CN107941775B - Multispectral Microscopic Imaging System - Google Patents
Multispectral Microscopic Imaging System Download PDFInfo
- Publication number
- CN107941775B CN107941775B CN201711460224.0A CN201711460224A CN107941775B CN 107941775 B CN107941775 B CN 107941775B CN 201711460224 A CN201711460224 A CN 201711460224A CN 107941775 B CN107941775 B CN 107941775B
- Authority
- CN
- China
- Prior art keywords
- imaging
- microscope
- modulation
- mask
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 73
- 239000006185 dispersion Substances 0.000 claims abstract description 38
- 230000003595 spectral effect Effects 0.000 claims abstract description 32
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 238000005286 illumination Methods 0.000 claims abstract description 8
- 238000001914 filtration Methods 0.000 claims abstract 2
- 230000004044 response Effects 0.000 claims description 10
- 102000034287 fluorescent proteins Human genes 0.000 claims description 7
- 108091006047 fluorescent proteins Proteins 0.000 claims description 7
- 238000013519 translation Methods 0.000 claims description 5
- 239000000523 sample Substances 0.000 abstract description 24
- 239000012472 biological sample Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 description 9
- 238000000701 chemical imaging Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 238000000386 microscopy Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000005284 excitation Effects 0.000 description 5
- 238000004624 confocal microscopy Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000004061 bleaching Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 206010036618 Premenstrual syndrome Diseases 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010377 protein imaging Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
Landscapes
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
技术领域technical field
本发明涉及计算摄像学技术领域,特别涉及一种多光谱显微成像系统。The invention relates to the technical field of computational photography, in particular to a multispectral microscope imaging system.
背景技术Background technique
遥感成像、生命科学和材料科学研究对多光谱成像提出了更高要求。观测目标或场景由于不同区域包含不同材质或荧光标记蛋白,能够发出具有不同的光谱曲线的信号。多光谱成像,就是利用这些光谱响应差异,计算重建出各种材质或荧光蛋白成像,且主要困难在于不同材质或标记蛋白光谱响应曲线可能存在重叠,导致不能简单通过加入不同谱段的滤光片实现材质或荧光标记成像的拆分。Remote sensing imaging, life science and material science research have put forward higher requirements for multispectral imaging. The observation target or scene can emit signals with different spectral curves because different regions contain different materials or fluorescently labeled proteins. Multispectral imaging is to use these spectral response differences to calculate and reconstruct various materials or fluorescent protein imaging, and the main difficulty is that the spectral response curves of different materials or labeled proteins may overlap, which makes it impossible to simply add filters of different spectral bands. Enables separation of material or fluorescent marker imaging.
目前,在宏观领域,多光谱成像主要在成像光路上加入不同谱段的滤光片多次成像或利用多个不同谱段的二向色镜同时对多个谱段成像,然后利用这些光谱成像堆栈,计算重建出不同材质或标记图像。在显微成像领域,有基于宽场显微镜的多光谱成像、基于共聚焦显微镜和光片照明的多光谱显微成像。基于宽场显微镜的多光谱成像,光照端采用单色或多色激发,在成像光路上加入不同谱段滤光片多次成像或多个不同谱段的二向色镜同时成像,利用这些光谱成像堆栈计算重建出不同材质或标记图像,减少光谱响应曲线存在重叠的影响。基于共聚焦显微的多光谱显微成像,逐点扫描荧光样本,在采集端加入色散器件,利用多个PMT(photomultiplier tube,光电倍增管)记录该点光谱信息。基于共聚焦和光片照明的多光谱显微,采用线扫光片照明,在成像光路加入色散器件,然后用相机记录整条线上激发的荧光光谱。通过共聚焦显微逐点扫描或逐行扫描获得整个视场光谱信息,然后计算重建出各种标记结构成像。At present, in the macroscopic field, multispectral imaging mainly adds filters of different spectral bands to the imaging optical path for multiple imaging or uses multiple dichroic mirrors of different spectral bands to image multiple spectral bands at the same time, and then uses these spectral imaging Stacks, computationally reconstructed images of different materials or markers. In the field of microscopy imaging, there are multispectral imaging based on widefield microscopy, multispectral microscopy imaging based on confocal microscopy and light sheet illumination. Multispectral imaging based on wide-field microscope, using monochromatic or polychromatic excitation at the illumination end, adding filters of different spectral bands to the imaging optical path for multiple imaging or multiple dichroic mirrors of different spectral bands for simultaneous imaging, using these spectral Imaging stack calculations reconstruct images of different materials or markers, reducing the effect of overlapping spectral response curves. The multispectral microscopy imaging based on confocal microscopy scans the fluorescent sample point by point, adds a dispersive device at the acquisition end, and uses multiple PMTs (photomultiplier tubes, photomultiplier tubes) to record the spectral information of the point. Multispectral microscopy based on confocal and light sheet illumination, using line scanning light sheet illumination, adding a dispersive device to the imaging light path, and then recording the fluorescence spectrum excited on the entire line with a camera. The spectral information of the entire field of view is obtained by point-by-point scanning or line-by-line scanning by confocal microscopy, and then various labeled structures are calculated and reconstructed.
然而,相关技术中仍存在不足,如,基于共聚焦显微镜的多光谱成像,所需激发光较强,容易造成荧光漂白,而且强光照射可能损伤样本细胞或组织结构;再如,成像过程需要扫描或多次拍摄,时间效率低,导致适用于光敏样本和生物样本,而且成像速度慢,不能记录动态过程,有待解决。However, there are still deficiencies in related technologies. For example, multispectral imaging based on confocal microscopy requires strong excitation light, which is easy to cause fluorescence bleaching, and the strong light irradiation may damage sample cells or tissue structures; another example, the imaging process requires Scanning or multiple shots have low time efficiency, which makes it suitable for photosensitive samples and biological samples, and the imaging speed is slow and cannot record dynamic processes, which needs to be solved.
发明内容SUMMARY OF THE INVENTION
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。The present invention aims to solve one of the technical problems in the related art at least to a certain extent.
为此,本发明的目的在于提出一种多光谱显微成像系统,该系统可以提高成像速度,提高图像分辨率,减少激光对光敏样本、生物样本的破坏,并且结构简单,成本低廉。Therefore, the purpose of the present invention is to provide a multi-spectral microscopic imaging system, which can improve the imaging speed, improve the image resolution, reduce the damage of laser light to photosensitive samples and biological samples, and has a simple structure and low cost.
为达到上述目的,本发明实施例提出了一种多光谱显微成像系统,包括:显微镜,用于将显微样本放大并成像到像面引出口;调制掩膜,所述调制掩膜位于所述显微镜的输出像面上,以约束后级成像视场范围,并加入随机掩膜调制;滤光片,所述滤光片位于视场光阑后,以对来自所述显微样本的光照信息进行窄带滤波,约束系统成像光谱范围;色散单元,用于将所述样本上各点光谱信息在空间上展开;像感器,用于记录经前级调制的样本图像,以通过色散和掩膜调制在一张或两张重建出多种标记图像。In order to achieve the above purpose, an embodiment of the present invention proposes a multi-spectral microscopic imaging system, including: a microscope, which is used to amplify and image a microscopic sample to an image plane outlet; a modulation mask, the modulation mask is located in the The output image surface of the microscope is used to constrain the range of the imaging field of view of the subsequent stage, and random mask modulation is added; the filter is located behind the field diaphragm to control the illumination from the microscopic sample The information is narrow-band filtered to constrain the imaging spectral range of the system; the dispersion unit is used to spatially expand the spectral information of each point on the sample; the image sensor is used to record the sample image modulated by the previous stage to pass the dispersion and masking. Membrane modulation reconstructs a variety of labeled images on one or two sheets.
本发明实施例的多光谱显微成像系统,能够实现单相机下单次或多次曝光采集数据,即可恢复出单色标记图像,实现仅采用一张或两张图像即可重建出多种标记图像,从而提高成像速度,提高图像分辨率,减少激光对光敏样本、生物样本的破坏,并且结构简单,成本低廉。The multi-spectral microscope imaging system of the embodiment of the present invention can realize single or multiple exposure collection of data under a single camera, and can restore a single-color mark image, and realize that only one or two images can be used to reconstruct various kinds of images. The image is marked, thereby improving the imaging speed, improving the image resolution, reducing the damage of the laser to the photosensitive sample and the biological sample, and the structure is simple and the cost is low.
另外,根据本发明上述实施例的多光谱显微成像系统还可以具有以下附加的技术特征:In addition, the multispectral microscopy imaging system according to the above-mentioned embodiments of the present invention may also have the following additional technical features:
进一步地,在本发明的一个实施例中,还包括:重构模块,通过所述色散和掩膜调制得到图像,并和标记荧光蛋白光谱响应曲线重建出所述样本的各荧光蛋白标记的组织结构。Further, in an embodiment of the present invention, it further includes: a reconstruction module, which obtains an image through the dispersion and mask modulation, and reconstructs each fluorescent protein-labeled tissue of the sample from the spectral response curve of the labeled fluorescent protein. structure.
进一步地,在本发明的一个实施例中,所述显微镜可以为宽视场荧光显微镜。Further, in an embodiment of the present invention, the microscope may be a wide-field fluorescence microscope.
进一步地,在本发明的一个实施例中,所述调制掩膜位于像面上,色散单元位于傅立叶面上。Further, in an embodiment of the present invention, the modulation mask is located on the image plane, and the dispersion unit is located on the Fourier plane.
进一步地,在本发明的一个实施例中,所述色散单元处的傅立叶面和所述像感器处的像面通过透镜或镜头组成的4f系统实现。Further, in an embodiment of the present invention, the Fourier plane at the dispersion unit and the image plane at the image sensor are realized by a lens or a 4f system composed of lenses.
进一步地,在本发明的一个实施例中,所述4f系统用于加入色散调制和成像放大倍率调整。Further, in an embodiment of the present invention, the 4f system is used for adding dispersion modulation and imaging magnification adjustment.
进一步地,在本发明的一个实施例中,所述滤光片位于成像光路上所述4f系统第一级透镜后,或直接加在所述显微镜内部或光路其他位置,以约束所述成像光谱范围。Further, in an embodiment of the present invention, the filter is located after the first-stage lens of the 4f system on the imaging optical path, or directly added inside the microscope or at other positions in the optical path to constrain the imaging spectrum. scope.
进一步地,在本发明的一个实施例中,所述随机掩膜通过平移方式调整掩膜横向位置。Further, in an embodiment of the present invention, the random mask adjusts the lateral position of the mask by means of translation.
进一步地,在本发明的一个实施例中,所述色散单元为阿莫西色散棱镜。Further, in an embodiment of the present invention, the dispersion unit is an Amoxie dispersion prism.
进一步地,在本发明的一个实施例中,所述像感器为SCMOS单色传感器。Further, in an embodiment of the present invention, the image sensor is a SCMOS monochrome sensor.
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the present invention will be set forth, in part, from the following description, and in part will be apparent from the following description, or may be learned by practice of the invention.
附图说明Description of drawings
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1为根据本发明实施例的多光谱显微成像系统的结构示意图;1 is a schematic structural diagram of a multispectral microscope imaging system according to an embodiment of the present invention;
图2为根据本发明一个具体实施例的多光谱显微成像系统的结构示意图。FIG. 2 is a schematic structural diagram of a multispectral microscope imaging system according to a specific embodiment of the present invention.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, and are intended to explain the present invention and should not be construed as limiting the present invention.
下面参照附图描述根据本发明实施例提出的多光谱显微成像系统。The following describes the multispectral microscope imaging system proposed according to the embodiments of the present invention with reference to the accompanying drawings.
图1是本发明实施例的多光谱显微成像系统的结构示意图。FIG. 1 is a schematic structural diagram of a multispectral microscope imaging system according to an embodiment of the present invention.
如图1所示,该多光谱显微成像系统10包括:显微镜100、调制掩膜200、滤光片300、色散单元400和像感器500。As shown in FIG. 1 , the multispectral
其中,显微镜100用于将显微样本放大并成像到像面引出口。调制掩膜200位于显微镜100的输出像面上,以约束后级成像视场范围,并加入随机掩膜调制。滤光片300位于视场光阑后,以对来自显微样本的光照信息进行窄带滤波,约束系统成像光谱范围。色散单元400用于将样本上各点光谱信息在空间上展开。像感器500用于记录经前级调制的样本图像,以通过色散和掩膜调制在一张或两张重建出多种标记图像。本发明实施例的系统10可以仅采用一张或两张图像即可重建出多种标记图像,提高成像速度,提高图像分辨率,减少激光对光敏样本、生物样本的破坏,并且结构简单,成本低廉。Among them, the
其中,在本发明的一个实施例中,本发明实施例的系统10还包括:重构模块。其中,重构模块通过色散和掩膜调制得到图像,并和标记荧光蛋白光谱响应曲线重建出样本的各荧光蛋白标记的组织结构。Wherein, in an embodiment of the present invention, the
可以理解的是,本发明实施例利用单次拍摄或平移掩膜得到的多张图片,结合各荧光标记的光谱响应曲线,可以计算重建出不同标记成像。其中,重建模块计算重建过程可以在普通PC机或工作站等硬件系统上实现。It can be understood that, in the embodiment of the present invention, images of different markers can be calculated and reconstructed by using multiple images obtained by a single shot or by translating the mask, combined with the spectral response curve of each fluorescent marker. The calculation and reconstruction process of the reconstruction module can be implemented on a hardware system such as a common PC or a workstation.
也就是说,本发明实施例的多光谱显微成像系统10主要包括图像采集和计算重建两部分。That is to say, the multispectral
其中,图像采集部分由显微镜100,调制掩膜200,滤光片300,色散单元400和像感器500组成。显微镜100可以实现多标记样本荧光激发和放大成像。调制掩膜200在像面加入随机二值调制。色散单元400在4f系统傅立叶面上将像面上面每个点光谱信息在空间展开,4f系统实现成像系统放大倍率调整和色散范围调整。The image acquisition part consists of a
计算重建部分利用单次拍摄或平移掩膜得到的多张图片,即通过单次拍摄或两次拍摄即可获得多标记样本各自成像,且成像速度快,结合各荧光标记的光谱响应曲线,可以计算重建出不同标记成像。其中,重建模块计算重建过程可以在普通PC机或工作站等硬件系统上实现。The calculation and reconstruction part uses multiple images obtained by a single shot or a translation mask, that is, the images of the multi-labeled samples can be obtained by a single shot or two shots, and the imaging speed is fast. Combined with the spectral response curve of each fluorescent marker, it can be Computationally reconstructed images of different markers. The calculation and reconstruction process of the reconstruction module can be implemented on a hardware system such as a common PC or a workstation.
进一步地,在本发明的一个实施例中,显微镜100可以为宽视场荧光显微镜。Further, in one embodiment of the present invention, the
可以理解的是,本发明实施例的显微镜100为宽视场荧光显微镜,以实现荧光样本的一级放大,将样本像面从引出口导出便于后级处理。It can be understood that the
进一步地,在本发明的一个实施例中,调制掩膜200位于像面上,色散单元位于傅立叶面上。Further, in an embodiment of the present invention, the
进一步地,在本发明的一个实施例中,色散单元400处的傅立叶面和像感器500处的像面通过透镜或镜头组成的4f系统实现。Further, in an embodiment of the present invention, the Fourier plane at the
进一步地,在本发明的一个实施例中,4f系统用于加入色散调制和成像放大倍率调整。Further, in one embodiment of the present invention, the 4f system is used to add dispersion modulation and imaging magnification adjustment.
进一步地,在本发明的一个实施例中,滤光片300位于成像光路上4f系统第一级透镜后,或直接加在显微镜100内部或光路其他位置,以约束成像光谱范围。Further, in an embodiment of the present invention, the
可以理解的是,本发明实施例的滤光片300可以位于调制掩膜200后的4f系统第一级透镜后,滤光片300用于对来自样本的光信号进行谱段范围约束。也就是说,通过滤光片300后,来自样本的光信号仅特定带宽范围内可以通过,从而限定了后级色散范围。需要说明的是,在实际成像光路中,滤光片300的并不严格限定,即位置可调。It can be understood that the
其中,4f系统可以为两个不同焦距透镜或镜头,前级透镜后焦面和后级透镜前焦面重合。如果成像光路像面位于前级透镜前焦面上,在后级透镜后焦面处将得到被放大或缩小的像面,像面放大缩小比例由后级透镜和前级透镜焦距比例决定。Among them, the 4f system can be two lenses or lenses with different focal lengths, and the rear focal plane of the front lens and the front focal plane of the rear lens coincide. If the image plane of the imaging optical path is located on the front focal plane of the front-stage lens, the enlarged or reduced image plane will be obtained at the back focal plane of the rear-stage lens.
进一步地,在本发明的一个实施例中,随机掩膜可以通过平移方式调整掩膜横向位置。Further, in an embodiment of the present invention, the random mask can adjust the lateral position of the mask by means of translation.
可以理解的是,调制掩膜200位于显微输出像面上,调制掩膜200用于限制视场范围并加入随机掩膜调制,其中,该随机掩膜可以通过平移方式调整掩膜的横向位置。It can be understood that the
可选地,在本发明的一个实施例中,色散单元为阿莫西色散棱镜。Optionally, in an embodiment of the present invention, the dispersive unit is an Amoxie dispersion prism.
可选地,在本发明的一个实施例中,像感器500可以为SCMOS单色传感器。Optionally, in an embodiment of the present invention, the
可以理解的是,像感器500可以位于4f系统第二个透镜的后焦面上,像感器500用于记录经掩膜调制和色散调制的成像结果,其中,像感器500采用SCMOS单色相机。It can be understood that the
综上所述,本发明实施例可以利用显微镜物镜,在输出的样本荧光图像面上加入二值随机掩膜调制,用滤光片300约束光谱范围,然后在傅立叶面上加入色散调制,利用4f系统调整放大倍率和色散范围,像感器500记录调制后图像。本发明实施例的系统10在于激发光源功率低,可应用于光敏样本和生物样本成像,减少荧光漂白和对样本的损伤,成像速度快,图像重建分辨率高。To sum up, in the embodiment of the present invention, a microscope objective lens can be used to add binary random mask modulation to the output sample fluorescence image surface, the spectral range can be restricted by the
例如,如图2所示,在本发明的一个具体实施例中,该系统包括:显微镜100、调制掩膜200、滤光片300、色散单元400及像感器500。For example, as shown in FIG. 2 , in an embodiment of the present invention, the system includes: a
具体地,结合图2所示,显微样本107位于显微镜100的显微物镜106的焦面上;激光光源104发出的激发光通过二向色镜105反射后经物镜106聚焦后激发样本107的荧光信号。荧光信号经物镜106后,透过二向色镜105,再经反射镜103和管镜102后成像到像面引出口101;在像面位置放置随机掩膜调制,限制视场范围并加入调制;进一步通过4f系统第一个透镜和滤光片300继接像至色散棱镜400;色散后的光信号经过4f系统第二个透镜成像到后焦面的像感器500上。Specifically, as shown in FIG. 2 , the
其中,上述的显微镜100既可以是传统的商业显微镜,也可以根据不同应用选择倒置显微镜,也可以是正置显微镜,并不局限于图2中所示的倒置显微镜形式,其构成以及作用对于本领域的技术人员而言都是已知的,此处不再详细赘述。The above-mentioned
另外,对本发明实施例采集到多标记荧光样本不同调制成像处理,利用单个标记光谱响应曲线,可以重建出单个标记成像。首先利用单色标记未色散样本成像训练生成过完备稀疏表示字典;将成像过程看作真值图像和标记光谱响应的卷积过程;通过计算色散图像在色散核与字典乘积上的稀疏表示系数,恢复出单色标记成像。In addition, for the multi-labeled fluorescent samples collected in the embodiment of the present invention with different modulation imaging processing, the single-labeled spectral response curve can be used to reconstruct the single-labeled imaging. Firstly, an overcomplete sparse representation dictionary is generated by imaging training of monochromatic labeled non-dispersive samples; the imaging process is regarded as a convolution process of the ground truth image and the labeled spectral response; by calculating the sparse representation coefficient of the dispersive image on the product of the dispersion kernel and the dictionary, Revert out to single-color marker imaging.
需要说明的是,各级系统的数值孔径的匹配,物镜本身提供的数值孔径,同时需要选定适当的色散核和训练过完备字典的尺寸。It should be noted that the matching of the numerical apertures of the systems at all levels, the numerical aperture provided by the objective lens itself, and at the same time it is necessary to select an appropriate dispersion kernel and the size of the over-trained dictionary.
根据本发明实施例提出的多光谱显微成像系统,能够实现单相机下单次或多次曝光采集数据,即可恢复出单色标记图像,实现仅采用一张或两张图像即可重建出多种标记图像,从而提高成像速度,提高图像分辨率,减少激光对光敏样本、生物样本的破坏,并且结构简单,成本低廉。According to the multi-spectral microscopy imaging system proposed in the embodiment of the present invention, it is possible to collect data with a single or multiple exposures under a single camera, to restore a single-color mark image, and to realize that only one or two images can be used to reconstruct the image. A variety of marked images are used to improve imaging speed, improve image resolution, reduce laser damage to photosensitive samples and biological samples, and have simple structure and low cost.
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of the present invention, it should be understood that the terms "center", "longitudinal", "lateral", "length", "width", "thickness", "upper", "lower", "front", " Rear, Left, Right, Vertical, Horizontal, Top, Bottom, Inner, Outer, Clockwise, Counterclockwise, Axial, The orientations or positional relationships indicated by "radial direction", "circumferential direction", etc. are based on the orientations or positional relationships shown in the accompanying drawings, which are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying the indicated devices or elements. It must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation of the present invention.
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。In addition, the terms "first" and "second" are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature delimited with "first", "second" may expressly or implicitly include at least one of that feature. In the description of the present invention, "plurality" means at least two, such as two, three, etc., unless otherwise expressly and specifically defined.
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise expressly specified and limited, the terms "installed", "connected", "connected", "fixed" and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between the two elements, unless otherwise specified limit. For those of ordinary skill in the art, the specific meanings of the above terms in the present invention can be understood according to specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise expressly specified and limited, a first feature "on" or "under" a second feature may be in direct contact between the first and second features, or the first and second features indirectly through an intermediary touch. Also, the first feature being "above", "over" and "above" the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature. The first feature being "below", "below" and "below" the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment," "some embodiments," "example," "specific example," or "some examples", etc., mean specific features described in connection with the embodiment or example , structure, material or feature is included in at least one embodiment or example of the present invention. In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711460224.0A CN107941775B (en) | 2017-12-28 | 2017-12-28 | Multispectral Microscopic Imaging System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711460224.0A CN107941775B (en) | 2017-12-28 | 2017-12-28 | Multispectral Microscopic Imaging System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107941775A CN107941775A (en) | 2018-04-20 |
CN107941775B true CN107941775B (en) | 2020-07-28 |
Family
ID=61939605
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711460224.0A Expired - Fee Related CN107941775B (en) | 2017-12-28 | 2017-12-28 | Multispectral Microscopic Imaging System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107941775B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112730267A (en) * | 2019-10-28 | 2021-04-30 | 清华大学 | Spectrometer structure and electronic equipment |
CN115602318B (en) * | 2022-11-07 | 2023-03-31 | 北京大学第三医院(北京大学第三临床医学院) | Microscopic imaging method based on chromatic dispersion and application thereof |
CN115546614B (en) * | 2022-12-02 | 2023-04-18 | 天津城建大学 | Safety helmet wearing detection method based on improved YOLOV5 model |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202221407U (en) * | 2011-08-26 | 2012-05-16 | 麦克奥迪实业集团有限公司 | Multispectral microscope |
CN102749834A (en) * | 2012-07-24 | 2012-10-24 | 河北工程大学 | Optical microscopic imaging system and imaging method |
CN104932092A (en) * | 2015-06-15 | 2015-09-23 | 上海交通大学 | Automatic focusing microscope based on eccentric beam method and focusing method thereof |
CN107193118A (en) * | 2017-07-04 | 2017-09-22 | 清华大学 | Muti-spectrum imaging system and microscope |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110068268A1 (en) * | 2009-09-18 | 2011-03-24 | T-Ray Science Inc. | Terahertz imaging methods and apparatus using compressed sensing |
DE112011100627T5 (en) * | 2010-02-22 | 2013-04-18 | William Marsh Rice University | Improved pixel count in detector arrays using compressed sampling |
-
2017
- 2017-12-28 CN CN201711460224.0A patent/CN107941775B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202221407U (en) * | 2011-08-26 | 2012-05-16 | 麦克奥迪实业集团有限公司 | Multispectral microscope |
CN102749834A (en) * | 2012-07-24 | 2012-10-24 | 河北工程大学 | Optical microscopic imaging system and imaging method |
CN104932092A (en) * | 2015-06-15 | 2015-09-23 | 上海交通大学 | Automatic focusing microscope based on eccentric beam method and focusing method thereof |
CN107193118A (en) * | 2017-07-04 | 2017-09-22 | 清华大学 | Muti-spectrum imaging system and microscope |
Also Published As
Publication number | Publication date |
---|---|
CN107941775A (en) | 2018-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10356390B2 (en) | Rapid three-dimensional microscopic imaging system | |
US7961323B2 (en) | Microarray imaging system and associated methodology | |
US7933010B2 (en) | Depth of field extension for optical tomography | |
US10352860B2 (en) | Super resolution microscopy | |
CN107941775B (en) | Multispectral Microscopic Imaging System | |
US20100177188A1 (en) | Biological sample image acquiring apparatus, biological sample image acquiring method, and program | |
EP2606333B1 (en) | Cytometry system with solid numerical-aperture-increasing lens | |
CN107144954B (en) | Imaging systems and methods | |
CN108227233B (en) | Microscopic tomography super-resolution imaging method and system based on light sheet structured light | |
US20130087718A1 (en) | Confocal fluorescence lifetime imaging system | |
US20230138764A1 (en) | Optimized photon collection for light-sheet microscopy | |
JP6940696B2 (en) | Two-dimensional and three-dimensional fixed Z-scan | |
US20160041099A1 (en) | Light sheet fluorescence and differential interference contrast microscope | |
CN109633885A (en) | Gradient-index lens micro imaging system and method based on focusing wavefronts | |
CN110967817A (en) | Image scanning microscopic imaging method and device based on double micro-lens array | |
JP2023517677A (en) | A High Throughput Snapshot Spectral Encoding Device for Fluorescence Spectral Microscopy | |
CN117011170A (en) | Ghost correction method for dual-channel quantitative FRET microscopic imaging | |
CN1166940C (en) | Multispectral Imaging Microarray Scanner | |
CN111896516A (en) | Microdroplet Dual Fluorescence Signal Detection Device | |
CN113296253B (en) | Multi-light-sheet light field fluorescence microscopic imaging device | |
WO2021177446A1 (en) | Signal acquisition apparatus, signal acquisition system, and signal acquisition method | |
JP2009288087A (en) | Drug development screening device | |
CN107193118A (en) | Muti-spectrum imaging system and microscope | |
US20230412905A1 (en) | A modular smartphone microscopy device for multimodal imaging | |
CN106841137B (en) | Method and system for multi-color fluorescence imaging under single exposure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200728 |
|
CF01 | Termination of patent right due to non-payment of annual fee |