CN107944178A - A kind of simulation accelerating model of modularization DC/DC converters - Google Patents

A kind of simulation accelerating model of modularization DC/DC converters Download PDF

Info

Publication number
CN107944178A
CN107944178A CN201711290692.8A CN201711290692A CN107944178A CN 107944178 A CN107944178 A CN 107944178A CN 201711290692 A CN201711290692 A CN 201711290692A CN 107944178 A CN107944178 A CN 107944178A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
submodule
simulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711290692.8A
Other languages
Chinese (zh)
Other versions
CN107944178B (en
Inventor
尹瑞
张保瑞
任素龙
王利杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hebei Electric Power Co Ltd
State Grid Hebei Energy Technology Service Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Hebei Electric Power Co Ltd
State Grid Hebei Energy Technology Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Hebei Electric Power Co Ltd, State Grid Hebei Energy Technology Service Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201711290692.8A priority Critical patent/CN107944178B/en
Publication of CN107944178A publication Critical patent/CN107944178A/en
Application granted granted Critical
Publication of CN107944178B publication Critical patent/CN107944178B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention discloses a kind of simulation accelerating model of modularization DC/DC converters.Modularization DC/DC converters byNA submodule(LLC resonant converter)Connection in series-parallel forms.The simulation accelerating model by computer program module andNA sub- module-external circuit is formed, and the internal circuit of submodule is equivalent to the mathematical model of four groups of discretizations and is write using Fortran language among computer program module.The present invention is suitable for carrying out the modularization DC/DC converters containing a large amount of submodules the occasion of electromagnetic transient simulation, compared with initial simulation model, can pole run time is greatly reduced, and there is higher simulation accuracy.

Description

A kind of simulation accelerating model of modularization DC/DC converters
Technical field
The invention belongs to power system modeling and emulation field, and in particular to a kind of emulation of modularization DC/DC converters Raise speed model.
Background technology
In general, to meet the capacity of electric system and voltage requirements, modularization DC/DC converters may be needed by up to a hundred Submodule forms, and contains substantial amounts of switching device in these submodules, and in order to reduce the volume of isolating transformer and Weight, submodule switching device in the block will be operate in medium-high frequency state.
PSCAD/EMTDC first will seek the bus admittance matrix of its analogue system when carrying out electromagnetic transient simulation It is inverse, and then solve the electrical quantity of each node.
Due to including extensive work in modularization DC/DC converters in the switching device of medium-high frequency state, in simulation process In, PSCAD/EMTDC needs frequently to invert to high-order bus admittance matrix, causes simulation time needed for it far beyond can The scope of receiving.
The above problem is essentially the power system simulation model optimization problem comprising power electronic equipment, such to solve Problem, a kind of circuit model split plot design is proposed in some documents, and this method can ensure initial simulation model simulation accuracy On the premise of, by the way that the bus admittance matrix of a high-order to be decomposed into the bus admittance matrix of several low orders, greatly improve The speed that bus admittance matrix is inverted, so as to accelerate the simulation velocity of simulation model.
However as application of a large amount of power electronic equipments in electric system, in some application scenarios, even if using electricity Road model split plot design is improved initial simulation model, and the simulation velocity of simulation model is still difficult to meet the requirements.
Therefore, it is necessary to the simulation model of modularization DC/DC converters is further optimized, in order to the conversion Further in-depth study is unfolded in device.
The content of the invention
Present invention aim to address modularization DC/DC converters initial simulation model simulation velocity it is excessively slow the problem of, And provide a kind of simulation accelerating model of modularization DC/DC converters.
The simulation accelerating model of the present invention is especially suitable for carrying out the modularization DC/DC converters containing a large amount of submodules The occasion of electromagnetic transient simulation, compared with initial simulation model, can pole be greatly reduced run time, and with higher Simulation accuracy.
The purpose of the present invention is what is be achieved through the following technical solutions:
Modularization DC/DC converters are made of N number of submodule (LLC resonant converter) connection in series-parallel.It is corresponding, it is proposed that A kind of simulation accelerating model of modularization DC/DC converters.
The simulation accelerating model of modularization DC/DC converters proposed by the invention is by computer program module and N number of son Module-external circuit forms, and the internal circuit of submodule is equivalent to four groups of discrete mathematical models and utilizes Fortran language Write among the computer simulation program in computer program module.
The submodule of the modularization DC/DC converters is LLC resonant converter, the connection mode of its N number of submodule Including but not limited to the series connection of input side series connection outlet side, the parallel connection of input side series connection outlet side, input side Parallel opertation side connect, are defeated Enter the diversified forms such as side Parallel opertation side parallel connection, also include after whole submodules first are divided into multiple submodule group, then carry out The forms such as the series connection of input side Parallel opertation side or input side series connection outlet side parallel connection between submodule group.
The input signal of the computer program module is the input voltage signal V of N number of submodulein_i(N), output voltage Signal Vo_i(N) and switching tube trigger signal Ti(N), i=1,2 ..., N.
The output signal of the computer program module is the input current signal I of N number of submodulein_i(N) and output is electric Flow signal iD_i(N)。
Four groups of discrete mathematical models are that the equivalent mathematical model corresponding to the various operation modes of submodule is carried out Sliding-model control as a result, the mathematical model 1 after discretization is:
Mathematical model 2 is:
Mathematical model 3 is:
Mathematical model 4 is:
In formula:CsFor the series resonant capacitance of submodule,
LsFor the series resonance inductor of submodule,
LpFor the parallel resonant inductor of submodule,
Vin_iFor the input voltage of submodule,
Vo_iFor the output voltage of submodule,
vresFor the input voltage of resonant tank,
iresFor the input current of resonant tank,
vpFor the voltage of the voltage on parallel resonant inductor, that is, isolating transformer primary side,
ilpFor the electric current on parallel resonant inductor,
iD_iFor the output current of rectification side,
vcsFor the voltage on series resonant capacitance,
vlsFor the voltage on series resonance inductor,
ipFor the electric current of isolating transformer primary side,
ntFor isolating transformer no-load voltage ratio,
Δ t is simulation step length.
The submodule external circuit is made of two controlled current sources and two capacitances, the control of two controlled current sources Signal is respectively the output signal I of the computer program modulein_iAnd iD_i, Iin_iAnd iD_iTry to achieve as the following formula:
In formula
The computer simulation program completely simulates LLC resonant converter as modularization DC/DC converter submodules The whole operation modes being likely to occur during block, its internal 4 groups of discrete mathematical model for including submodule, can judge current submodule Which kind of operation mode block works in and which group mathematical model progress should be used equivalent, by the way that the program circuit is embedded in a circulation Among structure, simulation calculation is carried out to N number of submodule successively.
It is described which kind of operation mode is in submodule and is included using the equivalent foundation judged of which kind of mathematical model TiValue, vpValue and ipValue.
The beneficial effects of the present invention are:
The present invention is suitable for carrying out the modularization DC/DC converters containing a large amount of submodules the occasion of electromagnetic transient simulation, with Initial simulation model is compared, can pole run time is greatly reduced, to be further deep to modularization DC/DC converters Research creates favorable conditions.
Brief description of the drawings
Fig. 1 is the structure of four kinds of most basic modularization DC/DC converters;
Fig. 2 is the structure of submodule LLC resonant converter;
Fig. 3 is the structure of computer program module and submodule external circuit;
Fig. 4 is the flow chart of computer program module inner computer simulated program;
Fig. 5 is the simulation accelerating models of modularization DC/DC converters, the acceleration model based on circuit model split plot design and initial imitative The comparison diagram of true mode simulation velocity.
Embodiment
Below in conjunction with the drawings and specific embodiments, the present invention is described further.
Fig. 1 is several most commonly seen modularization DC/DC converter topology structures, and the connection mode of its submodule is including defeated Enter the series connection of side series connection outlet side, input side series connection outlet side is in parallel, input side Parallel opertation side is connected, input side Parallel opertation side Four kinds of parallel connection etc..
In addition, also just like whole submodules to be first divided into the connection in series-parallel that is carried out again after multiple submodule group between submodule group Topological structure do not drawn in figure.
By connection in series-parallel between submodule, the DC voltage gain and rated capacity of modularization DC/DC converters can Arbitrarily adjusted in very wide range.
The submodule of modularization DC/DC converters is LLC resonant converter, its circuit structure is as shown in Figure 2.
To solve the problems, such as that the initial simulation model simulation velocity of modularization DC/DC converters is excessively slow, the present invention proposes Simulation accelerating model shown in Fig. 3, whole simulation accelerating model is by N number of Fig. 3 of computer program module shown in a Fig. 3 Shown in submodule external circuit composition.
The input signal of computer program module is the input voltage signal V of N number of submodulein_i(N), output voltage signal Vo_i(N) and switching tube trigger signal Ti(N), i=1,2 ..., N.The output signal of computer program module is N number of submodule Input current signal Iin_i(N) and output current signal iD_i(N)。
It is what is write based on four groups of equivalent discrete mathematical models of submodule internal circuit inside computer program module Computer simulation program.
Four groups of discrete mathematical models are discrete to the equivalent mathematical model progress corresponding to the various operation modes of submodule Change processing as a result, the mathematical model 1 after discretization is:
Mathematical model 2 is:
Mathematical model 3 is:
Mathematical model 4 is:
In formula:CsFor the series resonant capacitance of submodule,
LsFor the series resonance inductor of submodule,
LpFor the parallel resonant inductor of submodule,
Vin_iFor the input voltage of submodule,
Vo_iFor the output voltage of submodule,
vresFor the input voltage of resonant tank,
iresFor the input current of resonant tank,
vpFor the voltage of the voltage on parallel resonant inductor, that is, isolating transformer primary side,
ilpFor the electric current on parallel resonant inductor,
iD_iFor the output current of rectification side,
vcsFor the voltage on series resonant capacitance,
vlsFor the voltage on series resonance inductor,
ipFor the electric current of isolating transformer primary side,
ntFor isolating transformer no-load voltage ratio,
Δ t is simulation step length.
Submodule external circuit is made of two controlled current sources and two capacitances, the control signal of two controlled current sources The respectively output signal I of computer program modulein_iAnd iD_i, Iin_iAnd iD_iTry to achieve as the following formula:
In formula
Computer simulation program completely simulates LLC resonant converter when as modularization DC/DC converter submodules The whole operation modes being likely to occur, its internal 4 groups of discrete mathematical model for including submodule, can judge current sub-block work Make in which kind of operation mode and any group mathematical model progress should be used equivalent, by the way that the program circuit is embedded in a loop structure Among, simulation calculation is carried out to N number of submodule successively.
Which kind of operation mode is in submodule and T is included using the equivalent foundation judged of which kind of mathematical modeli's Value, vpValue and ipValue.The program flow diagram of the program is as shown in Figure 4.
Fig. 5 is the initial simulation model of different submodule numbers, the simulation model based on circuit split plot design and institute of the present invention The comparison diagram of the simulation accelerating model running time of proposition, the emulation duration of all models is 1s, and simulation step length is 0.3 μ S, simulation model run on 64 bit manipulation systems of Win7,3.4GHz double-core Intel Core i7 processors, 8GB running memories, PSCAD/ EMTDC is V4.2.1 editions.
As can be seen that the more initial simulation model of the simulation velocity of simulation accelerating model has the raising for being substantially, with son The increase of number of modules, its acceleration effect is also obvious all the more, even if compared with the simulation model based on circuit split plot design, it is emulated Speed also has about 5~7 times of raising.
In the prior art, to meet the capacity of electric system and voltage requirements, modularization DC/DC converters may need by A submodule compositions up to a hundred, contain substantial amounts of switching device in these submodules, and in order to reduce isolating transformer Volume and weight, submodule switching device in the block will be operate in medium-high frequency state.
PSCAD/EMTDC first will seek the bus admittance matrix of its analogue system when carrying out electromagnetic transient simulation It is inverse, and then solve the electrical quantity of each node.
Due to including extensive work in modularization DC/DC converters in the switching device of medium-high frequency state, in simulation process In, PSCAD/EMTDC needs frequently to invert to high-order bus admittance matrix, causes simulation time needed for it far beyond can The scope of receiving.
The above problem is essentially the power system simulation model optimization problem comprising power electronic equipment, such to solve Problem, a kind of circuit model split plot design is proposed in some documents, and this method can ensure initial simulation model simulation accuracy On the premise of, by the way that the bus admittance matrix of a high-order to be decomposed into the bus admittance matrix of several low orders, greatly improve The speed that bus admittance matrix is inverted, so as to accelerate the simulation velocity of simulation model.
However as application of a large amount of power electronic equipments in electric system, in some application scenarios, even if using electricity Road model split plot design is improved initial simulation model, and the simulation velocity of simulation model is still difficult to meet the requirements.
The present invention is suitable for carrying out the modularization DC/DC converters containing a large amount of submodules the field of electromagnetic transient simulation Close, compared with initial simulation model, can pole run time is greatly reduced, to be further to modularization DC/DC converters In-depth study creates favorable conditions.
It should be noted that above example is only presently preferred embodiments of the present invention, embodiment is not all of, should not be to this The protection domain of invention produces restriction effect, those skilled in the art do not make it is any possess creative work on the basis of, Any modifications or substitutions carried out to the present invention, it will be understood that fall into protection scope of the present invention.

Claims (10)

  1. A kind of 1. simulation accelerating model of modularization DC/DC converters, it is characterised in that:The emulation of modularization DC/DC converters Speed-raising model is made of the external circuit of computer program module and N number of submodule, and the internal circuit of submodule is equivalent to four Group discrete mathematical model is simultaneously write among the computer simulation program in computer program module using Fortran language.
  2. 2. simulation accelerating model according to claim 1, it is characterised in that:The submodule of modularization DC/DC converters is LLC resonant converter, the connection mode of N number of submodule include the series connection of input side series connection outlet side, input side series connection output Side is in parallel, the series connection of input side Parallel opertation side and input side Parallel opertation side are in parallel.
  3. 3. simulation accelerating model according to claim 2, it is characterised in that:The connection mode of N number of submodule includes After whole submodules first are divided into multiple submodule group, then carry out the input side Parallel opertation side series connection or defeated between submodule group Enter the form of side series connection outlet side parallel connection.
  4. 4. simulation accelerating model according to claim 1, it is characterised in that:The input signal of the computer program module For the input voltage signal V of N number of submodulein_i(N), output voltage signal Vo_i(N) and switching tube trigger signal Ti(N), i=1, 2,…,N。
  5. 5. simulation accelerating model according to claim 1, it is characterised in that:The output signal of the computer program module For the input current signal I of N number of submodulein_i(N) and output current signal iD_i(N)。
  6. 6. according to the simulation accelerating model described in claim 1, it is characterised in that:Four groups of discrete mathematical models are pair Equivalent mathematical model corresponding to the various operation modes of submodule carry out sliding-model control as a result, mathematical model after discretization 1 is:
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>p</mi> </msub> <mo>+</mo> <msup> <mi>&amp;Delta;t</mi> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    Mathematical model 2 is:
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>n</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>+</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msup> <mi>&amp;Delta;t</mi> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>n</mi> <mi>t</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mrow> <msub> <mi>n</mi> <mi>t</mi> </msub> <msub> <mi>L</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
    Mathematical model 3 is:
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>p</mi> </msub> <mo>+</mo> <msup> <mi>&amp;Delta;t</mi> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>p</mi> </msub> <mrow> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>L</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
    Mathematical model 4 is:
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>+</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>n</mi> <mi>t</mi> </msub> <mo>)</mo> </mrow> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>+</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mi>n</mi> </msubsup> <mo>&amp;rsqb;</mo> <mo>/</mo> <mrow> <mo>(</mo> <msub> <mi>L</mi> <mi>s</mi> </msub> <mo>+</mo> <msup> <mi>&amp;Delta;t</mi> <mn>2</mn> </msup> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msub> <mi>v</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>/</mo> <msub> <mi>C</mi> <mi>s</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>v</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <mo>-</mo> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>n</mi> <mi>t</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mi>n</mi> </msubsup> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mrow> <mi>o</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mrow> <msub> <mi>n</mi> <mi>t</mi> </msub> <msub> <mi>L</mi> <mi>p</mi> </msub> </mrow> </mfrac> <mi>&amp;Delta;</mi> <mi>t</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msubsup> <mi>i</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>i</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>i</mi> <mrow> <mi>l</mi> <mi>p</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
    In formula:CsFor the series resonant capacitance of submodule, LsFor the series resonance inductor of submodule, LpFor the in parallel humorous of submodule Shake inductance, Vin_iFor the input voltage of submodule, Vo_iFor the output voltage of submodule, vresFor the input voltage of resonant tank, iresFor the input current of resonant tank, vpFor the voltage of the voltage on parallel resonant inductor, that is, isolating transformer primary side, ilpFor simultaneously Join the electric current on resonant inductance, iD_iFor the output current of rectification side, vcsFor the voltage on series resonant capacitance, vlsIt is humorous to connect The voltage to shake on inductance, ipFor the electric current of isolating transformer primary side, ntFor isolating transformer no-load voltage ratio, Δ t is simulation step length.
  7. 7. simulation accelerating model according to claim 1, its characteristic are:The external circuit of N number of submodule is by two A controlled current source and two capacitances are formed, and the control signal of two controlled current sources is respectively the computer program module Output signal Iin_iAnd iD_i
  8. 8. simulation accelerating model according to claim 7, its characteristic are:The Iin_iAnd iD_iTry to achieve as the following formula:
    <mrow> <msub> <mi>i</mi> <mrow> <mi>D</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>|</mo> <msubsup> <mi>i</mi> <mi>p</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>/</mo> <msub> <mi>n</mi> <mi>t</mi> </msub> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>I</mi> <mrow> <mi>i</mi> <mi>n</mi> <mo>_</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>ki</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>s</mi> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
    In formula
  9. 9. simulation accelerating model according to claim 1, it is characterised in that:The computer simulation program is completely simulated Whole operation modes that LLC resonant converter is likely to occur when as modularization DC/DC converter submodules, include inside it 4 groups of discrete mathematical models of submodule, can judge which kind of operation mode current sub-block works in and should use which group mathematics Model progress is equivalent, among the program circuit is embedded in a loop structure, carries out emulation meter to N number of submodule successively Calculate.
  10. 10. simulation accelerating model according to claim 9, it is characterised in that:It is described which kind of Working mould is in submodule State and the use equivalent foundation judged of which kind of mathematical model include TiValue, vpValue and ipValue.
CN201711290692.8A 2017-12-08 2017-12-08 Simulation speed-up method of modular DC/DC converter Active CN107944178B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711290692.8A CN107944178B (en) 2017-12-08 2017-12-08 Simulation speed-up method of modular DC/DC converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711290692.8A CN107944178B (en) 2017-12-08 2017-12-08 Simulation speed-up method of modular DC/DC converter

Publications (2)

Publication Number Publication Date
CN107944178A true CN107944178A (en) 2018-04-20
CN107944178B CN107944178B (en) 2021-08-17

Family

ID=61945211

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711290692.8A Active CN107944178B (en) 2017-12-08 2017-12-08 Simulation speed-up method of modular DC/DC converter

Country Status (1)

Country Link
CN (1) CN107944178B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110472265A (en) * 2019-06-24 2019-11-19 华北电力大学 A kind of electro-magnetic transient equivalent modeling method of ISOP type cascade connection type electric power electric transformer
CN110569525A (en) * 2019-06-24 2019-12-13 华北电力大学 Equivalent modeling method of ISOP type DC-DC converter suitable for DAB construction
CN110601543A (en) * 2019-09-11 2019-12-20 广州金升阳科技有限公司 Wide gain control method of LLC resonant converter and resonant converter thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220982A1 (en) * 2008-02-29 2009-09-03 Achaogen Inc.. Compositions and methods for determining nephrotoxicity
CN105243171A (en) * 2015-06-22 2016-01-13 山东航天电子技术研究所 DC-DC (Direct Current) convertor function model used for system simulation
CN106160491A (en) * 2016-06-30 2016-11-23 浙江大学 Wide-voltage range High-current output DC/DC changer
CN106329895A (en) * 2015-06-17 2017-01-11 雅达电子国际有限公司 LLC resonant converter and method for suppressing ripple in output voltage thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090220982A1 (en) * 2008-02-29 2009-09-03 Achaogen Inc.. Compositions and methods for determining nephrotoxicity
CN106329895A (en) * 2015-06-17 2017-01-11 雅达电子国际有限公司 LLC resonant converter and method for suppressing ripple in output voltage thereof
CN105243171A (en) * 2015-06-22 2016-01-13 山东航天电子技术研究所 DC-DC (Direct Current) convertor function model used for system simulation
CN106160491A (en) * 2016-06-30 2016-11-23 浙江大学 Wide-voltage range High-current output DC/DC changer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.F. LAZAR ET AL.: "Steady-State Analysis of the LLC Series Resonant Converter", 《IEEE》 *
胡木: "2kW/24V全桥LLC高频谐振软开关电源的研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110472265A (en) * 2019-06-24 2019-11-19 华北电力大学 A kind of electro-magnetic transient equivalent modeling method of ISOP type cascade connection type electric power electric transformer
CN110569525A (en) * 2019-06-24 2019-12-13 华北电力大学 Equivalent modeling method of ISOP type DC-DC converter suitable for DAB construction
CN110601543A (en) * 2019-09-11 2019-12-20 广州金升阳科技有限公司 Wide gain control method of LLC resonant converter and resonant converter thereof
CN110601543B (en) * 2019-09-11 2020-08-18 广州金升阳科技有限公司 Wide gain control method of LLC resonant converter and resonant converter thereof

Also Published As

Publication number Publication date
CN107944178B (en) 2021-08-17

Similar Documents

Publication Publication Date Title
CN103116665B (en) A kind of MMC topological transformation device high-efficiency electromagnetic transient emulation method
US11476667B2 (en) Hybrid electromagnetic transient simulation method for microgrid real-time simulation
CN103018534B (en) Determine the method and system of harmonic voltage
CN105117543B (en) A kind of equivalent simulation method based on full-bridge submodule MMC for considering a variety of locking mode
CN107944178A (en) A kind of simulation accelerating model of modularization DC/DC converters
CN103810646B (en) Improved projection integral algorithm based active power distribution system dynamic simulation method
CN103914599B (en) A kind of Dai Weinan equivalence Holistic modeling method of modularization multi-level converter
CN103077268B (en) Towards the state space method for automatic modeling of electromagnetic transient in power system emulation
CN102096747B (en) Method and device for simulating power electronic system
CN108229021A (en) Modularization multi-level converter locking modeling method based on Real Time Digital Simulator
CN103700036A (en) Transient stability projection integral method suitable for multi-time scale of electrical power system
CN110210106B (en) FPGA-based wind power plant real-time simulator module-level pipeline design method
CN106446473A (en) MMC real-time simulation modeling method and system
CN108448631A (en) The Dynamic Phasors modeling method that power distribution network is accessed containing distributed generation resource based on model reduction
CN105811433A (en) Reactive power compensation automatic addressing and capacity optimizing method for large power grid
CN110232220A (en) A kind of modularization multi-level converter real-time emulation method
CN104732459A (en) Large-scale power system ill-condition load flow analysis system
CN101719184B (en) Equivalent magnetic-flow difference transient state modeling method of nonlinear magnetic circuit of magnetically controlled shunt reactor
CN109614687A (en) Two level bridge inverters determine admittance modeling and real-time emulation method
CN106845041A (en) Real-time simulation system and method based on MMC and MMC valve simulator
CN107204614A (en) A kind of antihunt means of the DC micro power grid system comprising multi-parallel DC DC converters
CN103729502A (en) Method for increasing electromagnetic transient simulation speed of power system
CN110569558B (en) Hybrid electromagnetic transient simulation method suitable for micro-grid real-time simulation
CN106844900B (en) Method for setting up electromagnetic transient simulation system
CN105896558A (en) VSC-based UPFC electromechanical transient modular modeling method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant