CN107937427A - A kind of homologous repair vector construction method based on CRISPR/Cas9 systems - Google Patents
A kind of homologous repair vector construction method based on CRISPR/Cas9 systems Download PDFInfo
- Publication number
- CN107937427A CN107937427A CN201710981059.7A CN201710981059A CN107937427A CN 107937427 A CN107937427 A CN 107937427A CN 201710981059 A CN201710981059 A CN 201710981059A CN 107937427 A CN107937427 A CN 107937427A
- Authority
- CN
- China
- Prior art keywords
- pcr
- plasmid
- phde
- agarose gel
- asgrna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108091033409 CRISPR Proteins 0.000 title claims abstract description 39
- 239000013598 vector Substances 0.000 title claims abstract description 32
- 238000010354 CRISPR gene editing Methods 0.000 title claims abstract description 18
- 230000008439 repair process Effects 0.000 title claims abstract description 11
- 238000010276 construction Methods 0.000 title claims abstract description 10
- 239000013612 plasmid Substances 0.000 claims abstract description 62
- 239000012634 fragment Substances 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000012163 sequencing technique Methods 0.000 claims abstract description 14
- 238000001962 electrophoresis Methods 0.000 claims abstract description 13
- 108010091086 Recombinases Proteins 0.000 claims abstract description 9
- 102000018120 Recombinases Human genes 0.000 claims abstract description 9
- 238000011084 recovery Methods 0.000 claims abstract description 9
- 241000219194 Arabidopsis Species 0.000 claims abstract description 5
- 230000008685 targeting Effects 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 34
- 108090000623 proteins and genes Proteins 0.000 claims description 25
- 238000000246 agarose gel electrophoresis Methods 0.000 claims description 23
- 239000000047 product Substances 0.000 claims description 19
- 230000029087 digestion Effects 0.000 claims description 13
- 238000000605 extraction Methods 0.000 claims description 10
- 238000013461 design Methods 0.000 claims description 9
- 239000000499 gel Substances 0.000 claims description 8
- 239000006228 supernatant Substances 0.000 claims description 8
- 108020004414 DNA Proteins 0.000 claims description 7
- 238000004458 analytical method Methods 0.000 claims description 7
- 241000894006 Bacteria Species 0.000 claims description 6
- 230000034431 double-strand break repair via homologous recombination Effects 0.000 claims description 6
- 241000588724 Escherichia coli Species 0.000 claims description 5
- 230000035939 shock Effects 0.000 claims description 5
- 238000012408 PCR amplification Methods 0.000 claims description 4
- 108091027544 Subgenomic mRNA Proteins 0.000 claims description 4
- 102100035102 E3 ubiquitin-protein ligase MYCBP2 Human genes 0.000 claims description 3
- 238000005119 centrifugation Methods 0.000 claims description 3
- 230000002068 genetic effect Effects 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000004321 preservation Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 108020005004 Guide RNA Proteins 0.000 claims description 2
- 230000009089 cytolysis Effects 0.000 claims description 2
- 238000013518 transcription Methods 0.000 claims description 2
- 230000035897 transcription Effects 0.000 claims description 2
- 210000005239 tubule Anatomy 0.000 claims 5
- 230000004087 circulation Effects 0.000 claims 4
- 230000001186 cumulative effect Effects 0.000 claims 4
- 239000000969 carrier Substances 0.000 claims 3
- 238000004064 recycling Methods 0.000 claims 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 claims 1
- 108090000790 Enzymes Proteins 0.000 claims 1
- 102000004190 Enzymes Human genes 0.000 claims 1
- 238000007710 freezing Methods 0.000 claims 1
- 230000008014 freezing Effects 0.000 claims 1
- 238000013507 mapping Methods 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 8
- 230000009466 transformation Effects 0.000 abstract description 6
- 238000000746 purification Methods 0.000 abstract description 5
- 238000010353 genetic engineering Methods 0.000 abstract description 2
- -1 electrophoresis Substances 0.000 abstract 1
- 239000011543 agarose gel Substances 0.000 description 12
- 101150055806 AS gene Proteins 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 230000001580 bacterial effect Effects 0.000 description 10
- 239000002609 medium Substances 0.000 description 8
- 238000010222 PCR analysis Methods 0.000 description 6
- 238000001976 enzyme digestion Methods 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 230000006798 recombination Effects 0.000 description 6
- 238000005215 recombination Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 4
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 4
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 101150009379 AS1 gene Proteins 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000008049 TAE buffer Substances 0.000 description 2
- HGEVZDLYZYVYHD-UHFFFAOYSA-N acetic acid;2-amino-2-(hydroxymethyl)propane-1,3-diol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound CC(O)=O.OCC(N)(CO)CO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O HGEVZDLYZYVYHD-UHFFFAOYSA-N 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- 108700042309 Arabidopsis ASYMMETRIC LEAVES1 Proteins 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 241001495041 Eucalyptus rugosa Species 0.000 description 1
- 108091029865 Exogenous DNA Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000006870 ms-medium Substances 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 230000005305 organ development Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/66—General methods for inserting a gene into a vector to form a recombinant vector using cleavage and ligation; Use of non-functional linkers or adaptors, e.g. linkers containing the sequence for a restriction endonuclease
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8213—Targeted insertion of genes into the plant genome by homologous recombination
Landscapes
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biotechnology (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明涉及一种基于CRISPR/Cas9体系的同源修复载体构建方法,属于基因工程技术领域;其步骤为:以质粒PCBC与野生型拟南芥基因组为模板,通过PCR分别扩增含打靶序列的目的条带AS‑gRNA与AS同源修复模板片段,电泳、切胶回收目的条带;将质粒PHDE‑mCH用Bsa1酶切;将酶切完全的PHDE‑mCh载体与ASgRNA经同源重组酶组装连接,形成重组质粒PHDE‑ASgRNA,转化和测序鉴定,再将测序正确的PHDE‑ASgRNA质粒用EcoR1酶切后与AS同源修复模板片段同源重组酶连接,经转化和测序鉴定,构建PHDE‑ASgRNA‑AS同源修复载体,本发明技术能真正实现对目标生物基因组的定点编辑功能的CRISPR/Cas9系统的方法,载体构建只需通过一步PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。The invention relates to a method for constructing a homologous repair vector based on a CRISPR/Cas9 system, which belongs to the technical field of genetic engineering; the steps are: using the plasmid PCBC and the wild-type Arabidopsis genome as templates, respectively amplifying the vectors containing the targeting sequence by PCR Target band AS-gRNA and AS homologous repair template fragment, electrophoresis, gel cutting to recover the target band; digest plasmid PHDE-mCH with Bsa1; assemble the completely digested PHDE-mCh vector and ASgRNA by homologous recombinase Ligation to form recombinant plasmid PHDE‑ASgRNA, transformation and sequencing identification, and then the correctly sequenced PHDE‑ASgRNA plasmid was digested with EcoR1 and ligated with AS homologous repair template fragments with homologous recombinase, transformed and sequenced to construct PHDE‑ASgRNA ASgRNA‑AS homologous repair carrier, the technology of the present invention can truly realize the fixed-point editing function of the target biological genome CRISPR/Cas9 system method, the carrier construction only needs one-step PCR, which is simple and easy, and does not need to cut the carrier and PCR products Purification and recovery, high assembly efficiency.
Description
技术领域technical field
本发明涉及一种基于CRISPR/Cas9体系的同源修复载体构建方法,具体涉及一种用于构建cDNA文库构建筛选的质粒载体的方法,属于基因工程技术领域。The invention relates to a method for constructing a homologous repair vector based on a CRISPR/Cas9 system, in particular to a method for constructing a plasmid vector for constructing a cDNA library and screening, and belongs to the technical field of genetic engineering.
背景技术Background technique
CRISPR/Cas9基因组定向编辑技术是近几年发展起来的对基因组进行定向精确修饰的一种技术。通过将外源的DNA导入受体细胞染色体的特定位点上,从而特异地改造基因组,研究基因的功能。该技术可以对基因组中的靶位点进行缺失、敲入、核苷酸修正等操作。2013年,科学家第一次将CRISPR/Cas9应用到人类和小鼠细胞系中对基因进行敲除,随后人们在模式植物和其他农作物中也成功获得了应用,经过改造的 CRISPR/Cas9系统也迅速地被应用到拟南芥、烟草、高粱、水稻、小麦、玉米等不同植物基因组的定向编辑研究中,并且获得较高的诱导突变率和可稳定遗传的基因组编辑植株。相对于转基因技术,CRISPR/Cas9系统具有操作简单、快捷、不需要巨大的资金投入、在遗传编辑之后不留下转基因的痕迹,无须引用外源基因,因而生物安全性高,不具有转基因争议。CRISPR/Cas9 genome-directed editing technology is a technology developed in recent years for targeted and precise genome modification. By introducing exogenous DNA into a specific site on the chromosome of the recipient cell, the genome can be specifically modified to study the function of the gene. This technology can perform operations such as deletion, knock-in, and nucleotide correction on target sites in the genome. In 2013, scientists applied CRISPR/Cas9 to human and mouse cell lines for the first time to knock out genes, and then people also successfully applied it in model plants and other crops, and the modified CRISPR/Cas9 system also rapidly It has been applied to the targeted editing research of Arabidopsis, tobacco, sorghum, rice, wheat, corn and other different plant genomes, and obtained a higher rate of induced mutations and stable hereditary genome editing plants. Compared with transgenic technology, the CRISPR/Cas9 system is simple and fast to operate, does not require huge capital investment, does not leave traces of transgenes after genetic editing, and does not need to introduce foreign genes, so it has high biological safety and no transgenic disputes.
目前为止,利用CRISPR/Cas9统实现基因组的定向编辑还只能对内源基因的定向敲除,还无法实现定点引入外源基因,对全面研究基因的功能起到一定的限制作用。因此,以现有的CRISPR/Cas9载体为基础,构建一种能实将外源基因定点交换到内源基因位置,真正实现对目标生物基因组的定点编辑功能的CRISPR/Cas9系统,为植物定点转基因改良、新基因定点引入等具有重要意义。So far, the use of CRISPR/Cas9 system to achieve directional genome editing can only target knockout of endogenous genes, and it is still impossible to achieve targeted introduction of exogenous genes, which limits the comprehensive study of gene functions. Therefore, based on the existing CRISPR/Cas9 vector, construct a CRISPR/Cas9 system that can exchange exogenous genes to endogenous genes at a fixed point, and truly realize the fixed-point editing function of the genome of the target organism. Improvement and targeted introduction of new genes are of great significance.
发明内容Contents of the invention
本发明的目的是提供一种能实将外源基因定点交换到内源基因位置,真正实现对目标生物基因组的定点编辑功能的CRISPR/Cas9系统的方法,载体构建只需通过一步 PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。The purpose of the present invention is to provide a method for the CRISPR/Cas9 system that can exchange exogenous genes to endogenous gene positions, and truly realize the fixed-point editing function of the target biological genome. The vector construction only needs one-step PCR, which is simple and easy Yes, there is no need to purify and recover enzyme-cut vectors and PCR products, and the assembly efficiency is high.
为实现上述发明的目的,本发明采取的技术方案如下:For realizing the above-mentioned purpose of the invention, the technical scheme that the present invention takes is as follows:
一种基于CRISPR/Cas9体系的同源修复载体构建方法,包括如下步骤:A method for constructing a homologous repair vector based on the CRISPR/Cas9 system, comprising the steps of:
(1)靶位点设计(1) Target site design
sgRNA靶位点的选择使用CRISPR在线设计工具(http://crispr.dbcls.jp/),以拟南芥AS基因为靶基因,选择靠近5'端得分最高的G-N19-NGG 23bp序列,其中第一个G 是小RNA转录的起始信号位点,NGG是Cas9基因定位的PAM序列,需要插入gRNA 载体的是G-N19共20bp序列,共设计两个打靶位点的Target,实现大片段敲除;同时在AS基因的打靶载体上装入AS基因的同源修复片段,实现AS基因在CAS9敲除的同时,以载体上的AS基因的同源臂做模板进行修复。The selection of sgRNA target sites used the CRISPR online design tool (http://crispr.dbcls.jp/), taking the Arabidopsis AS gene as the target gene, and selecting the G-N19-NGG 23bp sequence with the highest score near the 5' end, Among them, the first G is the starting signal site of small RNA transcription, NGG is the PAM sequence of the Cas9 gene positioning, and the 20bp sequence of G-N19 needs to be inserted into the gRNA carrier. A total of two Target sites are designed to achieve large Fragment knockout; at the same time, a homologous repair fragment of the AS gene is installed on the targeting carrier of the AS gene, so that the AS gene can be knocked out at the same time as the CAS9, and the homology arm of the AS gene on the carrier is used as a template for repair.
(2)引物设计(2) Primer design
所用引物见表1。The primers used are listed in Table 1.
表1本研究所用引物信息Table 1 Primer information used in this study
Table 1Primersμsedinthis stμdyTable 1Primers μsedinthis stμdy
注:下划线部分表示同源末端序列,加粗斜体部分为靶位点序列Note: The underlined part indicates the homologous end sequence, and the bold italic part is the target site sequence
Note,Μnderlinedis thehomologoμs arms ofPHDE andtheboldseqμence isthe target locμs.Note, Μnderlinedis thehomologoμs arms of PHDE and the bold seqμence is the target locμs.
(3)打靶载体PHDE-ASgRNA的构建(3) Construction of targeting carrier PHDE-ASgRNA
①PCR扩增目的片段:PCR反应总体积共100μL,平均分装至2个PCR小管;PCR 反应条件为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s),72℃保温;①PCR amplification of the target fragment: The total volume of the PCR reaction is 100 μL, which is evenly distributed into 2 small PCR tubes; the PCR reaction conditions are 98°C preheating for 4 minutes, 40 cycles (98°C for 45s, 55°C for 10s, 72°C for 30s), 72 ℃ insulation;
②琼脂糖凝胶电泳纯化与目的片段回收:1.5%琼脂糖凝胶电泳PCR产物,在紫外透照台上切下目的条带,将目的条带装入1.5mL EP管,-4℃冷冻20min,15000rpm低温离心20min,吸取上清液于PCR小管中,测定浓度,记录OD260/OD280,-20℃保存;②Agarose gel electrophoresis purification and target fragment recovery: 1.5% agarose gel electrophoresis PCR product, cut out the target band on a UV transillumination platform, put the target band into a 1.5mL EP tube, and freeze at -4°C for 20min , 15000rpm low-temperature centrifugation for 20min, draw the supernatant into a small PCR tube, measure the concentration, record OD 260 /OD 280 , store at -20°C;
③PHDE质粒的酶切和鉴定:酶切体系总体积20μL,50℃恒温过夜,然后以酶切前的PHDE质粒作对照,配制0.5%的琼脂糖凝胶进行电泳分析;③Enzyme digestion and identification of the PHDE plasmid: the total volume of the enzyme digestion system was 20 μL, and the temperature was kept overnight at 50°C. Then, using the PHDE plasmid before enzyme digestion as a control, a 0.5% agarose gel was prepared for electrophoresis analysis;
④目的片段与载体重组:取一个PCR小管,先后加入0.3μL线性化PHDE载体、 3μL重组酶以及1.2μL回收的AS基因片段,采用重组酶技术,将回收纯化后的AS基因片段与BsaI酶切线性化的载体重组连接,组装条件为50℃恒温反应1h;④ Recombination of target fragment and vector: Take a small PCR tube, add 0.3 μL linearized PHDE vector, 3 μL recombinase and 1.2 μL recovered AS gene fragment successively, use recombinase technology to digest the recovered and purified AS gene fragment with BsaI The linearized vector was recombined and connected, and the assembly condition was constant temperature reaction at 50°C for 1 hour;
⑤重组子转化与鉴定:将重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用0.5%琼脂糖凝胶电泳分析,PCR 反应条件为:94℃3min,30个循环(94℃30S,55℃30S,72℃45S),72℃2min;⑤ Recombinant transformation and identification: transform the recombinant product into DH5a competent Escherichia coli by heat shock method, resuscitate and culture for 12 hours, pick a single colony and culture on a shaker for 3 to 4 hours, do bacterial liquid PCR identification, and analyze by 0.5% agarose gel electrophoresis , PCR reaction conditions are: 94°C for 3min, 30 cycles (94°C for 30S, 55°C for 30S, 72°C for 45S), 72°C for 2min;
⑥重组质粒的提取和鉴定:将阳性克隆过夜培养后用碱裂解法提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,用1.2%浓度的琼脂糖凝胶电泳PCR 产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒;⑥Extraction and identification of recombinant plasmids: after culturing the positive clones overnight, extract the plasmids by alkaline lysis, measure the concentration, record OD 260 /OD 280 , use the plasmid as a template for PCR analysis, and use 1.2% agarose gel electrophoresis PCR product, recombinant plasmid extracted by agarose gel electrophoresis at 0.5% concentration;
⑦重组质粒送样测序:将质粒PCR鉴定为阳性的质粒送至生工广州分公司测序验证,测序引物为Μ626-IDF。⑦Recombinant plasmid sample delivery and sequencing: The plasmids identified as positive by PCR were sent to Sangon Guangzhou Branch for sequencing verification, and the sequencing primer was M626-IDF.
(4)同源重组修复模板载体PHDE-ASgRNA-AS的构建(4) Construction of homologous recombination repair template vector PHDE-ASgRNA-AS
①PCR扩增AS基因同源臂片段:PCR反应体系与前述相同,总体积共100μL,混匀后平均分装至2个PCR小管,PCR反应条件为98℃预热4min,40个循环(98℃45s, 55℃10s,72℃30s),72℃保温;①PCR amplification of AS gene homology arm fragments: The PCR reaction system is the same as above, with a total volume of 100 μL, mixed evenly and divided into 2 small PCR tubes. 45s, 55°C 10s, 72°C 30s), 72°C keep warm;
②琼脂糖凝胶电泳纯化与目的片段回收:将1.5%琼脂糖凝胶电泳后切胶回收目的条带,测浓度,记录OD260/OD280,-20℃保存;② Purification by agarose gel electrophoresis and recovery of target fragments: after 1.5% agarose gel electrophoresis, cut the gel to recover the target bands, measure the concentration, record OD 260 /OD 280 , and store at -20°C;
③PHDE-ASgRNA质粒的酶切和鉴定:酶切体系总体积20μL,37℃恒温反应15min,用0.5%琼脂糖凝胶进行电泳分析;③Digestion and identification of the PHDE-ASgRNA plasmid: the total volume of the enzyme digestion system was 20 μL, and the reaction was carried out at a constant temperature of 37°C for 15 minutes, and analyzed by electrophoresis with 0.5% agarose gel;
④目的片段与载体重组:取PCR小管,先后加入0.3μL线性化PHDE-ASgRNA载体、3μL重组酶以及1.2μL回收的同源臂片段,组装条件为50℃恒温反应1h;④ Recombination of the target fragment and the vector: Take a small PCR tube, add 0.3 μL linearized PHDE-ASgRNA vector, 3 μL recombinase and 1.2 μL recovered homology arm fragment, the assembly condition is 50 ℃ constant temperature reaction for 1 hour;
⑤重组子转化与鉴定:将重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用0.5%琼脂糖凝胶电泳分析;PCR 反应条件为:94℃3min,30个循环(94℃30S,55℃30S,72℃45S),72℃2min;⑤ Recombinant transformation and identification: transform the recombinant product into DH5a competent Escherichia coli by heat shock method, resuscitate and culture for 12 hours, pick a single colony and culture on a shaker for 3 to 4 hours, do bacterial liquid PCR identification, and analyze by 0.5% agarose gel electrophoresis ;PCR reaction conditions: 94°C for 3min, 30 cycles (94°C for 30S, 55°C for 30S, 72°C for 45S), 72°C for 2min;
⑥重组质粒的提取和鉴定:将阳性克隆过夜培养后提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,用1.2%浓度的琼脂糖凝胶电泳PCR产物, 0.5%浓度的琼脂糖凝胶电泳提取的重组质粒;⑥ Extraction and identification of recombinant plasmids: extract the plasmids after culturing the positive clones overnight, measure the concentration, record OD 260 /OD 280 , use the plasmid as a template for PCR analysis, use 1.2% agarose gel electrophoresis for PCR products, 0.5 The recombinant plasmid extracted by agarose gel electrophoresis of % concentration;
⑦重组质粒送样测序:将质粒PCR鉴定为阳性的质粒送样到生工广州分公司测序,测序引物为EcoR1-F。⑦Recombinant plasmid sample delivery and sequencing: The plasmid PCR identified as positive was sent to Sangon Guangzhou Branch for sequencing, and the sequencing primer was EcoR1-F.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)PHDE-ASgRNA-AS重组质粒是在PHDE-ASgRNA重组质粒的基础上,在特定位点装入与AS基因敲除序列同源但缺失部分碱基序列的同源臂(EcoR1位点插入),作为同源重组修复的模板,达到定点引入回复突变基因的目的。(1) The PHDE-ASgRNA-AS recombinant plasmid is based on the PHDE-ASgRNA recombinant plasmid, which is loaded with a homology arm homologous to the AS gene knockout sequence but missing part of the base sequence at a specific site (EcoR1 site insertion ), as a template for homologous recombination repair, to achieve the purpose of site-specific introduction of reverted mutant genes.
(2)采用同源重组技术,通过PCR扩增目的条带、回收,载体的酶切线性化,组装等过程将基因敲除目标片段与同源重组修复臂片段先后克隆到同一载体上,能实将外源基因定点交换到内源基因位置,真正实现对目标生物基因组的定点编辑功能的 CRISPR/Cas9系统的方法,载体构建只需通过一步PCR,简单易行,无需对酶切载体与PCR产物纯化回收,组装效率高。(2) Using homologous recombination technology to amplify the target band by PCR, recover it, linearize the vector by restriction enzyme digestion, assemble and other processes, clone the gene knockout target fragment and the homologous recombination repair arm fragment into the same vector successively, which can It is a method of CRISPR/Cas9 system to exchange exogenous genes to endogenous genes at fixed points, and realize the fixed-point editing function of the target biological genome. The vector construction only needs one-step PCR, which is simple and easy, and does not require enzyme-cut vectors and PCR. The product is purified and recovered, and the assembly efficiency is high.
具体实施方式Detailed ways
下面通过实例对本发明做进一步详细说明,这些实例仅用来说明本发明,并不限制本发明的范围。The present invention will be further described in detail by examples below, and these examples are only used to illustrate the present invention, and do not limit the scope of the present invention.
采用粗皮桉无菌苗下胚轴为外植体进行组培再生,具体方法如下:The hypocotyls of Eucalyptus rugosa sterile seedlings were used as explants for tissue culture regeneration, and the specific methods were as follows:
1拟南芥幼苗的培植1 Cultivation of Arabidopsis seedlings
取50-80粒种子于1.5mL离心管,加入1mL 75%的酒精缓慢晃动6min,使种子充分消毒,弃酒精,加入1mL无水乙醇,摇匀后静置5min以上,用1mL移液枪轻轻将种子从离心管吸出打在无菌滤纸上干燥。将干燥后的种子均匀撒在基本培养基中(MS 培养基+7g/L琼脂+20g/L蔗糖,pH5.8),用报纸包好培养基(防止见光)置于冰箱4℃过夜处理,使种子春化,以促进花芽形成和花器发育。整个操作过程需在超净工作台中完成。第二天将低温过夜处理的培养基(去掉报纸)置于光照培养箱中23℃培养7天,幼苗移栽至花盆,继续放置在光照培养箱中23℃培养供后续实验。Take 50-80 seeds in a 1.5mL centrifuge tube, add 1mL of 75% alcohol and shake slowly for 6 minutes to fully disinfect the seeds, discard the alcohol, add 1mL of absolute ethanol, shake well and let it stand for more than 5min, then use a 1mL pipette gun to gently Gently aspirate the seeds from the centrifuge tube and dry on sterile filter paper. Sprinkle the dried seeds evenly in the basic medium (MS medium + 7g/L agar + 20g/L sucrose, pH5.8), wrap the medium in newspaper (to prevent exposure to light) and place it in the refrigerator at 4°C for overnight treatment , to vernalize the seeds to promote flower bud formation and flower organ development. The whole operation process needs to be completed in the ultra-clean workbench. The next day, the culture medium treated overnight at low temperature (removing the newspaper) was placed in a light incubator at 23°C for 7 days, and the seedlings were transplanted to flowerpots, and then placed in a light incubator at 23°C for subsequent experiments.
2靶位点设计2 Target site design
sgRNA的靶位点是符合(N)20NGG的序列。本文针对拟南芥AS1基因设计了两个靶位点。AS1序列信息如下,5’端下划线部分为靶位点1,3’端下划线序列为靶位点2。带波浪下划线为PAM的序列。The target site of the sgRNA is a sequence conforming to (N) 20 NGG. In this paper, two target sites were designed for the Arabidopsis AS1 gene. The sequence information of AS1 is as follows, the underlined part at the 5' end is the target site 1, and the underlined sequence at the 3' end is the target site 2. Sequences with tilde underlines are PAM.
5’-GCGGGATCACTGGGTTAGGAGGCTGAACTTGTTGTTCAGAATGTAAAAACCCTCCATTCGAATTAGCCATCACAACCGTTGCAGCAGCGGCAGCAGCAGGGACAACGTTAGACCGCTCTTTGACAAGCTTCTCAGCGAAACTCTCGAGAATCCGATCGTACTTACTCTCGTCAATAGGCTCAACTCTCTTGTTACTCTCTTTCTCTTCTCTCTGTTGCTTCTCCTTAAACACTTCCCACCACTTCCCTAACCGCTTTGCCGTCCTCCCGGGAACCTCAGCAGCAATCTTCTTCCACTTGTTGCCGTGTTTCTCCTGAAGACGGATCACAAGCCTCTGCTCTTCCTCTGTCAAAGACCCTTTCTTGATCCCTGGCTTAAGATAATTCTTCCATCTCTCTAAACAAGACTTGGCGTCACGGTTCAAAGGTTTGTTCATACGCTCAGACACAAGATGCCATTCTCTCGGACCGAACTGTCTAACGTAAGCACGTAACAATGCATCTTCTTCACCACTCCAACGTTGTCTCTCTTTCATCTCCTACTCCTCCTGACATCACTTCTTCCCATCTCACCATCCTTCTTCATC-3’5'- GCGGGATCACTGGGTTAGGAGG CCATTCTCACCATCCTTCTTCATC -3'
3引物设计3 Primer design
本实验表达载体的构建采用同源重组法,因此引物设计上有所不同。sgRNA的引物设计时需额外在上下游引物5’端各自加上20bp的与载体酶切后两端同源的序列,作为重组的接头,其他引物正常设计。本文所用引物见表2。The construction of the expression vector in this experiment adopts homologous recombination method, so the primer design is different. When designing sgRNA primers, it is necessary to add 20 bp of homologous sequences to the 5' ends of the upstream and downstream primers respectively, as recombination adapters, and other primers are designed normally. The primers used in this paper are listed in Table 2.
表2本文所用的PCR引物序列Table 2 PCR primer sequences used in this paper
注:下划线部分表示同源末端序列,加粗斜体部分为靶位点序列。Note: The underlined part indicates the homologous end sequence, and the bold italic part is the target site sequence.
4表达载体PHDE-ASgRNA的构建4 Construction of expression vector PHDE-ASgRNA
4.1PCR扩增目的基因4.1PCR amplification of the target gene
PCR反应体系(PrimeSTAR Max DNAPolymerase)见表3。总体积共100μL,混匀后迷你离心机离心(使管壁上液体收集至管底)1秒,用移液枪轻轻吹打后(离心后管底浓度高)平均分装至2个PCR小管。整个操作过程需在冰上操作,迅速完成。See Table 3 for the PCR reaction system (PrimeSTAR Max DNA Polymerase). The total volume is 100 μL. After mixing, centrifuge in a mini centrifuge (to collect the liquid on the tube wall to the bottom of the tube) for 1 second, and then gently pipette with a pipette gun (the concentration at the bottom of the tube is high after centrifugation) and evenly distribute to 2 small PCR tubes. . The whole operation process needs to be operated on ice and completed quickly.
PCR反应条件(PrimeSTARMax DNAPolymerase)为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s),72℃保温。The PCR reaction conditions (PrimeSTARMax DNA Polymerase) were preheated at 98°C for 4 minutes, 40 cycles (98°C for 45s, 55°C for 10s, 72°C for 30s), and 72°C for incubation.
表3 AS-gRNA基因PCR扩增反应体系Table 3 AS-gRNA gene PCR amplification reaction system
4.2琼脂糖凝胶电泳纯化与目的片段回收4.2 Agarose gel electrophoresis purification and target fragment recovery
(1)琼脂糖凝胶配制(3孔梳)称取0.42g琼脂糖溶于28mL 1×TAE缓冲液,即 1.5%琼脂糖凝胶;(1) Preparation of agarose gel (3-hole comb): Weigh 0.42g of agarose and dissolve it in 28mL of 1×TAE buffer, namely 1.5% agarose gel;
(2)电泳将PCR产物全部加入一个胶孔,100bp marker为比对,电压100V,电流50mA,功率50W,时间1h,电泳液为1×TAE;(2) Electrophoresis Add all PCR products into one gel well, 100bp marker for comparison, voltage 100V, current 50mA, power 50W, time 1h, electrophoresis solution 1×TAE;
(3)凝胶成像系统上拍照记录,然后在紫外透照台上切下目的条带;(3) Take photos and record on the gel imaging system, and then cut out the target band on the UV transillumination platform;
(4)将目的条带装入1.5mL EP管,-4℃冷冻20min,15000rpm低温离心20min,最后吸取上清液于PCR小管中,测定浓度,记录OD260/OD280,-20℃保存。(4) Put the target band into a 1.5mL EP tube, freeze at -4°C for 20min, centrifuge at 15,000rpm for 20min at low temperature, and finally pipette the supernatant into a small PCR tube, measure the concentration, record OD 260 /OD 280 , and store at -20°C.
4.3 PHDE-mCh质粒的酶切(线性化)和鉴定4.3 Digestion (linearization) and identification of PHDE-mCh plasmid
酶切体系见表4,总体积20μL,50℃恒温过夜;The enzyme digestion system is shown in Table 4, the total volume is 20 μL, and the temperature is kept at 50°C overnight;
电泳分析:以酶切前的PHDE-mCh质粒作对照,配制0.5%的琼脂糖凝胶进行电泳。Electrophoresis analysis: 0.5% agarose gel was prepared for electrophoresis with the PHDE-mCh plasmid before digestion as a control.
表4 PHDE-mCh载体酶切体系Table 4 PHDE-mCh vector digestion system
4.4目的片段与载体重组4.4 Target fragment and vector recombination
取一个PCR小管,先后加入0.3μL线性化PHDE-mCh载体、3μL重组酶以及1.2μL 回收的AS基因片段。采用重组酶技术,将回收纯化后的AS基因片段与BsaI酶切线性化的载体重组连接。组装条件为50℃恒温反应1h。Take a small PCR tube, add 0.3 μL linearized PHDE-mCh vector, 3 μL recombinase and 1.2 μL recovered AS gene fragment successively. Using recombinase technology, the recovered and purified AS gene fragment was recombined with the BsaI-digested and linearized vector. The assembly condition was constant temperature reaction at 50°C for 1 h.
4.5重组子转化与鉴定4.5 Recombinant transformation and identification
(1)转化:取出1管(100μL)制备好的DH5a感受态细胞,放在冰上融化;将重组产物(约4.5μL)全部加入管中,轻轻混匀,在冰上放置30分钟;将离心管放置42℃热击90秒,勿摇动离心管,快速将离心管转移至冰浴2分钟以上;(1) Transformation: Take out 1 tube (100 μL) of prepared DH5a competent cells and put it on ice to thaw; add all the recombinant products (about 4.5 μL) into the tube, mix gently, and place on ice for 30 minutes; Place the centrifuge tube at 42°C for 90 seconds, do not shake the centrifuge tube, and quickly transfer the centrifuge tube to the ice bath for more than 2 minutes;
(2)复苏:加500μL无抗生素的LB液体培养基,150rpm摇菌40-60分钟;(2) Recovery: Add 500 μL LB liquid medium without antibiotics, shake the bacteria at 150 rpm for 40-60 minutes;
(3)培养:5000rpm离心1min,弃上清,剩下约100μL管底菌涂平板(加50mg/L 卡那霉素的YEP固体培养基),设置阳性对照(不加卡那霉素的YEP固体平板涂布少量菌液)和阴性对照(加50mg/L卡那霉素的YEP固体培养基,涂布100μL无菌水),倒置培养皿,于37℃培养12h,观察菌落;(3) Cultivation: Centrifuge at 5000rpm for 1min, discard the supernatant, and leave about 100μL tube bottom plate (YEP solid medium with 50mg/L kanamycin added), and set a positive control (YEP without kanamycin) Coat a small amount of bacterial liquid on the solid plate) and negative control (YEP solid medium with 50 mg/L kanamycin, and coat 100 μL sterile water), invert the petri dish, incubate at 37°C for 12 hours, and observe the colonies;
(4)筛选重组子:挑取一个单菌落至1.5mL离心管,加入500μL含50mg/L卡那霉素的YEP液体培养基(挑取单菌落数不少于10个),200rpm、37℃摇菌3-4h;做菌液PCR(体系见表3-4),PCR反应条件为:94℃3min,30个循环(94℃30S,55℃30S, 72℃45S),72℃2min,并以1.2%琼脂糖凝胶电泳鉴定产物。(4) Screen recombinants: pick a single colony to a 1.5mL centrifuge tube, add 500 μL of YEP liquid medium containing 50 mg/L kanamycin (the number of single colonies picked is not less than 10), 200 rpm, 37 ° C Shake the bacteria for 3-4 hours; do bacterial liquid PCR (see Table 3-4 for the system). The product was identified by 1.2% agarose gel electrophoresis.
表5菌液PCR体系Table 5 Bacterial solution PCR system
4.6重组质粒的提取和鉴定4.6 Extraction and identification of recombinant plasmids
准备灭菌的10mL离心管,加入3mL含50mg/L卡那霉素的液体YEP培养基,选取阳性克隆各100μL分别加入各管,37℃、200rpm摇床过夜培养。第二天提取质粒,测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,体系见表6。用1.2%浓度的琼脂糖凝胶电泳PCR产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒。Prepare a sterilized 10 mL centrifuge tube, add 3 mL of liquid YEP medium containing 50 mg/L kanamycin, select 100 μL of each positive clone into each tube, and culture overnight at 37°C and 200 rpm on a shaker. The next day, the plasmid was extracted, its concentration was measured, and the OD 260 /OD 280 was recorded. The plasmid was used as a template for PCR analysis. The system is shown in Table 6. The PCR product was electrophoresed with 1.2% agarose gel, and the extracted recombinant plasmid was electrophoresed with 0.5% agarose gel.
质粒提取操作步骤:Plasmid extraction steps:
(1)取1.5mL培养液倒入1.5mLEppendorf管中,10000rmp离心1min,弃上清,重复收集一次,将管倒置于滤纸上使残余菌液流尽;(1) Pour 1.5mL of culture solution into a 1.5mL Eppendorf tube, centrifuge at 10,000rmp for 1min, discard the supernatant, collect again, and place the tube upside down on filter paper to drain the remaining bacterial solution;
(2)菌体沉淀重悬浮于200μL溶液Ⅰ中(需剧烈振荡,可以用涡旋,使菌体分散混匀,放置2分钟以上);(2) Resuspend the bacterial cell pellet in 200 μL solution I (violent shaking is required, you can use a vortex to disperse and mix the bacterial cell, and place it for more than 2 minutes);
(3)加入溶液Ⅱ300μL,盖紧管口,快速温和颠倒Eppendorf管数次,以混匀内容物(千万不要振荡,要轻柔,不要超过2分钟);(3) Add 300 μL of solution II, cap the tube tightly, quickly and gently invert the Eppendorf tube several times to mix the contents (do not shake, be gentle, and do not exceed 2 minutes);
(4)加入预冷的溶液Ⅲ300μL,盖紧管口,将管温和颠倒数次混匀,见白色絮状沉淀。15000rmp离心10min;(4) Add 300 μL of pre-cooled solution III, cap the tube tightly, and gently invert the tube several times to mix well, and white flocculent precipitates can be seen. Centrifuge at 15000rmp for 10min;
(5)取750μL上清液移入加有750μL异丙醇的Eppendorf管,颠倒数次匀,15000rmp离心10min;(5) Transfer 750 μL of supernatant to an Eppendorf tube added with 750 μL of isopropanol, invert several times to homogenize, and centrifuge at 15,000 rpm for 10 min;
(6)弃上清,加入1mL 75%乙醇,颠倒数次,然后15000rmp离心2min;(6) Discard the supernatant, add 1 mL of 75% ethanol, invert several times, and then centrifuge at 15000rmp for 2min;
(7)将管倒置于滤纸尽量使液体流尽,室温干燥30分钟;(7) Put the tube upside down on the filter paper to drain the liquid as much as possible, and dry it at room temperature for 30 minutes;
(8)加入30μL灭菌的ddH2O溶解沉淀,浓度测定,记录OD260/OD280。(8) Add 30 μL of sterilized ddH 2 O to dissolve the precipitate, measure the concentration, and record OD 260 /OD 280 .
表6重组质粒PCR分析反应体系Table 6 Reaction system for PCR analysis of recombinant plasmids
注:总体积10μL,反应条件为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s), 72℃保温。Note: The total volume is 10 μL, and the reaction conditions are 98°C preheating for 4 minutes, 40 cycles (98°C for 45 s, 55°C for 10 s, 72°C for 30 s), and 72°C for heat preservation.
4.7重组质粒送样测序4.7 Recombinant plasmid sample delivery and sequencing
将质粒PCR鉴定为阳性的质粒送至生工广州分公司测序验证。测序引物为Μ626-IDF。The plasmids identified as positive by plasmid PCR were sent to Sangon Guangzhou Branch for sequencing verification. The sequencing primer was M626-IDF.
5同源重组修复表达载体PHDE-ASgRNA-AS的构建5 Construction of Homologous Recombination Repair Expression Vector PHDE-ASgRNA-AS
PHDE-ASgRNA-AS重组质粒是在PHDE-ASgRNA-mCh重组质粒的基础上,在特定位点装入与AS1基因敲除序列同源但缺失部分碱基序列的同源臂(EcoR1位点插入),作为同源重组修复的模板,达到定点引入回复突变基因的目的。The PHDE-ASgRNA-AS recombinant plasmid is based on the PHDE-ASgRNA-mCh recombinant plasmid, and is loaded with a homology arm homologous to the AS1 gene knockout sequence but missing part of the base sequence at a specific site (EcoR1 site insertion) , as a template for homologous recombination repair, to achieve the purpose of site-specific introduction of reverted mutant genes.
5.1 PCR扩增同源臂片段5.1 PCR amplification of homology arm fragments
PCR反应体系(PrimeSTAR Max DNAPoLymerase)见表7。总体积共100μL,混匀后平均分装至2个PCR小管。整个操作过程需在冰上操作,迅速完成。See Table 7 for the PCR reaction system (PrimeSTAR Max DNAPoLymerase). The total volume is 100 μL, and after mixing, divide evenly into 2 small PCR tubes. The whole operation process needs to be operated on ice and completed quickly.
PCR反应条件(PrimeSTAR Max DNAPoLymerase)为98℃预热4min,40个循环 (98℃45s,55℃10s,72℃30s),72℃保温。The PCR reaction conditions (PrimeSTAR Max DNAPoLymerase) were preheated at 98°C for 4 minutes, 40 cycles (98°C for 45s, 55°C for 10s, 72°C for 30s), and 72°C for incubation.
表7同源臂EcoR1PCR扩增反应体系Table 7 Homologous arm EcoR1PCR amplification reaction system
5.2琼脂糖凝胶电泳纯化与目的片段回收5.2 Agarose gel electrophoresis purification and target fragment recovery
(1)琼脂糖凝胶配制(大梳子)称取0.42g琼脂糖溶于28mL 1×TAE缓冲液,即1.5%琼脂糖凝胶;(1) Preparation of agarose gel (big comb): Weigh 0.42g of agarose and dissolve it in 28mL of 1×TAE buffer, namely 1.5% agarose gel;
(2)电泳将PCR产物全部加入一个胶孔,100bp marker为比对,电压100V,电流50mA,功率50W,时间1h,电泳液为1×TAE;(2) Electrophoresis Add all PCR products into one gel well, 100bp marker for comparison, voltage 100V, current 50mA, power 50W, time 1h, electrophoresis solution 1×TAE;
(3)凝胶成像系统上拍照记录,然后在紫外透照台上切下目的条带;(3) Take photos and record on the gel imaging system, and then cut out the target band on the UV transillumination platform;
(4)将目的条带装入1.5mL EP管,-4℃冷冻20min,15000rpm低温离心20min,吸取上清液于PCR小管中,测定浓度,记录OD260/OD280,-20℃保存。(4) Put the target band into a 1.5mL EP tube, freeze at -4°C for 20 minutes, centrifuge at 15,000 rpm for 20 minutes, draw the supernatant into a small PCR tube, measure the concentration, record OD 260 /OD 280 , and store at -20°C.
5.3 PHDE-ASgRNA-mCh质粒的酶切(线性化)和鉴定5.3 Digestion (linearization) and identification of PHDE-ASgRNA-mCh plasmid
酶切体系见表8,总体积20μL,37℃恒温反应15min;The enzyme digestion system is shown in Table 8, with a total volume of 20 μL and a constant temperature reaction at 37°C for 15 minutes;
电泳分析:以酶切前的PHDE-ASgRNA-mCh质粒作对照,配制0.5%的琼脂糖凝胶进行电泳分析。Electrophoresis analysis: using the PHDE-ASgRNA-mCh plasmid before digestion as a control, prepare 0.5% agarose gel for electrophoresis analysis.
表8 PHDE-ASgRNA-mCh载体酶切体系Table 8 PHDE-ASgRNA-mCh vector digestion system
5.4目的片段与载体重组5.4 Target fragment and vector recombination
取一个PCR小管,先后加入0.3μL线性化PHDE-ASgRNA-mCh载体、3μL重组酶以及1.2μL回收的同源臂片段。组装条件为50℃恒温反应1h。Take a small PCR tube and add 0.3 μL linearized PHDE-ASgRNA-mCh vector, 3 μL recombinase and 1.2 μL recovered homology arm fragments successively. The assembly condition was constant temperature reaction at 50°C for 1 h.
5.5重组子转化与鉴定5.5 Recombinant Transformation and Identification
将同源臂片段与线性化的PHDE-ASgRNA-mCh载体的重组产物利用热击法转化DH5a感受态大肠杆菌,复苏培养12h,挑单菌落摇床培养3~4h,做菌液PCR鉴定,用 0.5%琼脂糖凝胶电泳分析。PCR反应体系见表9,PCR反应条件为:94℃3min,30个循环(94℃30S,55℃30S,72℃45S),72℃2min。The recombination product of the homology arm fragment and the linearized PHDE-ASgRNA-mCh vector was transformed into DH5a competent Escherichia coli by heat shock method, revived and cultured for 12 hours, single colonies were cultured on a shaker for 3-4 hours, and the bacterial liquid PCR was used for identification. 0.5% agarose gel electrophoresis analysis. The PCR reaction system is shown in Table 9. The PCR reaction conditions are: 94°C for 3 minutes, 30 cycles (94°C for 30S, 55°C for 30S, 72°C for 45S), and 72°C for 2min.
表9菌液PCR体系Table 9 Bacterial solution PCR system
5.6重组质粒的提取和鉴定5.6 Extraction and identification of recombinant plasmids
准备灭菌的10mL离心管若干支,每管加入3mL含50mg/L卡那霉素的液体YEP 培养基,选取阳性克隆各100μL分别加入各管,37℃、200rpm摇床过夜培养。第二天提取质粒(操作见3.3.6质粒提取),测定浓度,记录OD260/OD280,以该质粒为模板进行PCR分析,体系见表10。用1.2%浓度的琼脂糖凝胶电泳PCR产物,0.5%浓度的琼脂糖凝胶电泳提取的重组质粒。Prepare several sterilized 10mL centrifuge tubes, add 3mL liquid YEP medium containing 50mg/L kanamycin to each tube, select 100μL of positive clones and add them to each tube, culture overnight at 37°C and 200rpm on a shaker. The plasmid was extracted the next day (see 3.3.6 Plasmid Extraction for operation), the concentration was measured, and the OD 260 /OD 280 was recorded. The plasmid was used as a template for PCR analysis. See Table 10 for the system. The PCR product was electrophoresed with 1.2% agarose gel, and the extracted recombinant plasmid was electrophoresed with 0.5% agarose gel.
表10重组质粒PCR分析反应体系Table 10 Reaction system for PCR analysis of recombinant plasmids
注:总体积10μL,反应条件为98℃预热4min,40个循环(98℃45s,55℃10s,72℃30s),72℃。Note: The total volume is 10 μL, and the reaction conditions are 98°C preheating for 4 minutes, 40 cycles (98°C for 45 s, 55°C for 10 s, 72°C for 30 s), and 72°C.
5.7重组质粒送样测序5.7 Recombinant plasmid sample delivery and sequencing
将质粒PCR鉴定为阳性的质粒送样到生工广州分公司测序,测序引物为ECOR1-F。The plasmid identified as positive by plasmid PCR was sent to Sangon Guangzhou Branch for sequencing, and the sequencing primer was ECOR1-F.
序列表sequence listing
<110> 广东石油化工学院<110> Guangdong Petrochemical Institute
<120> 一种基于CRISPR/Cas9体系的同源修复载体构建方法<120> A method for constructing homologous repair vector based on CRISPR/Cas9 system
<160> 6<160> 6
<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0
<210> 1<210> 1
<211> 2400<211> 2400
<212> DNA<212>DNA
<213> 未知(Unknown)<213> Unknown (Unknown)
<400> 1<400> 1
ttctgtcttc tacttgaatt tacacatgta aagatataaa tcgattttat ttataaacca 60ttctgtcttc tacttgaatt tacacatgta aagatataaa tcgattttat ttataaacca 60
aagtgttgca gctgactaaa tcaacatcaa gcttgagaaa acaaagccat ggataaactg 120aagtgttgca gctgactaaa tcaacatcaa gcttgagaaa acaaagccat ggataaactg 120
aagtgataaa tggaacacaa aggtaaaaga aacaaataca aagctgaggt aaggaaccca 180aagtgataaa tggaacacaa aggtaaaaga aacaaataca aagctgaggt aaggaaccca 180
aaagtctaag taaacattgg agacacccaa atgatcaaag acaaaaaaaa acaaaaaaaa 240aaagtctaag taaacattgg agacacccaa atgatcaaag acaaaaaaaa acaaaaaaaa 240
acaaaaaaaa aaccttacat tacattacaa gttacaacaa agagtttagg agacggtggg 300acaaaaaaaa aaccttacat tacattacaa gttacaacaa agagtttagg agacggtggg 300
gcggtctaat ctgcaaccca tttgttgttc aagaaacttg gtgagtctga tatgcctaga 360gcggtctaat ctgcaaccca tttgttgttc aagaaacttg gtgagtctga tatgcctaga 360
ggtccattga tcagccagtt tctggtcttt ggcctctgcg tctcgcctca aaccaacgag 420ggtccattga tcagccagtt tctggtcttt ggcctctgcg tctcgcctca aaccaacgag 420
ctgttctctg tactctcctt cgatcttctc cattgcgttc ttctgctctt ccctaagagc 480ctgttctctg tactctcctt cgatcttctc cattgcgttc ttctgctctt ccctaagagc 480
tttcatcttt gcctcaatct cctccatctt ctccctttgt ctacacgtct tctctgactc 540tttcatcttt gcctcaatct cctccatctt ctccctttgt ctacacgtct tctctgactc 540
tagctgcagc tccagccttc ttagcctcca tgcagcctct ttcttatggt ctgcccaagc 600tagctgcagc tccagccttc ttagcctcca tgcagcctct ttcttatggt ctgcccaagc 600
tcggtgccct tcctccaact ctctacaaca ctccacaagc tctgacaaga acacactctc 660tcggtgccct tcctccaact ctctacaaca ctccacaagc tctgacaaga acacactctc 660
gctactccca ctacaagacg gcatcatact ccctaacaca agtccccctg gaccgttctc 720gctactccca ctacaagacg gcatcatact ccctaacaca agtccccctg gaccgttctc 720
tgctctctca ggctgttgct gctgcagcca cgggattggc ggttgaggcg cagctgcagc 780tgctctctca ggctgttgct gctgcagcca cgggattggc ggttgaggcg cagctgcagc 780
cactgtggaa ggcgataatg tcaaagttac cgagggaggc cttgcaacaa cattgttccc 840cactgtggaa ggcgataatg tcaaagttac cgagggaggc cttgcaacaa cattgttccc 840
attgttagaa gtagctaacc aaggcgggat cactgggtta ggaggctgaa cttgttgttc 900attgttagaa gtagctaacc aaggcgggat cactgggtta ggaggctgaa cttgttgttc 900
agaatgtaaa aaccctccat tcgaattagc catcacaacc gttgcagcag cggcagcagc 960agaatgtaaa aaccctccat tcgaattagc catcacaacc gttgcagcag cggcagcagc 960
agggacaacg ttagaccgct ctttgacaag cttctcagcg aaactctcga gaatccgatc 1020agggacaacg ttagaccgct ctttgacaag cttctcagcg aaactctcga gaatccgatc 1020
gtacttactc tcgtcaatag gctcaactct cttgttactc tctttctctt ctctctgttg 1080gtacttactc tcgtcaatag gctcaactct cttgttactc tctttctctt ctctctgttg 1080
cttctcctta aacacttccc accacttccc taaccgcttt gccgtcctcc cgggaacctc 1140cttctcctta aacacttccc accacttccc taaccgcttt gccgtcctcc cgggaacctc 1140
agcagcaatc ttcttccact tgttgccgtg tttctcctga agacggatca caagcctctg 1200agcagcaatc ttcttccact tgttgccgtg tttctcctga agacggatca caagcctctg 1200
ctcttcctct gtcaaagacc ctttcttgat ccctggctta agataattct tccatctctc 1260ctcttcctct gtcaaagacc ctttcttgat ccctggctta agataattct tccatctctc 1260
taaacaagac ttggcgtcac ggttcaaagg tttgttcata cgctcagaca caagatgcca 1320taaacaagac ttggcgtcac ggttcaaagg tttgttcata cgctcagaca caagatgcca 1320
ttctctcgga ccgaactgtc taacgtaagc acgtaacaat gcatcttctt caccactcca 1380ttctctcgga ccgaactgtc taacgtaagc acgtaacaat gcatcttctt caccactcca 1380
acgttgtctc tctttcatct cctactcctc ctgacatcac ttcttcccat ctcaccatcc 1440acgttgtctc tctttcatct cctactcctc ctgacatcac ttcttcccat ctcaccatcc 1440
ttcttcatct gtaccaaatt caaaatcaac ccgtttcata aatctctcca attcaaaact 1500ttcttcatct gtaccaaatt caaaatcaac ccgtttcata aatctctcca attcaaaact 1500
ctaaaagatc gaaacaaatc tacaagatct gtcgaatttt cgaattagaa attacaaagt 1560ctaaaagatc gaaacaaatc tacaagatct gtcgaatttt cgaattagaa attacaaagt 1560
ctgaaaaatt tccgtttcaa gaaatgaaaa tgacaaaaac tttgacaatg tttgaagcaa 1620ctgaaaaatt tccgtttcaa gaaatgaaaa tgacaaaaac tttgacaatg tttgaagcaa 1620
aacttggaat aatttgttat tatcacacta tacaacctat attctggaaa ccaaacaggg 1680aacttggaat aatttgttat tatcacacta tacaacctat attctggaaa ccaaacaggg 1680
gaaattaatg ctgaccccaa aacactatta agcaaagact tattaagaag ataagagagt 1740gaaattaatg ctgaccccaa aacactatta agcaaagact tattaagaag ataagagagt 1740
taaaattatt actataaaac aaaataaaaa tgcttaccaa atgatattga aaagataaat 1800taaaattatt actataaaac aaaataaaaa tgcttaccaa atgatattga aaagataaat 1800
aatcccaaac tcaagagcaa cttccatcac acagatttgc tctctctctc actttttttt 1860aatcccaaac tcaagagcaa cttccatcac acagatttgc tctctctctc actttttttt 1860
ttttatatag ttggagaaaa tggaagagag aaaacgaaaa gaccaaagtg agagaggctt 1920ttttatatag ttggagaaaa tggaagagag aaaacgaaaa gaccaaagtg agagaggctt 1920
ttaaaaccag acgacgtaca cgattagacc acagagacgg cataattaaa ataaaatctt 1980ttaaaaccag acgacgtaca cgattagacc acagagacgg cataattaaa ataaaatctt 1980
taaaaaaaaa aagagagaaa aagtttaccg actgagacac agacgttttc ccctttttac 2040taaaaaaaaa aagagagaaa aagtttaccg actgagacac agacgttttc ccctttttac 2040
atcacaagtg gggaaaaaaa aaactctgac agaggcgcgt ggaggtgaaa agttgaaatt 2100atcacaagtg gggaaaaaaa aaactctgac agaggcgcgt ggaggtgaaa agttgaaatt 2100
ccataagttc gttgtttgtc attgacaata ttaaaccttt ttttatatat atttactaca 2160ccataagttc gttgtttgtc attgacaata ttaaaccttt ttttatatat atttactaca 2160
ttgggatctc aaaattcatt tttctataac attatgagaa ataaaatgac aatctaatgt 2220ttgggatctc aaaattcatt tttctataac attatgagaa ataaaatgac aatctaatgt 2220
aggggatgct ttaaatttaa atgaaaaagt gttgtacttt agtggctgaa aagtcattta 2280aggggatgct ttaaatttaa atgaaaaagt gttgtacttt agtggctgaa aagtcattta 2280
cttgtcaaaa tgatagaaga aaaactaacc attcaagaaa ataatgctcc atttataaac 2340cttgtcaaaa tgatagaaga aaaactaacc attcaagaaa ataatgctcc atttataaac 2340
aactccttca ctcaaacaat agaattttat gtccaatttg agtaacatta atttccactt 2400aactccttca ctcaaacaat agaattttat gtccaatttg agtaacatta atttccactt 2400
<210> 2<210> 2
<211> 60<211> 60
<212> DNA<212>DNA
<213> 未知(Unknown)<213> Unknown (Unknown)
<400> 2<400> 2
ctagagtcga agtagtgatt ggcgggatca ctgggttagg gttttagagc tagaaatagc 60ctagagtcga agtagtgatt ggcgggatca ctgggttagg gttttagagc tagaaatagc 60
<210> 3<210> 3
<211> 60<211> 60
<212> DNA<212>DNA
<213> 未知(Unknown)<213> Unknown (Unknown)
<400> 3<400> 3
tgctatttct agctctaaaa ctctcaccat ccttcttcat caatctctta gtcgactcta 60tgctatttct agctctaaaa ctctcaccat ccttcttcat caatctctta gtcgactcta 60
<210> 4<210> 4
<211> 40<211> 40
<212> DNA<212>DNA
<213> 未知(Unknown)<213> Unknown (Unknown)
<400> 4<400> 4
taattgattg acaacgaatt gcgcagctgc agccactgtg 40taattgattg acaacgaatt gcgcagctgc agccactgtg 40
<210> 5<210> 5
<211> 40<211> 40
<212> DNA<212>DNA
<213> 未知(Unknown)<213> Unknown (Unknown)
<400> 5<400> 5
acagctatga catgattacg gggaagaagt gatgtcagga 40acagctatga catgattacg gggaagaagt gatgtcagga 40
<210> 6<210> 6
<211> 25<211> 25
<212> DNA<212>DNA
<213> 未知(Unknown)<213> Unknown (Unknown)
<400> 6<400> 6
tgtcccagga ttagaatgat taggc 25tgtcccagga ttagaatgat taggc 25
Claims (1)
- A kind of 1. homologous repair vector construction method based on CRISPR/Cas9 systems, it is characterised in that:Include the following steps:(1) target site designsThe selection of sgRNA target sites uses CRISPR Photographing On-line instruments, with arabidopsis AS genes:Sequence 1 is target gene, selection Close to the G-N19-NGG 23bp sequences of 5' ends highest scoring, wherein first G is the initial signal site of tiny RNA transcription, NGG It is the PAM sequences of the Cas9 assignments of genes gene mapping, it is necessary to be inserted into gRNA carriers is the common 20bp sequences of G-N19, designs two target practice positions altogether The Target of point, realizes that large fragment knocks out;Load the homologous reparation fragment of AS genes on the targeting vector of AS genes at the same time, it is real Existing AS genes do template with the homology arm of the AS genes on carrier and are repaired while CAS9 is knocked out;(2) design of primers is carried outAs-gRNA-F sequences 2:CTAGAGTCGAAGTAGTGATTGGCGGGATCACTGGGTTAGGGTTTTAGAGCTAGAAATAGCAs-gRNA-R sequences 3:TGCTATTTCTAGCTCTAAAACTCTCACCATCCTTCTTCATCAATCTCTTAGTCGACTCTAEcoR1-F sequences 4:TAATTGATTGACAACGAATTGCGCAGCTGCAGCCACTGTGEcoR1-R sequences 5:ACAGCTATGACATGATTACGGGGAAGAAGTGATGTCAGGAμ 626-IDF sequences 6:TGTCCCAGGATTAGAATGATTAGGC(3) structure of targeting vector PHDE-ASgRNA1. PCR amplification purpose fragment:Totally 100 μ L, average mark are filled to 2 PCR tubules to PCR reactions cumulative volume;PCR reaction conditions are 98 DEG C of preheatings 4min, 40 circulations 98 DEG C of 45s, 55 DEG C of 10s, 72 DEG C of 30s, 72 DEG C of insulations;Recycled 2. agarose gel electrophoresis is purified with purpose fragment:1.5% agarose gel electrophoresis PCR product, in ultraviolet transillumination Purpose band is cut on platform, purpose band is loaded into 1.5mL EP pipes, -4 DEG C of freezing 20min, 15000rpm low-temperature centrifugations 20min, Aspirate supernatant is in PCR tubules, measured concentration, records OD260/OD280, -20 DEG C of preservations;3. the digestion and identification of PHDE plasmids:20 μ L of digestion system cumulative volume, 50 DEG C of constant temperature are stayed overnight, then with the PHDE before digestion Plasmid compares, and the Ago-Gel for preparing 0.5% carries out electrophoretic analysis;4. purpose fragment is recombinated with carrier:A PCR tubule is taken, successively adds 0.3 μ L linearisation PHDE carriers, 3 μ L recombinases And 1.2 μ L recycling AS genetic fragments, using restructuring zymotechnic, by the AS genetic fragments after recovery purifying and BsaI digestion lines Property carrier restructuring connection, assembling condition is 50 DEG C of isothermal reaction 1h;5. recon converts and identification:Recombinant products are utilized into thermal shock method conversion DH5a competence Escherichia coli, recovery culture 12h, chooses single bacterium colony 3~4h of shaking table culture, does bacterium solution PCR identifications, is analyzed with 0.5% agarose gel electrophoresis, PCR reaction conditions For:94 DEG C of 3min, 30 circulations 94 DEG C of 30S, 55 DEG C of 30S, 72 DEG C of 45S, 72 DEG C of 2min;6. the extraction and identification of recombinant plasmid:Alkaline lysis method of extracting plasmid, measured concentration, note are used after positive colony is incubated overnight Record OD260/OD280, PCR analyses are carried out by template of the plasmid, with the agarose gel electrophoresis PCR product of 1.2% concentration, The recombinant plasmid of the agarose gel electrophoresis extraction of 0.5% concentration;7. recombinant plasmid sample presentation is sequenced:The plasmid that plasmid PCR is accredited as to the positive is sent to raw work Guangzhou Branch sequence verification, is surveyed Sequence primer is Μ 626-IDF;(4) structure of homologous recombination repair template vector PHDE-ASgRNA-AS1. PCR amplification AS DNA homolog arm pieces sections:As hereinbefore, cumulative volume totally 100 μ L are average after mixing for PCR reaction systems To 2 PCR tubules, PCR reaction conditions are 98 DEG C of preheatings 4min, 40 circulations 98 DEG C of 45s, 55 DEG C of 10s, 72 DEG C of 30s, 72 for packing DEG C insulation;Recycled 2. agarose gel electrophoresis is purified with purpose fragment:By gel extraction purpose bar after 1.5% agarose gel electrophoresis Band, surveys concentration, records OD260/OD280, -20 DEG C of preservations;3. the digestion and identification of PHDE-ASgRNA plasmids:Digestion system cumulative volume 20 μ L, 37 DEG C of isothermal reaction 15min, are used 0.5% Ago-Gel carries out electrophoretic analysis;4. purpose fragment is recombinated with carrier:PCR tubules are taken, successively add 0.3 μ L linearisation PHDE-ASgRNA carriers, 3 μ L restructuring Enzyme and the homology arm fragment of 1.2 μ L recycling, assembling condition is 50 DEG C of isothermal reaction 1h;5. recon converts and identification:Recombinant products are utilized into thermal shock method conversion DH5a competence Escherichia coli, recovery culture 12h, chooses single bacterium colony 3~4h of shaking table culture, does bacterium solution PCR identifications, is analyzed with 0.5% agarose gel electrophoresis;PCR reaction conditions For:94 DEG C of 3min, 30 circulations 94 DEG C of 30S, 55 DEG C of 30S, 72 DEG C of 45S, 72 DEG C of 2min;6. the extraction and identification of recombinant plasmid:Plasmid is extracted after positive colony is incubated overnight, measured concentration, records OD260/ OD280, PCR analyses, with the agarose gel electrophoresis PCR product of 1.2% concentration, 0.5% concentration are carried out by template of the plasmid The recombinant plasmid of agarose gel electrophoresis extraction;7. recombinant plasmid sample presentation is sequenced:The plasmid sample presentation that plasmid PCR is accredited as the positive is sequenced to raw work Guangzhou Branch sequencing Primer is EcoR1-F.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710981059.7A CN107937427A (en) | 2017-10-20 | 2017-10-20 | A kind of homologous repair vector construction method based on CRISPR/Cas9 systems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710981059.7A CN107937427A (en) | 2017-10-20 | 2017-10-20 | A kind of homologous repair vector construction method based on CRISPR/Cas9 systems |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107937427A true CN107937427A (en) | 2018-04-20 |
Family
ID=61936290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710981059.7A Pending CN107937427A (en) | 2017-10-20 | 2017-10-20 | A kind of homologous repair vector construction method based on CRISPR/Cas9 systems |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107937427A (en) |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
CN108841845A (en) * | 2018-06-21 | 2018-11-20 | 广东石油化工学院 | A kind of CRISPR/Cas9 carrier and its construction method with selection markers |
CN109880851A (en) * | 2019-03-28 | 2019-06-14 | 西北农林科技大学 | Screening reporter vector and screening method for enriching CRISPR/Cas9-mediated homologous recombination repair cells |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
CN112210573A (en) * | 2020-10-14 | 2021-01-12 | 浙江大学 | DNA template for modifying primary cells by using gene editing and fixed-point insertion method |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
US12359218B2 (en) | 2023-03-03 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014186686A3 (en) * | 2013-05-17 | 2015-01-08 | Two Blades Foundation | Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases |
CN105112435A (en) * | 2015-08-09 | 2015-12-02 | 中国水稻研究所 | Establishment and application of plant multi-gene knockout vector |
US20160145631A1 (en) * | 2013-06-14 | 2016-05-26 | Cellectis | Methods for non-transgenic genome editing in plants |
CN106222197A (en) * | 2013-07-16 | 2016-12-14 | 中国科学院上海生命科学研究院 | Plant Genome pointed decoration method |
CN107034229A (en) * | 2017-04-07 | 2017-08-11 | 江苏贝瑞利生物科技有限公司 | High frequency zone CRISPR/CAS9 gene editings system candidate sgRNA systems and application in a kind of plant |
CN107236737A (en) * | 2017-05-19 | 2017-10-10 | 上海交通大学 | The sgRNA sequences of special target arabidopsis ILK2 genes and its application |
-
2017
- 2017-10-20 CN CN201710981059.7A patent/CN107937427A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014186686A3 (en) * | 2013-05-17 | 2015-01-08 | Two Blades Foundation | Targeted mutagenesis and genome engineering in plants using rna-guided cas nucleases |
US20160145631A1 (en) * | 2013-06-14 | 2016-05-26 | Cellectis | Methods for non-transgenic genome editing in plants |
CN106222197A (en) * | 2013-07-16 | 2016-12-14 | 中国科学院上海生命科学研究院 | Plant Genome pointed decoration method |
CN105112435A (en) * | 2015-08-09 | 2015-12-02 | 中国水稻研究所 | Establishment and application of plant multi-gene knockout vector |
CN107034229A (en) * | 2017-04-07 | 2017-08-11 | 江苏贝瑞利生物科技有限公司 | High frequency zone CRISPR/CAS9 gene editings system candidate sgRNA systems and application in a kind of plant |
CN107236737A (en) * | 2017-05-19 | 2017-10-10 | 上海交通大学 | The sgRNA sequences of special target arabidopsis ILK2 genes and its application |
Non-Patent Citations (4)
Title |
---|
DANIEL G. GIBSON ET AL: "Complete Chemical Synthesis,Assembly,and Cloning of a Mycoplasma genitalium Genome", 《SCIENCE》 * |
LIN,X. ET AL: "ACCESSION NO.NM_129319,Arabidopsis thaliana myb-like HTH transcriptional regulator family protein (AS1),mRNA", 《GENBANK》 * |
XIUHUA GAO ET AL: "An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing", 《PLANT PHYSIOLOGY》 * |
ZHENGYAN FENG ET AL: "Mutigeneration analysis reveals the inheritance specificity,and patterns of CRISPR/Cas-induced gene modifications in Arabiposis", 《PNAS》 * |
Cited By (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12006520B2 (en) | 2011-07-22 | 2024-06-11 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10323236B2 (en) | 2011-07-22 | 2019-06-18 | President And Fellows Of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
US10954548B2 (en) | 2013-08-09 | 2021-03-23 | President And Fellows Of Harvard College | Nuclease profiling system |
US11920181B2 (en) | 2013-08-09 | 2024-03-05 | President And Fellows Of Harvard College | Nuclease profiling system |
US10508298B2 (en) | 2013-08-09 | 2019-12-17 | President And Fellows Of Harvard College | Methods for identifying a target site of a CAS9 nuclease |
US11046948B2 (en) | 2013-08-22 | 2021-06-29 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
US10682410B2 (en) | 2013-09-06 | 2020-06-16 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US10912833B2 (en) | 2013-09-06 | 2021-02-09 | President And Fellows Of Harvard College | Delivery of negatively charged proteins using cationic lipids |
US11299755B2 (en) | 2013-09-06 | 2022-04-12 | President And Fellows Of Harvard College | Switchable CAS9 nucleases and uses thereof |
US10597679B2 (en) | 2013-09-06 | 2020-03-24 | President And Fellows Of Harvard College | Switchable Cas9 nucleases and uses thereof |
US10858639B2 (en) | 2013-09-06 | 2020-12-08 | President And Fellows Of Harvard College | CAS9 variants and uses thereof |
US11124782B2 (en) | 2013-12-12 | 2021-09-21 | President And Fellows Of Harvard College | Cas variants for gene editing |
US10465176B2 (en) | 2013-12-12 | 2019-11-05 | President And Fellows Of Harvard College | Cas variants for gene editing |
US12215365B2 (en) | 2013-12-12 | 2025-02-04 | President And Fellows Of Harvard College | Cas variants for gene editing |
US11053481B2 (en) | 2013-12-12 | 2021-07-06 | President And Fellows Of Harvard College | Fusions of Cas9 domains and nucleic acid-editing domains |
US10704062B2 (en) | 2014-07-30 | 2020-07-07 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US11578343B2 (en) | 2014-07-30 | 2023-02-14 | President And Fellows Of Harvard College | CAS9 proteins including ligand-dependent inteins |
US12344869B2 (en) | 2015-10-23 | 2025-07-01 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US11214780B2 (en) | 2015-10-23 | 2022-01-04 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
US12043852B2 (en) | 2015-10-23 | 2024-07-23 | President And Fellows Of Harvard College | Evolved Cas9 proteins for gene editing |
US10947530B2 (en) | 2016-08-03 | 2021-03-16 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11999947B2 (en) | 2016-08-03 | 2024-06-04 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US10113163B2 (en) | 2016-08-03 | 2018-10-30 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11702651B2 (en) | 2016-08-03 | 2023-07-18 | President And Fellows Of Harvard College | Adenosine nucleobase editors and uses thereof |
US11661590B2 (en) | 2016-08-09 | 2023-05-30 | President And Fellows Of Harvard College | Programmable CAS9-recombinase fusion proteins and uses thereof |
US12084663B2 (en) | 2016-08-24 | 2024-09-10 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
US11306324B2 (en) | 2016-10-14 | 2022-04-19 | President And Fellows Of Harvard College | AAV delivery of nucleobase editors |
US10745677B2 (en) | 2016-12-23 | 2020-08-18 | President And Fellows Of Harvard College | Editing of CCR5 receptor gene to protect against HIV infection |
US11820969B2 (en) | 2016-12-23 | 2023-11-21 | President And Fellows Of Harvard College | Editing of CCR2 receptor gene to protect against HIV infection |
US11898179B2 (en) | 2017-03-09 | 2024-02-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
US11268082B2 (en) | 2017-03-23 | 2022-03-08 | President And Fellows Of Harvard College | Nucleobase editors comprising nucleic acid programmable DNA binding proteins |
US11560566B2 (en) | 2017-05-12 | 2023-01-24 | President And Fellows Of Harvard College | Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation |
US11732274B2 (en) | 2017-07-28 | 2023-08-22 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
US11319532B2 (en) | 2017-08-30 | 2022-05-03 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11932884B2 (en) | 2017-08-30 | 2024-03-19 | President And Fellows Of Harvard College | High efficiency base editors comprising Gam |
US11795443B2 (en) | 2017-10-16 | 2023-10-24 | The Broad Institute, Inc. | Uses of adenosine base editors |
US12157760B2 (en) | 2018-05-23 | 2024-12-03 | The Broad Institute, Inc. | Base editors and uses thereof |
CN108841845A (en) * | 2018-06-21 | 2018-11-20 | 广东石油化工学院 | A kind of CRISPR/Cas9 carrier and its construction method with selection markers |
US12281338B2 (en) | 2018-10-29 | 2025-04-22 | The Broad Institute, Inc. | Nucleobase editors comprising GeoCas9 and uses thereof |
US12351837B2 (en) | 2019-01-23 | 2025-07-08 | The Broad Institute, Inc. | Supernegatively charged proteins and uses thereof |
US11447770B1 (en) | 2019-03-19 | 2022-09-20 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11643652B2 (en) | 2019-03-19 | 2023-05-09 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US12281303B2 (en) | 2019-03-19 | 2025-04-22 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
US11795452B2 (en) | 2019-03-19 | 2023-10-24 | The Broad Institute, Inc. | Methods and compositions for prime editing nucleotide sequences |
CN109880851A (en) * | 2019-03-28 | 2019-06-14 | 西北农林科技大学 | Screening reporter vector and screening method for enriching CRISPR/Cas9-mediated homologous recombination repair cells |
US11912985B2 (en) | 2020-05-08 | 2024-02-27 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
US12031126B2 (en) | 2020-05-08 | 2024-07-09 | The Broad Institute, Inc. | Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence |
CN112210573A (en) * | 2020-10-14 | 2021-01-12 | 浙江大学 | DNA template for modifying primary cells by using gene editing and fixed-point insertion method |
US12359218B2 (en) | 2023-03-03 | 2025-07-15 | President And Fellows Of Harvard College | Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107937427A (en) | A kind of homologous repair vector construction method based on CRISPR/Cas9 systems | |
CN114634941B (en) | Upland cotton GhPP2Cs gene and application thereof in plant dwarfing | |
CN110257420A (en) | Plant gene silencing carrier and its construction method and application based on CasRx | |
CN115873086A (en) | Tomato transcription factor SlWOX13 gene and protein and application thereof | |
CN116286724A (en) | Lectin receptor protein TaLecRLK2 and encoding gene and application thereof | |
CN116574701B (en) | Histone demethylase SlJMJ10, coding gene thereof and application thereof in regulating and controlling tomato fruit size | |
Cao et al. | Extremely simplified cut-dip-budding method for genetic transformation and gene editing in Taraxacum kok-saghyz | |
CN106868036A (en) | A kind of method of rite-directed mutagenesis initiative corn compact plant germplasm and its application | |
CN119101690B (en) | China rose heat shock protein family gene RcHSP70-4 and application thereof in delaying flowering of plants | |
CN105039367B (en) | One grows tobacco NbFER genes and its application in tobacco planting | |
CN102533761B (en) | Pollen-specific promoter and expression vector and application thereof | |
CN116024253B (en) | A method for genome editing of hairy roots of grain amaranth mediated by Agrobacterium rhizogenes | |
CN106222172A (en) | One grows tobacco GCN2 promoter and application thereof | |
CN102517284B (en) | Promoter miR390 and applications thereof | |
Aoki | Resurrection of an ancestral gene: functional and evolutionary analyses of the Ng rol genes transferred from Agrobacterium to Nicotiana | |
CN109371059A (en) | A kind of gene editing method of cotton | |
CN103966220B (en) | The root-specific promoter of synthetic and application thereof | |
CN114181943B (en) | Method for creating early maturing corn germplasm and application thereof | |
CN113604485B (en) | Arabidopsis AtGSNOR gene, protein and application | |
CN117210490B (en) | A PCHR gene that regulates autoflowering in Malus plants and its application | |
CN115838758A (en) | A method for realizing transient expression of genes in lotus petals | |
CN120099079A (en) | Spinach non-tissue culture genetic transformation method | |
CN101838649B (en) | Promoter miR172c and application thereof | |
CN104178484B (en) | The promoter of TmDGAT1b gene and application thereof | |
CN116121264A (en) | Hybridized tulip tree LhMIR394A gene and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |