CN107941167B - 一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法 - Google Patents

一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法 Download PDF

Info

Publication number
CN107941167B
CN107941167B CN201711148762.6A CN201711148762A CN107941167B CN 107941167 B CN107941167 B CN 107941167B CN 201711148762 A CN201711148762 A CN 201711148762A CN 107941167 B CN107941167 B CN 107941167B
Authority
CN
China
Prior art keywords
point cloud
data
cloud data
unmanned aerial
aerial vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711148762.6A
Other languages
English (en)
Other versions
CN107941167A (zh
Inventor
谭颖
谭文轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Minzu University
Original Assignee
Southwest Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Minzu University filed Critical Southwest Minzu University
Priority to CN201711148762.6A priority Critical patent/CN107941167B/zh
Publication of CN107941167A publication Critical patent/CN107941167A/zh
Application granted granted Critical
Publication of CN107941167B publication Critical patent/CN107941167B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Navigation (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Studio Devices (AREA)

Abstract

本发明涉及三维扫描技术领域,公开了一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法。本发明提供了一种集结构光传感器、CMOS图像传感器、加速度传感器和陀螺仪传感器等的、且以无人机为载具的空间扫描系统平台,并通过结合实时的运动姿态数据,可对多帧的点云数据流进行空间叠合,得到整个扫描区域的三维场景数据,从而可凭借小型无人机的灵活性,以及成熟的结构光三维扫描技术,实现动态的空间扫描目的。此外,所述空间扫描系统还具有扫描自动化程度高、点云数据扫描稳定性高、输出文件格式多样化和结构简单等优点,便于实际推广和使用。

Description

一种基于无人机载具和结构光扫描技术的空间扫描系统及其 工作方法
技术领域
本发明涉及三维扫描技术领域,具体地,涉及一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法。
背景技术
结构光三维扫描技术是一种高速且高精度的三维扫描测量方法,其采用的是目前国际上最先进的结构光非接触照相测量原理,即采用一种结合结构光技术、相位测量技术、计算机视觉技术的复合三维非接触式测量技术。采用这种测量原理,可使得对物体进行照相测量(所谓照相测量,就是类似于照相机对视野内的物体进行照相,不同的是照相机摄取的是物体的二维图象,而研制的测量仪获得的是物体的三维信息)成为可能。此外与传统的三维扫描技术不同的是,结构光三维扫描技术能同时测量一个面。
对于现有的基于结构光或激光的三维扫描技术,为了达到高精度,它们都是采用静态扫描技术,即被扫描物体和扫描设备本身都需要在完全静止的情况下工作。虽然这种方式扫描精度高,但是使用场景严重不足,例如在需要对于诸如一间卧室或一栋楼的内部结构等大场景进行扫描时,静态扫描方法就完全不能应对。
发明内容
针对前述目前静态三维扫描技术所存在的使用局限性问题,本发明提供了一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法。
本发明采用的技术方案,一方面提供了一种基于无人机载具和结构光扫描技术的空间扫描系统,包括无人机电源、结构光传感器、CMOS图像传感器、图像信号处理器、加速度传感器、陀螺仪传感器、数字信号处理器、图形处理器、中央处理器、内存储器和外存储器,其中,所述结构光传感器和所述CMOS图像传感器分别通信连接所述图像信号处理器,所述加速度传感器和所述陀螺仪传感器分别通信连接所述数字信号处理器,所述图像信号处理器和所述数字信号处理器还分别通信连接所述图形处理器,所述图形处理器通信连接所述中央处理器,所述中央处理器还分别通信连接所述内存储器和所述外存储器;
所述图像信号处理器用于按照第一预制算法对来自所述结构光传感器和所述CMOS图像传感器的第一原始采集数据进行预处理,得到具有场景合成所需数据结构的点云数据流;
所述数字信号处理器用于按照第二预制算法对来自所述加速度传感器和所述陀螺仪传感器的第二原始采集数据进行预处理,得到具有场景合成所需数据结构的运动姿态数据流;
所述图形处理器用于根据来自所述数字信号处理器的运动姿态数据流,对来自所述图像信号处理器的点云数据流进行数据合并,得到反映空间扫描结果的场景数据;
所述中央处理器用于获取生成的场景数据,并写入所述内存储器和所述外存储器备用。
优化的,还包括无人机飞行控制模块,其中,所述无人机飞行控制模块包括无人机控制电路单元和无人机电机;所述无人机控制电路单元分别通信连接所述无人机电机的受控端和所述中央处理器,所述中央处理器还分别通信连接所述图像信号处理器和所述数字信号处理器。进一步优化的,还包括通信连接所述数字信号处理器的霍尔传感器。
优化的,还包括位于无人机载具腹部的防抖云台,其中,在所述防抖云台上布置所述结构光传感器和所述CMOS图像传感器。
本发明采用的技术方案,另一方面还提供了一种对前述的基于无人机载具和结构光扫描技术的空间扫描系统的工作方法,包括步骤如下:
S101.由图像信号处理器按照第一预制算法对来自结构光传感器和CMOS图像传感器的第一原始采集数据进行预处理,得到具有场景合成所需数据结构的点云数据流,并将所述点云数据流传送至图形处理器;
S102.由数字信号处理器按照第二预制算法对来自加速度传感器和陀螺仪传感器的第二原始采集数据进行预处理,得到具有场景合成所需数据结构的运动姿态数据流,并将所述运动姿态数据流传送至图形处理器;
S103.图形处理器在收到同步传送的所述点云数据流和所述运动姿态数据流后,实时地依次执行如下步骤S301~S304:
S301.根据所述点云数据流中的前一帧点云数据的三维坐标属性和所述运动姿态数据流中的新帧运动姿态数据,计算并更新所述点云数据流中的新帧点云数据的三维坐标属性;
S302.使用特征匹配方法确定在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云;
S303.针对在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云,采用递增迭代的优化方式进行择一取舍,得到用于场景合成的点云集合;
S304.将所述点云集合叠加到已有的场景数据中,得到新合成的场景数据,然后将所述新合成的场景数据传送至中央处理器;
S104.中央处理器在收到所述新合成的场景数据后,存储到内存储器和外存储器备用;
上述步骤中,步骤S101和步骤S102为并行执行步骤。
优化的,当所述基于无人机载具和结构光扫描技术的空间扫描系统还包括无人机飞行控制模块时,在所述步骤S104之后还包括如下步骤:
S105.中央处理器根据所述新合成的场景数据,采用三维空间最短路径算法确定无人机载具的新飞行路径,然后将所述新飞行路径传送至所述无人机飞行控制模块予以执行。
优化的,当所述基于无人机载具和结构光扫描技术的空间扫描系统还包括无人机飞行控制模块时,在所述步骤S101和步骤S102之后,还包括如下步骤:
S106.中央处理器还同步读取所述点云数据流和所述运动姿态数据流;
S107.由中央处理器实时对比所述点云数据流中的前一帧点云数据与新帧点云数据的且具有不同几何特征的点云,然后根据对比结果反向推算飞行器载具在帧间隔时间内的姿态运动变化数据,最后将该姿态运动变化数据与所述运动姿态数据流中的新帧运动姿态数据一起进行加权平均,并根据加权平均结果校准待发送至所述无人机飞行控制模块的即时控制信号。
优化的,在所述步骤S104中,还包括如下步骤:由中央处理器将所述新合成的场景数据转化为3DS、OBJ、FBX或STL格式的数据结构。
综上,采用本发明所提供的基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法,具有如下有益效果:(1)本发明提供了一种集结构光传感器、CMOS图像传感器、加速度传感器和陀螺仪传感器等的、且以无人机为载具的空间扫描系统平台,并通过结合实时的运动姿态数据,可对多帧的点云数据流进行空间叠合,得到整个扫描区域的三维场景数据,从而可凭借小型无人机的灵活性,以及成熟的结构光三维扫描技术,实现动态的空间扫描目的;(2)可根据实时的三维场景数据,利用三维空间最短路径算法进行无人机载具的路径规划与障碍判断,使得扫描路径自动最佳化;(3)可根据实时的运动姿态数据,提取诸如俯仰角和位移等参量,并推算待发送运动指令在执行后的预期结果,从而可以将这些参量用于矫正函数,得到用于修复外因干扰(诸如风和气流等外因所带来的干扰)的新运动指令,并将新运动指令复合进执行单元(比如无人机电机)进行执行,实现自动纠正飞行姿态和飞行位置的目的;(4)可根据实时的三维场景数据,来对空间障碍物进行一个虚拟化的场景建模,并获取无人机在虚拟化场景模型中的相对位置,然后根据相对位置生成能够进行虚拟化避障和现实避障的新运动指令,最后通过该新运动指令的执行实现快速避障和自主飞行的目的;(5)考虑三维场景数据的数据精度要远大于无人机载具自身传感器的精度,因此可进一步根据相对位置来计算无人机载具的运动姿态数据、加速度数据或陀螺仪数据的误差,并对误差进行自动校正,提升三维扫描结果的准确性;(6)所述空间扫描系统还具有点云数据扫描稳定性高、输出文件格式多样化和结构简单等优点,便于实际推广和使用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明提供的基于无人机载具和结构光扫描技术的空间扫描系统的结构示意图。
图2是本发明提供的基于无人机载具和结构光扫描技术的空间扫描系统的扫描应用示意图。
图3是本发明提供的基于无人机载具和结构光扫描技术的空间扫描系统的工作方法流程图。
上述附图中:1、无人机载具 101、红外线发射器 102、结构光传感器 2、激光发射器。
具体实施方式
以下将参照附图,通过实施例方式详细地描述本发明提供的基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法。在此需要说明的是,对于这些实施例方式的说明用于帮助理解本发明,但并不构成对本发明的限定。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,单独存在B,同时存在A和B三种情况,本文中术语“/和”是描述另一种关联对象关系,表示可以存在两种关系,例如,A/和B,可以表示:单独存在A,单独存在A和B两种情况,另外,本文中字符“/”,一般表示前后关联对象是一种“或”关系。
实施例一
图1示出了本发明提供的基于无人机载具和结构光扫描技术的空间扫描系统的结构示意图,图2示出了本发明提供的基于无人机载具和结构光扫描技术的空间扫描系统的扫描应用示意图,图3示出了本发明提供的基于无人机载具和结构光扫描技术的空间扫描系统的工作方法流程图。
本实施例提供的所述基于无人机载具和结构光扫描技术的空间扫描系统,包括无人机电源、结构光传感器、CMOS图像传感器、图像信号处理器、加速度传感器、陀螺仪传感器、数字信号处理器、图形处理器、中央处理器、内存储器和外存储器,其中,所述结构光传感器和所述CMOS图像传感器分别通信连接所述图像信号处理器,所述加速度传感器和所述陀螺仪传感器分别通信连接所述数字信号处理器,所述图像信号处理器和所述数字信号处理器还分别通信连接所述图形处理器,所述图形处理器通信连接所述中央处理器,所述中央处理器还分别通信连接所述内存储器和所述外存储器;
所述图像信号处理器用于按照第一预制算法对来自所述结构光传感器和所述CMOS图像传感器的第一原始采集数据进行预处理,得到具有场景合成所需数据结构的点云数据流;
所述数字信号处理器用于按照第二预制算法对来自所述加速度传感器和所述陀螺仪传感器的第二原始采集数据进行预处理,得到具有场景合成所需数据结构的运动姿态数据流;
所述图形处理器用于根据来自所述数字信号处理器的运动姿态数据流,对来自所述图像信号处理器的点云数据流进行数据合并,得到反映空间扫描结果的场景数据;
所述中央处理器用于获取生成的场景数据,并写入所述内存储器和所述外存储器备用。
如图1和2所示,在所述空间扫描系统的结构中,所述无人机电源用于为无人机载具1和其它电子硬件提供电能支持,其优选为锂电池;所述结构光传感器用于采集原始的结构光数据;所述CMOS图像传感器用于采集原始的RGB数据;所述加速度传感器用于采集原始的无人机加速度数据;所述陀螺仪传感器用于采集原始的陀螺仪数据。此外,图2中的红外线发射器101用于发射结构光,以便结构光传感器102能够收到扫描数据;图2中的激光发射器2用于进行高精度线性距离的测量,使得到的数据能够依靠三角形法则进行精确相对定位。如图3所示,前述基于无人机载具和结构光扫描技术的空间扫描系统的工作方法,可以但不限于包括如下步骤。
S101.由图像信号处理器按照第一预制算法对来自结构光传感器和CMOS图像传感器的第一原始采集数据进行预处理,得到具有场景合成所需数据结构的点云数据流,并将所述点云数据流传送至图形处理器。
在所述步骤S101中,所述第一预制算法为预先编制的且能够将所述第一原始采集数据预处理为具有场景合成所需数据结构的点云数据流的算法,其中,所述第一原始采集数据可以但不限于包括结构光数据和RGB数据。
S102.由数字信号处理器按照第二预制算法对来自加速度传感器和陀螺仪传感器的第二原始采集数据进行预处理,得到具有场景合成所需数据结构的运动姿态数据流,并将所述运动姿态数据流传送至图形处理器。
所述步骤S102为与所述步骤S101并行执行的步骤,所述第二预制算法为预先编制的且能够将所述第二原始采集数据预处理为具有场景合成所需数据结构的运动姿态数据流的算法,其中,所述第二原始采集数据可以但不限于包括加速度数据和陀螺仪数据。
S103.图形处理器在收到同步传送的所述点云数据流和所述运动姿态数据流后,实时地依次执行如下步骤S301~S304:
S301.根据所述点云数据流中的前一帧点云数据的三维坐标属性和所述运动姿态数据流中的新帧运动姿态数据,计算并更新所述点云数据流中的新帧点云数据的三维坐标属性;
S302.使用特征匹配方法确定在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云;
S303.针对在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云,采用递增迭代的优化方式进行择一取舍,得到用于场景合成的点云集合;
S304.将所述点云集合叠加到已有的场景数据中,得到新合成的场景数据,然后将所述新合成的场景数据传送至中央处理器。
在所述步骤S103中,所述点云为在现有结构光扫描技术中的基本概念,指采用三维坐标属性(x,y,z)来表示的一个点。由于在大多数情况下,前后两帧(例如新帧和前一帧)的点云数据会有大量重复,所以在对具有相同三维坐标属性的点云进行特征匹配分析之后,可将包含了大量相似几何结构的相似点云部分作为共同特征,以避免对这部分的点云进行叠合操作,减少合成处理的计算量。所述递增迭代的优化方式是指如果前一帧点云数据有一部分点云是与其他帧点云数据(包括新帧点云数据)的这一部分点云是不同的,即采用新帧点云数据的这一点云部分对前一帧点云数据的这一点云部分进行替换,否则不替换,进而可确定在新帧点云数据中需要重新叠合的点云集合,实现准确且快速的合成处理。由此通过重复实时地依次执行前述步骤S301~S304,即可逐帧地且连续地对所述点云数据流和所述运动姿态数据流进行并行合成,最终得到整个扫描区域的三维场景数据。
S104.中央处理器在收到所述新合成的场景数据后,存储到内存储器和外存储器备用。
在所述步骤S104中,为了实现多种数据格式的输出,优化的,还包括如下步骤:由中央处理器将所述新合成的场景数据转化为3DS、OBJ、FBX或STL格式等格式的数据结构。
由此通过前述系统结构及其工作方法的详细描述,可知本实施例提供了一种集结构光传感器、CMOS图像传感器、加速度传感器和陀螺仪传感器等的、且以无人机为载具的空间扫描系统平台,并通过结合实时的运动姿态数据,可对多帧的点云数据流进行空间叠合,得到整个扫描区域的三维场景数据,从而可凭借小型无人机的灵活性,以及成熟的结构光三维扫描技术,实现动态的空间扫描目的。
优化的,还包括无人机飞行控制模块,其中,所述无人机飞行控制模块可以但不限于包括无人机控制电路单元和无人机电机;所述无人机控制电路单元分别通信连接所述无人机电机的受控端和所述中央处理器,所述中央处理器还分别通信连接所述图像信号处理器和所述数字信号处理器。如图1所示,所述无人机控制电路单元用于控制无人机载具1的飞行状态,所述无人机电机用于在所述无人机控制电路单元的控制下驱动无人机载具1飞行。由此在所述步骤S104之后还包括如下步骤:S105.中央处理器根据所述新合成的场景数据,采用三维空间最短路径算法确定无人机载具的新飞行路径,然后将所述新飞行路径传送至所述无人机飞行控制模块予以执行;或者,在所述步骤S101和步骤S102之后,还包括如下步骤:S106.中央处理器还同步读取所述点云数据流和所述运动姿态数据流;S107.由中央处理器实时对比所述点云数据流中的前一帧点云数据与新帧点云数据的且具有不同几何特征的点云,然后根据对比结果反向推算飞行器载具在帧间隔时间内的姿态运动变化数据,最后将该姿态运动变化数据与所述运动姿态数据流中的新帧运动姿态数据一起进行加权平均,并根据加权平均结果校准待发送至所述无人机飞行控制模块的即时控制信号。
进一步优化的,为了丰富所述第二原始采集数据,所述基于无人机载具和结构光扫描技术的空间扫描系统还包括通信连接所述数字信号处理器的霍尔传感器。如图1所示,所述霍尔传感器用于实时采集无人机载具所处磁场的数据,可以进一步提高新帧运动姿态数据的准确性。
优化的,为了提高所述第一原始采集数据的稳定性,还包括位于无人机载具1腹部的防抖云台,其中,在所述防抖云台上布置所述结构光传感器和所述CMOS图像传感器。如图1和2所示。
本实施例提供的所述基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法,具有如下有益效果:(1)本发明提供了一种集结构光传感器、CMOS图像传感器、加速度传感器和陀螺仪传感器等的、且以无人机为载具的空间扫描系统平台,并通过结合实时的运动姿态数据,可对多帧的点云数据流进行空间叠合,得到整个扫描区域的三维场景数据,从而可凭借小型无人机的灵活性,以及成熟的结构光三维扫描技术,实现动态的空间扫描目的;(2)可根据实时的三维场景数据,利用三维空间最短路径算法进行无人机载具的路径规划与障碍判断,使得扫描路径自动最佳化;(3)可根据实时的运动姿态数据,提取诸如俯仰角和位移等参量,并推算待发送运动指令在执行后的预期结果,从而可以将这些参量用于矫正函数,得到用于修复外因干扰(诸如风和气流等外因所带来的干扰)的新运动指令,并将新运动指令复合进执行单元(比如无人机电机)进行执行,实现自动纠正飞行姿态和飞行位置的目的;(4)可根据实时的三维场景数据,来对空间障碍物进行一个虚拟化的场景建模,并获取无人机在虚拟化场景模型中的相对位置,然后根据相对位置生成能够进行虚拟化避障和现实避障的新运动指令,最后通过该新运动指令的执行实现快速避障和自主飞行的目的;(5)考虑三维场景数据的数据精度要远大于无人机载具自身传感器的精度,因此可进一步根据相对位置来计算无人机载具的运动姿态数据、加速度数据或陀螺仪数据的误差,并对误差进行自动校正,提升三维扫描结果的准确性;(6)所述空间扫描系统还具有点云数据扫描稳定性高、输出文件格式多样化和结构简单等优点,便于实际推广和使用。
如上所述,可较好地实现本发明。对于本领域的技术人员而言,根据本发明的教导,设计出不同形式的基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法并不需要创造性的劳动。在不脱离本发明的原理和精神的情况下对这些实施例进行变化、修改、替换、整合和变型仍落入本发明的保护范围内。

Claims (8)

1.一种基于无人机载具和结构光扫描技术的空间扫描系统,其特征在于,包括无人机电源、结构光传感器、CMOS图像传感器、图像信号处理器、加速度传感器、陀螺仪传感器、数字信号处理器、图形处理器、中央处理器、内存储器和外存储器,其中,所述结构光传感器和所述CMOS图像传感器分别通信连接所述图像信号处理器,所述加速度传感器和所述陀螺仪传感器分别通信连接所述数字信号处理器,所述图像信号处理器和所述数字信号处理器还分别通信连接所述图形处理器,所述图形处理器通信连接所述中央处理器,所述中央处理器还分别通信连接所述内存储器和所述外存储器;
所述图像信号处理器用于按照第一预制算法对来自所述结构光传感器和所述CMOS图像传感器的第一原始采集数据进行预处理,得到具有场景合成所需数据结构的点云数据流;
所述数字信号处理器用于按照第二预制算法对来自所述加速度传感器和所述陀螺仪传感器的第二原始采集数据进行预处理,得到具有场景合成所需数据结构的运动姿态数据流;
所述图形处理器用于根据来自所述数字信号处理器的运动姿态数据流,对来自所述图像信号处理器的点云数据流进行数据合并,得到反映空间扫描结果的场景数据,即在收到同步传送的所述点云数据流和所述运动姿态数据流后,实时地依次执行如下步骤S301~S304:
S301.根据所述点云数据流中的前一帧点云数据的三维坐标属性和所述运动姿态数据流中的新帧运动姿态数据,计算并更新所述点云数据流中的新帧点云数据的三维坐标属性;
S302.使用特征匹配方法确定在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云;
S303.针对在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云,采用递增迭代的优化方式进行择一取舍,得到用于场景合成的点云集合,其中,所述递增迭代的优化方式是指如果前一帧点云数据有一部分点云是与其他帧点云数据的这一部分点云是不同的,即采用新帧点云数据的这一点云部分对前一帧点云数据的这一点云部分进行替换,否则不替换;
S304.将所述点云集合叠加到已有的场景数据中,得到新合成的场景数据,然后将所述新合成的场景数据传送至中央处理器;
所述中央处理器用于获取生成的场景数据,并写入所述内存储器和所述外存储器备用。
2.如权利要求1所述的一种基于无人机载具和结构光扫描技术的空间扫描系统,其特征在于,还包括无人机飞行控制模块,其中,所述无人机飞行控制模块包括无人机控制电路单元和无人机电机;
所述无人机控制电路单元分别通信连接所述无人机电机的受控端和所述中央处理器,所述中央处理器还分别通信连接所述图像信号处理器和所述数字信号处理器。
3.如权利要求2所述的一种基于无人机载具和结构光扫描技术的空间扫描系统,其特征在于,还包括通信连接所述数字信号处理器的霍尔传感器。
4.如权利要求1所述的一种基于无人机载具和结构光扫描技术的空间扫描系统,其特征在于,还包括位于无人机载具腹部的防抖云台,其中,在所述防抖云台上布置所述结构光传感器和所述CMOS图像传感器。
5.一种如权利要求1~4任意一项所述的基于无人机载具和结构光扫描技术的空间扫描系统的工作方法,其特征在于,包括步骤如下:
S101.由图像信号处理器按照第一预制算法对来自结构光传感器和CMOS图像传感器的第一原始采集数据进行预处理,得到具有场景合成所需数据结构的点云数据流,并将所述点云数据流传送至图形处理器;
S102.由数字信号处理器按照第二预制算法对来自加速度传感器和陀螺仪传感器的第二原始采集数据进行预处理,得到具有场景合成所需数据结构的运动姿态数据流,并将所述运动姿态数据流传送至图形处理器;
S103.图形处理器在收到同步传送的所述点云数据流和所述运动姿态数据流后,实时地依次执行如下步骤S301~S304:
S301.根据所述点云数据流中的前一帧点云数据的三维坐标属性和所述运动姿态数据流中的新帧运动姿态数据,计算并更新所述点云数据流中的新帧点云数据的三维坐标属性;
S302.使用特征匹配方法确定在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云;
S303.针对在所述前一帧点云数据与所述新帧点云数据中具有不同几何特征的点云,采用递增迭代的优化方式进行择一取舍,得到用于场景合成的点云集合,其中,所述递增迭代的优化方式是指如果前一帧点云数据有一部分点云是与其他帧点云数据的这一部分点云是不同的,即采用新帧点云数据的这一点云部分对前一帧点云数据的这一点云部分进行替换,否则不替换;
S304.将所述点云集合叠加到已有的场景数据中,得到新合成的场景数据,然后将所述新合成的场景数据传送至中央处理器;
S104.中央处理器在收到所述新合成的场景数据后,存储到内存储器和外存储器备用;
上述步骤中,步骤S101和步骤S102为并行执行步骤。
6.如权利要求5所述的一种基于无人机载具和结构光扫描技术的空间扫描系统的工作方法,其特征在于,当所述基于无人机载具和结构光扫描技术的空间扫描系统还包括无人机飞行控制模块时,在所述步骤S104之后还包括如下步骤:
S105.中央处理器根据所述新合成的场景数据,采用三维空间最短路径算法确定无人机载具的新飞行路径,然后将所述新飞行路径传送至所述无人机飞行控制模块予以执行。
7.如权利要求5所述的一种基于无人机载具和结构光扫描技术的空间扫描系统的工作方法,其特征在于,当所述基于无人机载具和结构光扫描技术的空间扫描系统还包括无人机飞行控制模块时,在所述步骤S101和步骤S102之后,还包括如下步骤:
S106.中央处理器还同步读取所述点云数据流和所述运动姿态数据流;
S107.由中央处理器实时对比所述点云数据流中的前一帧点云数据与新帧点云数据的且具有不同几何特征的点云,然后根据对比结果反向推算飞行器载具在帧间隔时间内的姿态运动变化数据,最后将该姿态运动变化数据与所述运动姿态数据流中的新帧运动姿态数据一起进行加权平均,并根据加权平均结果校准待发送至所述无人机飞行控制模块的即时控制信号。
8.如权利要求5所述的一种基于无人机载具和结构光扫描技术的空间扫描系统的工作方法,其特征在于,在所述步骤S104中,还包括如下步骤:由中央处理器将所述新合成的场景数据转化为3DS、OBJ、FBX或STL格式的数据结构。
CN201711148762.6A 2017-11-17 2017-11-17 一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法 Active CN107941167B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711148762.6A CN107941167B (zh) 2017-11-17 2017-11-17 一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711148762.6A CN107941167B (zh) 2017-11-17 2017-11-17 一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法

Publications (2)

Publication Number Publication Date
CN107941167A CN107941167A (zh) 2018-04-20
CN107941167B true CN107941167B (zh) 2020-06-16

Family

ID=61932890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711148762.6A Active CN107941167B (zh) 2017-11-17 2017-11-17 一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法

Country Status (1)

Country Link
CN (1) CN107941167B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020103108A1 (zh) * 2018-11-22 2020-05-28 深圳市大疆创新科技有限公司 一种语义生成方法、设备、飞行器及存储介质
CN111341060A (zh) * 2020-03-24 2020-06-26 西南民族大学 一种基于无人机识别定位的森林防火系统
CN112378336B (zh) * 2020-11-13 2023-02-17 南通中远海运川崎船舶工程有限公司 一种基于无人机的舱容测量系统及其测量方法
CN114295053B (zh) * 2021-12-31 2023-11-28 北京百度网讯科技有限公司 物料体积的确定方法及装置、设备、介质和产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713655A (zh) * 2014-01-17 2014-04-09 中测新图(北京)遥感技术有限责任公司 数字航摄仪旋偏角修正系统及方法
CN105069804A (zh) * 2015-08-21 2015-11-18 清华大学 基于智能手机的三维模型扫描重建方法
CN105303609A (zh) * 2015-11-18 2016-02-03 湖南拓视觉信息技术有限公司 一种三维成像和实时建模的装置和方法
CN105513119A (zh) * 2015-12-10 2016-04-20 北京恒华伟业科技股份有限公司 一种基于无人机的路桥三维重建方法及装置
CN106873619A (zh) * 2017-01-23 2017-06-20 上海交通大学 一种无人机飞行路径的处理方法
CN107255476A (zh) * 2017-07-06 2017-10-17 青岛海通胜行智能科技有限公司 一种基于惯性数据和视觉特征的室内定位方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140376821A1 (en) * 2011-11-07 2014-12-25 Dimensional Perception Technologies Ltd. Method and system for determining position and/or orientation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713655A (zh) * 2014-01-17 2014-04-09 中测新图(北京)遥感技术有限责任公司 数字航摄仪旋偏角修正系统及方法
CN105069804A (zh) * 2015-08-21 2015-11-18 清华大学 基于智能手机的三维模型扫描重建方法
CN105303609A (zh) * 2015-11-18 2016-02-03 湖南拓视觉信息技术有限公司 一种三维成像和实时建模的装置和方法
CN105513119A (zh) * 2015-12-10 2016-04-20 北京恒华伟业科技股份有限公司 一种基于无人机的路桥三维重建方法及装置
CN106873619A (zh) * 2017-01-23 2017-06-20 上海交通大学 一种无人机飞行路径的处理方法
CN107255476A (zh) * 2017-07-06 2017-10-17 青岛海通胜行智能科技有限公司 一种基于惯性数据和视觉特征的室内定位方法和装置

Also Published As

Publication number Publication date
CN107941167A (zh) 2018-04-20

Similar Documents

Publication Publication Date Title
CN109709801B (zh) 一种基于激光雷达的室内无人机定位系统及方法
CN106774431B (zh) 一种测绘无人机航线规划方法及装置
CN107941167B (zh) 一种基于无人机载具和结构光扫描技术的空间扫描系统及其工作方法
CN109885080B (zh) 自主控制系统及自主控制方法
Schmid et al. Stereo vision based indoor/outdoor navigation for flying robots
CN109079799B (zh) 一种基于仿生的机器人感知控制系统及控制方法
KR101220527B1 (ko) 센서 시스템, 이를 이용하는 환경 지도 작성 시스템 및 방법
CN109238240A (zh) 一种顾及地形的无人机倾斜摄影方法及其摄影系统
CN110261870A (zh) 一种用于视觉-惯性-激光融合的同步定位与建图方法
CN111156998A (zh) 一种基于rgb-d相机与imu信息融合的移动机器人定位方法
KR20190051704A (ko) 스테레오 카메라 드론을 활용한 무기준점 3차원 위치좌표 취득 방법 및 시스템
CN106017463A (zh) 一种基于定位传感装置的飞行器定位方法
CN112577517A (zh) 一种多元定位传感器联合标定方法和系统
KR20140049361A (ko) 다중 센서 시스템, 이를 이용하는 3차원 월드 모델링 장치 및 방법
CN111077907A (zh) 一种室外无人机的自主定位方法
CN109254587A (zh) 可在无线充电条件下稳定悬停的小型无人机及其控制方法
CN110517209A (zh) 数据处理方法、装置、系统以及计算机可读存储介质
CN115272596A (zh) 一种面向单调无纹理大场景的多传感器融合slam方法
US20210156710A1 (en) Map processing method, device, and computer-readable storage medium
CN116952229A (zh) 无人机定位方法、装置、系统和存储介质
CN110415329B (zh) 三维建模装置及应用于其的校准方法
CN113790711B (zh) 一种无人机低空飞行位姿无控多视测量方法及存储介质
CN111610800B (zh) 一种松耦合无人机控制系统
CN208013952U (zh) 一种pos数据同步录入装置及无人机
CN202084081U (zh) 运动体运动姿态感知系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant