轮和双轴双轮,道面板1在飞机荷载作用下产生最大应力的位置为道面板1的纵缝边缘中点,飞机主起落架的机轮2接地面积为圆形。a为道面板的宽度,b为道面板的长度,r为荷载圆的半径,R1为双轮起落架(或双轴双轮起落架的轮距),R2为双轴双轮起落架的轴距。As shown in Figures 2, 3, and 4, they are the schematic diagrams of the load stress calculation of the cement concrete pavement in the case of single-wheel landing gear, double-wheel landing gear, and double-axle double-wheel landing gear aircraft. The construction airport pavement is composed of plain cement concrete. On the surface, the road panel 1 is a rectangular cement concrete slab, and the connection between the road panels 1 is in various joint forms. The position where the maximum stress is generated under the action is the midpoint of the edge of the longitudinal seam of the road panel 1, and the ground contact area of the wheel 2 of the main landing gear of the aircraft is circular. a is the width of the track panel, b is the length of the track panel, r is the radius of the load circle, R 1 is the twin-axle landing gear (or the track of the twin-axle twin-wheel landing gear), R 2 is the twin-axle twin-wheel landing gear wheelbase.

如图1所示,本发明的计算方法包括以下步骤:As shown in Figure 1, calculation method of the present invention comprises the following steps:

步骤一、最不利荷载位置飞机荷载应力计算:Step 1. Calculation of aircraft load stress at the most unfavorable load position:

飞机起落架荷载在道面板纵缝边缘中点可以用下面公式进行计算。The aircraft landing gear load at the midpoint of the edge of the longitudinal joint of the pavement can be calculated by the following formula.

单轮起落架:Single wheel landing gear:

K=1 (2)K=1 (2)

双轮起落架:Two-wheel landing gear:

双轮双轴起落架Two-wheel twin-axle landing gear

式中:σp—最大荷载应力,MPa;where: σ p — maximum load stress, MPa;

h—面层板厚度,m;h—thickness of the surface layer, m;

r—荷载圆半径,m;r—the radius of the load circle, m;

p—考虑动力影响后一个机轮上的荷载,kN;p—the load on one wheel after considering the dynamic influence, kN;

q—胎压,MPa;q—tire pressure, MPa;

Tw—接缝传荷系数,当荷载作用在纵缝边缘时,为纵缝传荷系数TwxT w —joint load transfer coefficient, when the load acts on the edge of the longitudinal joint, it is the longitudinal joint load transfer coefficient T wx ;

Ec—水泥混凝土弹性模量,MPa;E c — modulus of elasticity of cement concrete, MPa;

Et—基层顶面当量回弹模量,MPa;E t —Equivalent rebound modulus of the top surface of the base layer, MPa;

R1—双轮荷载的轮距,m;R 1 — wheel base of double wheel load, m;

R2—双轴双轮荷载的轴距,m;R 2 —wheelbase of double-axle and double-wheel load, m;

K—荷载圆半径修正系数。K—the load circle radius correction factor.

拟换算飞机主起落架产生的荷载应力σp1为:The load stress σ p1 produced by the main landing gear of the aircraft to be converted is:

式中:K1—拟换算飞机的荷载圆半径修正系数,按拟换算飞机主起落架的构型选择式(2)、(3)和(4)中的一个进行计算;In the formula: K 1 —the load circle radius correction factor of the aircraft to be converted, which is calculated according to the configuration of the main landing gear of the aircraft to be converted and selected from formulas (2), (3) and (4);

q1、r1—拟换算飞机主起落架荷载圆胎压(MPa)和荷载圆半径(m)。q 1 , r 1 —the load circle tire pressure (MPa) and load circle radius (m) of the aircraft main landing gear to be converted.

设计飞机主起落架产生的荷载应力σp2为:The load stress σ p2 generated by the design aircraft main landing gear is:

式中:K2—设计飞机的荷载圆半径修正系数,按设计飞机主起落架的构型选择式(2)、(3)和(4)中的一个进行计算;In the formula: K 2 —the correction coefficient of the radius of the load circle of the designed aircraft, which shall be calculated according to the configuration of the main landing gear of the designed aircraft by selecting one of formulas (2), (3) and (4);

q2、r2—设计飞机主起落架荷载圆胎压(MPa)和荷载圆半径(m)。q 2 , r 2 —Design aircraft main landing gear load circle tire pressure (MPa) and load circle radius (m).

步骤二、水泥混凝土道面板疲劳方程建立:Step 2, establishment of cement concrete pavement fatigue equation:

由于机场水泥混凝土道面在承受飞机荷载作用的同时,还承受温度变化引起的道面板的应力。因此,需要考虑飞机荷载和温度共同作用下的水泥混凝土道面板的疲劳应力。当考虑荷载与温度共同作用时,疲劳方程需要采用双应力的疲劳方程,即考虑荷载和温度的作用,其疲劳方程形式为:As the airport cement concrete pavement bears the load of the aircraft, it also bears the stress of the pavement slab caused by temperature changes. Therefore, the fatigue stress of the cement concrete pavement slab under the combined action of aircraft load and temperature needs to be considered. When considering the joint action of load and temperature, the fatigue equation needs to adopt the fatigue equation of double stress, that is, considering the effect of load and temperature, the form of the fatigue equation is:

式中:σp—飞机荷载作用在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p —the maximum stress produced by the aircraft load acting on the midpoint of the edge of the longitudinal joint of the pavement slab, MPa;

σtr—道面板纵缝边缘中点温度翘曲疲劳应力,MPa;σ tr —warping fatigue stress at the middle point temperature of the longitudinal seam edge of the panel, MPa;

N—荷载重复作用次数;N—the number of repetitions of the load;

fr—水泥混凝土的设计弯拉强度,MPa;f r —design flexural tensile strength of cement concrete, MPa;

a,b—回归系数。a, b—regression coefficient.

在对国内39个军用机场水泥混凝土道面的结构参数进行大量实测。根据实测参数,通过校准分析得到了疲劳方程的回归系数值,a=1.25,b=0.024,则疲劳方程为:A large number of actual measurements have been made on the structural parameters of the cement concrete pavement of 39 military airports in China. According to the measured parameters, the regression coefficient value of the fatigue equation is obtained through calibration analysis, a=1.25, b=0.024, then the fatigue equation is:

对于拟换算飞机主起落架产生的应力所对应的疲劳方程为:The fatigue equation corresponding to the stress generated by the main landing gear of the aircraft to be converted is:

lgσp1-lg(frtr)=lg1.25-0.024lgN1 (10)lgσ p1 -lg(f rtr )=lg1.25-0.024lgN 1 (10)

式中:σp1—拟换算飞机主起落架在荷载在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p1 — the maximum stress produced by the main landing gear of the aircraft to be converted at the midpoint of the load at the edge of the longitudinal joint of the road deck, MPa;

N1—拟换算飞机的重复作用次数;N 1 —the number of repetitions of the aircraft to be converted;

对于设计飞机主起落架产生的应力所对应的疲劳方程为:The fatigue equation corresponding to the stress produced by the main landing gear of the designed aircraft is:

lgσp2-lg(frtr)=lg1.25-0.024lgN2 (11)lgσ p2 -lg(f rtr )=lg1.25-0.024lgN 2 (11)

式中:σp2—设计飞机主起落架在荷载在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p2 — the maximum stress produced by the main landing gear of the designed aircraft at the midpoint of the longitudinal joint edge of the runway slab when the load is applied, MPa;

N2—设计飞机的重复作用次数。N 2 —Number of repetitions of the designed aircraft.

步骤三、交通量换算公式的建立:Step 3. Establishment of traffic volume conversion formula:

式(10)减去式(11),可得Subtracting formula (11) from formula (10), we can get

lgσp1-lgσp2=-0.024(lgN1-lgN2) (12)lgσ p1 -lgσ p2 =-0.024(lgN 1 -lgN 2 ) (12)

由式(12)可得:From formula (12) can get:

式(5)除以式(6),可得Formula (5) divided by formula (6), we can get

将式(13)代入式(14)中,可得:Substituting formula (13) into formula (14), we can get:

which is

可以定义为不同起落架构型的换算系数,这样,通过式(17)就可以将拟换算飞机的重复作用次数(交通量)换算成设计飞机的重复作用次数(交通量)。can be defined is the conversion coefficient of different landing gear configurations, so that the number of repeated actions (traffic volume) of the aircraft to be converted can be converted into the number of repeated actions (traffic volume) of the designed aircraft through formula (17).

该换算公式中的包括了式(2)、(3)和(4)中水泥混凝土道面的板厚h、水泥混凝土弹性模量Ec和基层顶面当量回弹模量Et,充分反映水泥混凝土道面结构特性对交通量换算的影响。In this conversion formula Including the slab thickness h of the cement concrete pavement in formulas (2), (3) and (4), the cement concrete elastic modulus E c and the equivalent rebound modulus E t of the top surface of the base, fully reflecting the cement concrete pavement structure Influence of characteristics on traffic volume conversion.

式(17)建立的交通量换算公式中除包括飞机荷载特性参数q1、r1,q2、r2和R1、R2外,还包含了道面结构参数h、Ec和Et;克服了以往国内外机场水泥混凝土道面交通量换算方法中交通量计算公式只有飞机荷载特性参数,而没有道面结构参数等,因此,解决了因缺乏道面结构参数所带来的交通量换算导致道面结构计算厚度不一致的问题。经过计算表明,本发明所建立的交通量换算方法,在混合交通中,无论采用那种飞机作为设计飞机,所得到的道面板设计厚度是相同的,符合了交通量换算的原则,证明了交通量换算方法的正确性。同时,得到的设计结果是唯一性,也证明了设计结果的正确性。In addition to the aircraft load characteristic parameters q 1 , r 1 , q 2 , r 2 and R 1 , R 2 , the traffic volume conversion formula established by formula (17) also includes pavement structure parameters h, E c and E t ; It overcomes the traffic volume calculation formula in the previous domestic and foreign airport cement concrete pavement traffic volume conversion methods, which only have aircraft load characteristic parameters, but no pavement structure parameters, etc. Therefore, it solves the traffic volume caused by the lack of pavement structure parameters The conversion leads to the problem of inconsistency in the calculated thickness of the pavement structure. Show through calculating, the traffic volume conversion method that the present invention establishes, in mixed traffic, no matter adopt that kind of aircraft as design aircraft, the obtained road slab design thickness is the same, has met the principle of traffic volume conversion, has proved traffic The correctness of the quantity conversion method. At the same time, the obtained design result is unique, which also proves the correctness of the design result.

以下结合具体实施例说明本发明的方法:The method of the present invention is illustrated below in conjunction with specific examples:

公路自然区划II区拟建一个三级机场,主要供A型飞机使用,其次是供B型飞机和C型飞机使用。以上三种飞机的年平均运行次数分别为16500、4000、900。道面设计使用年限为35年。基层顶面当量回弹模量为100MPa。混凝土28d龄期弯拉强度σs=5.0MPa,弯拉弹性模量Ec=36000MPa。道面板的平面尺寸为5×5m。道面板纵向为企口缝,接缝传荷系数twx=0.65;横向为假缝,接缝传荷系数twy=0.65。试计算该道面厚度。各个飞机的计算参数如表1所示:A third-level airport is planned to be built in the II area of the natural division of the highway, mainly for A-type aircraft, followed by B-type and C-type aircraft. The average annual operating times of the above three types of aircraft are 16,500, 4,000, and 900, respectively. The pavement design service life is 35 years. The equivalent elastic modulus of the top surface of the base layer is 100MPa. The flexural and tensile strength of concrete at 28d age σ s =5.0MPa, and the flexural and tensile elastic modulus E c =36000MPa. The plane size of the road panel is 5×5m. The road panel is longitudinally grooved and grooved, and the joint load transfer coefficient t wx = 0.65; the transverse direction is a false seam, and the joint load transfer coefficient t wy = 0.65. Try to calculate the pavement thickness. The calculation parameters of each aircraft are shown in Table 1:

表1飞机的计算参数汇总表Table 1 Summary table of calculation parameters of the aircraft

以A型飞机作为设计飞机Taking Type A aircraft as the design aircraft

1、初估道面板厚度为0.257m1. The thickness of the road panel is initially estimated to be 0.257m

2、计算各个飞机的年重复作用次数Ni 2. Calculate the annual repetition times N i of each aircraft

对于A型机,For type A machine,

其中轮胎等效宽度B=8.3A0.5用确定。Among them, the tire equivalent width B=8.3A 0.5 is determined by using.

对于B型飞机for type B aircraft

3、计算各个飞机的荷载应力修正系数3. Calculate the load stress correction factor of each aircraft

K2=1K 2 =1

以A型飞机作为设计飞机,其余两种飞机转化成A型飞机的作用次数Taking A-type aircraft as the design aircraft, the number of actions for the other two types of aircraft to be transformed into A-type aircraft

4、计算在使用年限内设计飞机的累计重复作用次数Ne 4. Calculate the cumulative number of repetitive actions N e of the designed aircraft within the service life

Ne=(N1+N21+N31)×30=(3188+76+13214000)*30=396517920N e =(N 1 +N 21 +N 31 )×30=(3188+76+13214000)*30=396517920

5、荷载疲劳应力5. Load fatigue stress

经计算,设计飞机荷载作用的临界荷位为纵缝中点,其在临界荷位处产生的荷载应力计算为:After calculation, the critical load position of the designed aircraft load is the midpoint of the longitudinal joint, and the load stress generated at the critical load position is calculated as:

考虑设计基准期内荷载应力累计疲劳作用的疲劳应力系数Fatigue stress factor considering the cumulative fatigue effect of load stress within the design reference period

kf=0.8Ne 0.024=0.8×3965179200.024=1.2866k f =0.8N e 0.024 =0.8×396517920 0.024 =1.2866

荷载疲劳应力计算为The fatigue stress under load is calculated as

σpr=kfσp=1.2886×2.3374=3.0074MPaσ pr =k f σ p =1.2886×2.3374=3.0074MPa

6.温度疲劳应力6. Temperature fatigue stress

公路自然区划II区最大温度梯度取88(℃/m)。普通混凝土面层的相对刚度半径计算为:The maximum temperature gradient in Zone II of the highway natural division is 88 (°C/m). The relative stiffness radius of ordinary concrete surface is calculated as:

根据板长5m,l/r0=5/0.971=5.15,h=0.257m,由《军用机场水泥混凝土道面设计规范》(GJB1278A-2009)图8.3.3,查得Bx=0.5223。最大温度梯度时混凝土板的温度翘曲应力计算为According to the slab length of 5m, l/r 0 =5/0.971=5.15, h=0.257m, from Figure 8.3.3 of "Code for Design of Cement Concrete Pavements of Military Airports" (GJB1278A-2009), B x = 0.5223. The temperature warping stress of the concrete slab at the maximum temperature gradient is calculated as

按照公路自然区划II,查《军用机场水泥混凝土道面设计规范》(GJB1278A-2009)中表8.3.3-1得,a=0.828、b=0.041、c=1.323,温度疲劳应力系数ktq,计算为According to the highway natural zoning II, check Table 8.3.3-1 in "Code for Design of Cement Concrete Pavement of Military Airports" (GJB1278A-2009), a=0.828, b=0.041, c=1.323, temperature fatigue stress coefficient k tq , calculated as

计算温度疲劳应力为Calculate the temperature fatigue stress as

σtqr=ktqσtqm=0.532×2.13=1.13MPaσ tqr = k tq σ tqm =0.532×2.13=1.13MPa

三级机场的安全等级为一级,相应于一级安全等级的变异水平等级为低级,目标可靠度为95%。再据查得的目标可靠度和变异水平等级,查表确定可靠度系数为γr=1.20。The safety level of the third-level airport is first-level, the variation level corresponding to the first-level safety level is low level, and the target reliability is 95%. According to the obtained target reliability and variation level grades, the reliability coefficient is determined to be γ r =1.20 by looking up the table.

γrprtqr)=1.20×(3.00+1.13)=4.96MPa≤fr=5.0MPaγ rprtqr )=1.20×(3.00+1.13)=4.96MPa≤f r =5.0MPa

因而,所选普通混凝土面层厚度(0.257m)可以承受设计基准期内荷载应力和温度应力的综合疲劳作用。Therefore, the thickness of the selected ordinary concrete surface layer (0.257m) can bear the comprehensive fatigue effect of load stress and temperature stress within the design reference period.

当以其它两种飞机分别进行设计时,其计算结果如表2所示。When the other two aircraft are designed separately, the calculation results are shown in Table 2.

表2交通量换算计算结果Table 2 Calculation results of traffic volume conversion

从表2可以看到以不同飞机进行设计时,其计算出的设计板厚是一样的,说明本文建立的交通量换算关系是正确的。It can be seen from Table 2 that when different aircraft are used for design, the calculated design plate thickness is the same, which shows that the traffic volume conversion relationship established in this paper is correct.

以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。The preferred specific embodiments of the present invention have been described in detail above. It should be understood that those skilled in the art can make many modifications and changes according to the concept of the present invention without creative efforts. Therefore, all technical solutions that can be obtained by those skilled in the art based on the concept of the present invention through logical analysis, reasoning or limited experiments on the basis of the prior art shall be within the scope of protection defined by the claims.

Claims (4)

1.一种飞机荷载和水泥混凝土道面特性的交通量换算方法,其特征在于,包括以下步骤:1. a traffic conversion method of aircraft load and cement concrete pavement characteristics, is characterized in that, comprises the following steps: 步骤1、飞机荷载应力σp的确定,进而确定拟换算飞机荷载应力σp1,以及设计飞机荷载应力σp2Step 1. Determination of the aircraft load stress σ p , and then determine the aircraft load stress σ p1 to be converted and the design aircraft load stress σ p2 ; 步骤2、水泥混凝土道面板疲劳方程确定,进而确定拟换算飞机作用下的水泥混凝土道面板疲劳方程,以及设计飞机作用下的水泥混凝土道面板疲劳方程;Step 2, determining the fatigue equation of the cement concrete pavement, and then determining the fatigue equation of the cement concrete pavement under the action of the aircraft to be converted, and the fatigue equation of the cement concrete pavement under the action of the design aircraft; 步骤3、交通量换算公式的确定。Step 3. Determination of the traffic volume conversion formula. 2.如权利要求1所述的一种飞机荷载和水泥混凝土道面特性的交通量换算方法,其特征在于,所述步骤1具体为:2. the traffic conversion method of a kind of aircraft load and cement concrete pavement characteristic as claimed in claim 1, it is characterized in that, described step 1 is specifically: 飞机起落架荷载在道面板纵缝边缘中点可以用下面公式进行计算:The aircraft landing gear load at the midpoint of the edge of the longitudinal joint of the pavement can be calculated by the following formula: <mrow> <msub> <mi>&amp;sigma;</mi> <mi>p</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>5.2059</mn> <mo>-</mo> <mn>2.0984</mn> <msub> <mi>T</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>E</mi> <mi>c</mi> </msub> <msub> <mi>E</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>0.0715</mn> </msup> <msup> <mrow> <mo>(</mo> <mi>K</mi> <mi>r</mi> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <msup> <mi>qh</mi> <mrow> <mo>-</mo> <mn>1.3692</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;sigma;</mi><mi>p</mi></msub><mo>=</mo><mrow><mo>(</mo><mn>5.2059</mn><mo>-</mo><mn>2.0984</mn><msub><mi>T</mi><mi>w</mi></msub><mo>)</mo></mrow><msup><mrow><mo>(</mo><mfrac><msub><mi>E</mi><mi>c</mi></msub><msub><mi>E</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mn>0.0715</mn></msup><msup><mrow><mo>(</mo><mi>K</mi><mi>r</mi><mo>)</mo></mrow><mn>1.7114</mn></msup><msup><mi>qh</mi><mrow><mo>-</mo><mn>1.3692</mn></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 单轮起落架:Single wheel landing gear: K=1 (2)K=1 (2) 双轮起落架:Two-wheel landing gear: <mrow> <mi>K</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>0.1236</mn> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>E</mi> <mi>c</mi> </msub> <msub> <mi>E</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>0.0235</mn> </mrow> </msup> <msup> <mi>h</mi> <mn>0.2664</mn> </msup> <msubsup> <mi>R</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>1.1291</mn> </mrow> </msubsup> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>0.0454</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>K</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>0.1236</mn><msup><mrow><mo>(</mo><mfrac><msub><mi>E</mi><mi>c</mi></msub><msub><mi>E</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mrow><mo>-</mo><mn>0.0235</mn></mrow></msup><msup><mi>h</mi><mn>0.2664</mn></msup><msubsup><mi>R</mi><mn>1</mn><mrow><mo>-</mo><mn>1.1291</mn></mrow></msubsup><msup><mi>r</mi><mrow><mo>-</mo><mn>0.0454</mn></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 双轮双轴起落架Two-wheel twin-axle landing gear <mrow> <mtable> <mtr> <mtd> <mrow> <mi>K</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mn>0.0073</mn> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>E</mi> <mi>c</mi> </msub> <msub> <mi>E</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>0.0271</mn> </mrow> </msup> <msup> <mi>h</mi> <mn>0.2290</mn> </msup> <msubsup> <mi>R</mi> <mn>1</mn> <mrow> <mo>-</mo> <mn>0.5565</mn> </mrow> </msubsup> <msup> <mi>r</mi> <mrow> <mo>-</mo> <mn>2.0625</mn> </mrow> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>0.0845</mn> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>E</mi> <mi>c</mi> </msub> <msub> <mi>E</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>0.0067</mn> </msup> <msup> <mi>h</mi> <mrow> <mo>-</mo> <mn>0.0147</mn> </mrow> </msup> <msubsup> <mi>R</mi> <mn>1</mn> <mn>0.3109</mn> </msubsup> <msubsup> <mi>R</mi> <mn>2</mn> <mn>0.4165</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><mi>K</mi><mo>=</mo><mn>1</mn><mo>+</mo><mn>0.0073</mn><msup><mrow><mo>(</mo><mfrac><msub><mi>E</mi><mi>c</mi></msub><msub><mi>E</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mrow><mo>-</mo><mn>0.0271</mn></mrow></msup><msup><mi>h</mi><mn>0.2290</mn></msup><msubsup><mi>R</mi><mn>1</mn><mrow><mo>-</mo><mn>0.5565</mn></mrow></msubsup><msup><mi>r</mi><mrow><mo>-</mo><mn>2.0625</mn></mrow></msup></mrow></mtd></mtr><mtr><mtd><mrow><mo>-</mo><mn>0.0845</mn><msup><mrow><mo>(</mo><mfrac><msub><mi>E</mi><mi>c</mi></msub><msub><mi>E</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mn>0.0067</mn></msup><msup><mi>h</mi><mrow><mo>-</mo><mn>0.0147</mn></mrow></msup><msubsup><mi>R</mi><mn>1</mn><mn>0.3109</mn></msubsup><msubsup><mi>R</mi><mn>2</mn><mn>0.4165</mn></msubsup></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow> 式中:σp—最大荷载应力,MPa;where: σ p — maximum load stress, MPa; h—面层板厚度,m;h—thickness of the surface layer, m; r—荷载圆半径,m;r—the radius of the load circle, m; p—考虑动力影响后一个机轮上的荷载,kN;p—the load on one wheel after considering the dynamic influence, kN; q—胎压,MPa;q—tire pressure, MPa; Tw—接缝传荷系数,当荷载作用在纵缝边缘时,为纵缝传荷系数TwxT w —joint load transfer coefficient, when the load acts on the edge of the longitudinal joint, it is the longitudinal joint load transfer coefficient T wx ; Ec—水泥混凝土弹性模量,MPa;E c — modulus of elasticity of cement concrete, MPa; Et—基层顶面当量回弹模量,MPa;E t —Equivalent rebound modulus of the top surface of the base layer, MPa; R1—双轮荷载的轮距,m;R 1 — wheel base of double wheel load, m; R2—双轴双轮荷载的轴距,m;R 2 —wheelbase of double-axle and double-wheel load, m; K—荷载圆半径修正系数;K—load circle radius correction factor; 拟换算飞机主起落架产生的荷载应力σp1为:The load stress σ p1 produced by the main landing gear of the aircraft to be converted is: <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>5.2059</mn> <mo>-</mo> <mn>2.0984</mn> <msub> <mi>t</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>E</mi> <mi>c</mi> </msub> <msub> <mi>E</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>0.0715</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <msub> <mi>q</mi> <mn>1</mn> </msub> <msup> <msub> <mi>r</mi> <mn>1</mn> </msub> <mrow> <mo>-</mo> <mn>1.3692</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;sigma;</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><mn>5.2059</mn><mo>-</mo><mn>2.0984</mn><msub><mi>t</mi><mi>w</mi></msub><mo>)</mo></mrow><msup><mrow><mo>(</mo><mfrac><msub><mi>E</mi><mi>c</mi></msub><msub><mi>E</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mn>0.0715</mn></msup><msup><mrow><mo>(</mo><msub><mi>K</mi><mn>1</mn></msub><msub><mi>r</mi><mn>1</mn></msub><mo>)</mo></mrow><mn>1.7114</mn></msup><msub><mi>q</mi><mn>1</mn></msub><msup><msub><mi>r</mi><mn>1</mn></msub><mrow><mo>-</mo><mn>1.3692</mn></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 式中:K1—拟换算飞机的荷载圆半径修正系数,按拟换算飞机主起落架的构型选择式(2)、(3)和(4)中的一个进行计算;In the formula: K 1 —the load circle radius correction factor of the aircraft to be converted, which is calculated according to the configuration of the main landing gear of the aircraft to be converted and selected from formulas (2), (3) and (4); q1、r1—拟换算飞机主起落架荷载圆胎压(MPa)和荷载圆半径(m);q 1 , r 1 —the load circle tire pressure (MPa) and load circle radius (m) of the aircraft main landing gear to be converted; 设计飞机主起落架产生的荷载应力σp2为:The load stress σ p2 generated by the design aircraft main landing gear is: <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mrow> <mo>(</mo> <mn>5.2059</mn> <mo>-</mo> <mn>2.0984</mn> <msub> <mi>t</mi> <mi>w</mi> </msub> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>E</mi> <mi>c</mi> </msub> <msub> <mi>E</mi> <mi>t</mi> </msub> </mfrac> <mo>)</mo> </mrow> <mn>0.0715</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <msub> <mi>q</mi> <mn>2</mn> </msub> <msup> <msub> <mi>r</mi> <mn>2</mn> </msub> <mrow> <mo>-</mo> <mn>1.3692</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;sigma;</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub><mo>=</mo><mrow><mo>(</mo><mn>5.2059</mn><mo>-</mo><mn>2.0984</mn><msub><mi>t</mi><mi>w</mi></msub><mo>)</mo></mrow><msup><mrow><mo>(</mo><mfrac><msub><mi>E</mi><mi>c</mi></msub><msub><mi>E</mi><mi>t</mi></msub></mfrac><mo>)</mo></mrow><mn>0.0715</mn></msup><msup><mrow><mo>(</mo><msub><mi>K</mi><mn>2</mn></msub><msub><mi>r</mi><mn>2</mn></msub><mo>)</mo></mrow><mn>1.7114</mn></msup><msub><mi>q</mi><mn>2</mn></msub><msup><msub><mi>r</mi><mn>2</mn></msub><mrow><mo>-</mo><mn>1.3692</mn></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 式中:K2—设计飞机的荷载圆半径修正系数,按设计飞机主起落架的构型选择式(2)、(3)和(4)中的一个进行计算;In the formula: K 2 —the load circle radius correction factor of the designed aircraft, which is calculated according to the configuration of the main landing gear of the designed aircraft by selecting one of formulas (2), (3) and (4); q2、r2—设计飞机主起落架荷载圆胎压(MPa)和荷载圆半径(m)。q 2 , r 2 —Design aircraft main landing gear load circle tire pressure (MPa) and load circle radius (m). 3.如权利要求2所述的一种飞机荷载和水泥混凝土道面特性的交通量换算方法,其特征在于:3. the traffic conversion method of a kind of aircraft load and cement concrete pavement characteristic as claimed in claim 2, it is characterized in that: 考虑飞机荷载和温度共同作用下的水泥混凝土道面板的疲劳应力,当考虑荷载与温度共同作用时,疲劳方程需要采用双应力的疲劳方程,即考虑荷载和温度的作用,其疲劳方程形式为:Considering the fatigue stress of the cement concrete pavement under the joint action of aircraft load and temperature, when the joint action of load and temperature is considered, the fatigue equation needs to adopt the fatigue equation of double stress, that is, the effect of load and temperature is considered, and the form of the fatigue equation is: <mrow> <mi>lg</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;sigma;</mi> <mi>P</mi> </msub> <mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>t</mi> <mi>r</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mi>lg</mi> <mi> </mi> <mi>a</mi> <mo>-</mo> <mi>b</mi> <mi> </mi> <mi>lg</mi> <mi> </mi> <msub> <mi>N</mi> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>lg</mi><mrow><mo>(</mo><mfrac><msub><mi>&amp;sigma;</mi><mi>P</mi></msub><mrow><msub><mi>f</mi><mi>r</mi></msub><mo>-</mo><msub><mi>&amp;sigma;</mi><mrow><mi>t</mi><mi>r</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>=</mo><mi>lg</mi><mi></mi><mi>a</mi><mo>-</mo><mi>b</mi><mi></mi><mi>lg</mi><mi></mi><msub><mi>N</mi><mi>e</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow> 式中:σp—飞机荷载作用在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p —the maximum stress produced by the aircraft load acting on the midpoint of the edge of the longitudinal joint of the pavement slab, MPa; σtr—道面板纵缝边缘中点温度翘曲疲劳应力,MPa;σ tr —warping fatigue stress at the middle point temperature of the longitudinal seam edge of the panel, MPa; N—荷载重复作用次数;N—the number of repetitions of the load; fr—水泥混凝土的设计弯拉强度,MPa;f r —design flexural tensile strength of cement concrete, MPa; a,b—回归系数;a, b—regression coefficient; 根据实测参数,通过校准分析得到了疲劳方程的回归系数值,a=1.25,b=0.024,则疲劳方程为:According to the measured parameters, the regression coefficient value of the fatigue equation is obtained through calibration analysis, a=1.25, b=0.024, then the fatigue equation is: <mrow> <mi>lg</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;sigma;</mi> <mi>p</mi> </msub> <mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>t</mi> <mi>r</mi> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mi>lg</mi> <mn>1.25</mn> <mo>-</mo> <mn>0.024</mn> <mi>lg</mi> <mi> </mi> <mi>N</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>lg</mi><mrow><mo>(</mo><mfrac><msub><mi>&amp;sigma;</mi><mi>p</mi></msub><mrow><msub><mi>f</mi><mi>r</mi></msub><mo>-</mo><msub><mi>&amp;sigma;</mi><mrow><mi>t</mi><mi>r</mi></mrow></msub></mrow></mfrac><mo>)</mo></mrow><mo>=</mo><mi>lg</mi><mn>1.25</mn><mo>-</mo><mn>0.024</mn><mi>lg</mi><mi></mi><mi>N</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mo>mn><mo>)</mo></mrow></mrow> 对于拟换算飞机主起落架产生的应力所对应的疲劳方程为:The fatigue equation corresponding to the stress generated by the main landing gear of the aircraft to be converted is: lgσp1-lg(frtr)=lg1.25-0.024lg N1 (10)lgσ p1 -lg(f rtr )=lg1.25-0.024lg N 1 (10) 式中:σp1—拟换算飞机主起落架在荷载在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p1 — the maximum stress produced by the main landing gear of the aircraft to be converted at the midpoint of the load at the edge of the longitudinal joint of the road deck, MPa; N1—拟换算飞机的重复作用次数;N 1 —the number of repetitions of the aircraft to be converted; 对于设计飞机主起落架产生的应力所对应的疲劳方程为:The fatigue equation corresponding to the stress produced by the main landing gear of the designed aircraft is: lgσp2-lg(frtr)=lg1.25-0.024lg N2 (11)lgσ p2 -lg(f rtr )=lg1.25-0.024lg N 2 (11) 式中:σp2—设计飞机主起落架在荷载在道面板纵缝边缘中点产生的最大应力,MPa;In the formula: σ p2 — the maximum stress produced by the main landing gear of the designed aircraft at the midpoint of the longitudinal joint edge of the runway slab when the load is applied, MPa; N2—设计飞机的重复作用次数。N 2 —Number of repetitions of the designed aircraft. 4.如权利要求3所述的一种飞机荷载和水泥混凝土道面特性的交通量换算方法,其特征在于:4. the traffic conversion method of a kind of aircraft load and cement concrete pavement characteristic as claimed in claim 3, it is characterized in that: 所述式(10)减去式(11),可得The formula (10) minus the formula (11) can be obtained lgσp1-lgσp2=-0.024(lg N1-lg N2) (12)lgσ p1 -lgσ p2 =-0.024(lg N 1 -lg N 2 ) (12) 由式(12)可得:From formula (12) can get: <mrow> <mfrac> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>N</mi> <mn>1</mn> </msub> <msub> <mi>N</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>0.024</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfrac><msub><mi>&amp;sigma;</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub><msub><mi>&amp;sigma;</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mfrac><mo>=</mo><msup><mrow><mo>(</mo><mfrac><msub><mi>N</mi><mn>1</mn></msub><msub><mi>N</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mrow><mo>-</mo><mn>0.024</mn></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>13</mn><mo>)</mo></mrow></mrow> 式(5)除以式(6),可得Formula (5) divided by formula (6), we can get <mrow> <mfrac> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <msub> <mi>q</mi> <mn>1</mn> </msub> </mrow> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <msub> <mi>q</mi> <mn>2</mn> </msub> </mrow> </mfrac> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>K</mi> <mn>1</mn> </msub> <msub> <mi>K</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>r</mi> <mn>1</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <mfrac> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfrac><msub><mi>&amp;sigma;</mi><mrow><mi>p</mi><mn>1</mn></mrow></msub><msub><mi>&amp;sigma;</mi><mrow><mi>p</mi><mn>2</mn></mrow></msub></mfrac><mo>=</mo><mfrac><mrow><msup><mrow><mo>(</mo><msub><mi>K</mi><mn>1</mn></msub><msub><mi>r</mi><mn>1</mn></msub><mo>)</mo></mrow><mn>1.7114</mn></msup><msub><mi>q</mi><mn>1</mn></msub></mrow><mrow><msup><mrow><mo>(</mo><msub><mi>K</mi><mn>2</mn></msub><msub><mi>r</mi><mn>2</mn></msub><mo>)</mo></mrow><mn>1.7114</mn></msup><msub><mi>q</mi><mn>2</mn></msub></mrow></mfrac><mo>=</mo><msup><mrow><mo>(</mo><mfrac><msub><mi>K</mi><mn>1</mn></msub><msub><mi>K</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>1.7114</mn></msup><msup><mrow><mo>(</mo><mfrac><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>1.7114</mn></msup><mfrac><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>14</mn><mo>)</mo></mrow></mrow> 将式(13)代入式(14)中,可得:Substituting formula (13) into formula (14), we can get: <mrow> <mfrac> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mfrac> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>K</mi> <mn>1</mn> </msub> <msub> <mi>K</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>r</mi> <mn>1</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>1.7114</mn> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>N</mi> <mn>1</mn> </msub> <msub> <mi>N</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>0.024</mn> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfrac><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mfrac><msup><mrow><mo>(</mo><mfrac><msub><mi>K</mi><mn>1</mn></msub><msub><mi>K</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>1.7114</mn></msup><msup><mrow><mo>(</mo><mfrac><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>1.7114</mn></msup><mo>=</mo><msup><mrow><mo>(</mo><mfrac><msub><mi>N</mi><mn>1</mn></msub><msub><mi>N</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mrow><mo>-</mo><mn>0.024</mn></mrow></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>15</mn><mo>)</mo></mrow></mrow> <mrow> <mfrac> <msub> <mi>N</mi> <mn>2</mn> </msub> <msub> <mi>N</mi> <mn>1</mn> </msub> </mfrac> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>K</mi> <mn>1</mn> </msub> <msub> <mi>K</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>71.31</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>r</mi> <mn>1</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>71.31</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>41.67</mn> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfrac><msub><mi>N</mi><mn>2</mn></msub><msub><mi>N</mi><mn>1</mn></msub></mfrac><mo>=</mo><msup><mrow><mo>(</mo><mfrac><msub><mi>K</mi><mn>1</mn></msub><msub><mi>K</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>71.31</mn></msup><msup><mrow><mo>(</mo><mfrac><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>71.31</mn></msup><msup><mrow><mo>(</mo><mfrac><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>41.67</mn></msup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mrow> which is <mrow> <msub> <mi>N</mi> <mn>2</mn> </msub> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>K</mi> <mn>1</mn> </msub> <msub> <mi>K</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>71.31</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>r</mi> <mn>1</mn> </msub> <msub> <mi>r</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>71.31</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> </mfrac> <mo>)</mo> </mrow> <mn>41.67</mn> </msup> <msub> <mi>N</mi> <mn>1</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>N</mi><mn>2</mn></msub><mo>=</mo><msup><mrow><mo>(</mo><mfrac><msub><mi>K</mi><mn>1</mn></msub><msub><mi>K</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>71.31</mn></msup><msup><mrow><mo>(</mo><mfrac><msub><mi>r</mi><mn>1</mn></msub><msub><mi>r</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>71.31</mn></msup><msup><mrow><mo>(</mo><mfrac><msub><mi>q</mi><mn>1</mn></msub><msub><mi>q</mi><mn>2</mn></msub></mfrac><mo>)</mo></mrow><mn>41.67</mn></msup><msub><mi>N</mi><mn>1</mn></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>17</mn><mo>)</mo></mrow></mrow> 可以定义为不同起落架构型的换算系数,这样,通过式(17)就可以将拟换算飞机的重复作用次数(交通量)换算成设计飞机的重复作用次数(交通量);can be defined is the conversion coefficient of different landing gear configurations, so that the number of repeated actions (traffic volume) of the aircraft to be converted can be converted into the number of repeated actions (traffic volume) of the designed aircraft through formula (17); 该换算公式中的包括了式(2)、(3)和(4)中水泥混凝土道面的板厚h、水泥混凝土弹性模量Ec和基层顶面当量回弹模量Et,充分反映水泥混凝土道面结构特性对交通量换算的影响。In this conversion formula Including the cement concrete pavement slab thickness h, cement concrete elastic modulus E c and base layer top surface equivalent rebound modulus E t in formulas (2), (3) and (4), fully reflecting the cement concrete pavement structure Influence of characteristics on traffic volume conversion.
CN201711295551.5A 2017-12-08 2017-12-08 A kind of volume of traffic conversion method of aircraft loads and cement concrete road surface characteristic Pending CN107944181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711295551.5A CN107944181A (en) 2017-12-08 2017-12-08 A kind of volume of traffic conversion method of aircraft loads and cement concrete road surface characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711295551.5A CN107944181A (en) 2017-12-08 2017-12-08 A kind of volume of traffic conversion method of aircraft loads and cement concrete road surface characteristic

Publications (1)

Publication Number Publication Date
CN107944181A true CN107944181A (en) 2018-04-20

Family

ID=61946242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711295551.5A Pending CN107944181A (en) 2017-12-08 2017-12-08 A kind of volume of traffic conversion method of aircraft loads and cement concrete road surface characteristic

Country Status (1)

Country Link
CN (1) CN107944181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109684678A (en) * 2018-12-04 2019-04-26 中国航空工业集团公司西安飞机设计研究所 Full machine fatigue test multi-wheel and multi-support undercarriage fatigue load optimized treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823948A (en) * 2014-03-14 2014-05-28 中国人民解放军空军工程大学 Design method for preventing buckling deformation of cement concrete pavement slabs of airport
CN107341312A (en) * 2017-07-10 2017-11-10 中国人民解放军空军工程大学 A kind of highway runway asphalt pavement design method based on load Equivalent Conversion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103823948A (en) * 2014-03-14 2014-05-28 中国人民解放军空军工程大学 Design method for preventing buckling deformation of cement concrete pavement slabs of airport
CN107341312A (en) * 2017-07-10 2017-11-10 中国人民解放军空军工程大学 A kind of highway runway asphalt pavement design method based on load Equivalent Conversion

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
孙廷选 等: "《水泥混凝土路面设计与施工技术》", 31 August 2005, 黄河水利出版社 *
梁峰: "高性能路面混凝土配合比设计及路用性能研究", 《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅱ辑》 *
翁兴中 等: "军用机场沥青混凝土道面交通量换算", 《公路》 *
翁兴中 等: "军用机场沥青混凝土道面设计方法", 《交通运输工程学报》 *
翁兴中 等: "基于起落架构型的沥青道面交通量换算", 《空军工程大学学报(自然科学版)》 *
郑木莲 等: "多孔混凝土疲劳性能的研究", 《中国公路学报》 *
郑飞 等: "飞机荷载下水泥混凝土道面板应力计算方法", 《交通运输工程学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109684678A (en) * 2018-12-04 2019-04-26 中国航空工业集团公司西安飞机设计研究所 Full machine fatigue test multi-wheel and multi-support undercarriage fatigue load optimized treatment method

Similar Documents

Publication Publication Date Title
De Beer et al. Determination of pneumatic tyre/pavement interface contact stresses under moving loads and some effects on pavements with thin asphalt surfacing layers
CN109991098A (en) An on-site static load test evaluation method for reconstructed hollow slab girder bridges
Caglayan et al. Evaluation of a steel railway bridge for dynamic and seismic loads
CN106844937B (en) With structure-integrated cement stabilizing crushing gravel base or underlayment design method
CN107341312A (en) A kind of highway runway asphalt pavement design method based on load Equivalent Conversion
CN103544402B (en) A kind of building method of fatigue cracking structure equivalent analysis spectrum
CN107944181A (en) A kind of volume of traffic conversion method of aircraft loads and cement concrete road surface characteristic
Zhou et al. Incorporating the unevenness of lane truck loading into fatigue load modeling of multi-lane bridges
Khattak et al. Performance of preventive maintenance treatments of flexible pavements
CN102041760B (en) System and method for repairing asphalt pavement
CN206887667U (en) Roadbed based on prefabricated member collapses repair system
Unluoglu et al. Stress distribution in a railroad track at the Crosstie–Ballast interface
Chajes et al. Load rating of arch bridges
CN116484661A (en) Single cement concrete pavement slab void state early warning method
CN104264560B (en) The method of discrimination of the flexible pavement scope of application under a kind of overload condition
CN205711599U (en) A kind of highway cement concrete pavement lithotripsy in situ regenerated road surface structure
Evangelista et al. Is Top-Down Cracking Critical On Airfield Rigid Pavements?
CN204738217U (en) Bridge
Wu et al. Structural overlay design of flexible pavement by nondestructive test methods in Louisiana
CN118821569A (en) A PCR technology assessment method, device and storage medium for airport rigid pavement
CN204715192U (en) A kind of bridge
CN108345724A (en) A kind of optimum design method of tramcar embedded tracks road structure
Le et al. Comparison of the Serviceability Performance of Deflection Criteria for Conventional and High Performance Bridges
Al-Mansour et al. Analysis of current truck tire pressure levels and their effects on Highway pavements in Saudi Arabia
CN106758614A (en) A kind of complete intercommunicating overpass of crossroad

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180420

RJ01 Rejection of invention patent application after publication