CN107919258B - A device and method for generating a controllable vortex electron beam - Google Patents
A device and method for generating a controllable vortex electron beam Download PDFInfo
- Publication number
- CN107919258B CN107919258B CN201710896503.5A CN201710896503A CN107919258B CN 107919258 B CN107919258 B CN 107919258B CN 201710896503 A CN201710896503 A CN 201710896503A CN 107919258 B CN107919258 B CN 107919258B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- electron beam
- magnetic field
- needle
- chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010894 electron beam technology Methods 0.000 title claims abstract description 52
- 238000000034 method Methods 0.000 title claims abstract description 30
- 230000008569 process Effects 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 239000003960 organic solvent Substances 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 238000009713 electroplating Methods 0.000 claims description 3
- 239000011810 insulating material Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000002360 preparation method Methods 0.000 claims description 2
- 238000009210 therapy by ultrasound Methods 0.000 claims 2
- 238000009826 distribution Methods 0.000 abstract description 2
- 239000010949 copper Substances 0.000 description 9
- 230000005404 monopole Effects 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical group CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000005642 Aharonov-Bohm effect Effects 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002441 CoNi Inorganic materials 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- 101000760658 Cupiennius salei Cupiennin-2e Proteins 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/10—Lenses
- H01J37/14—Lenses magnetic
- H01J37/141—Electromagnetic lenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/261—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/10—Lenses
- H01J2237/14—Lenses magnetic
- H01J2237/1405—Constructional details
- H01J2237/141—Coils
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Electromagnets (AREA)
Abstract
本发明公开了一种基于TEM产生可控涡旋电子束的装置,其特征在于,包括电子枪,产生平面电子束;磁场控制器;绕有导电线圈的磁针,通过有电学设备控制的芯片设置于平面电子束通道上,所述磁场控制器产生强度可控的磁场,所述磁场用于调制所述平面电子束的相位。本发明还公开了一种利用上述装置产生可控涡旋电子束的方法。该装置在电子显微镜中形成类磁单极的磁场分布,以获得具有单一轨道角动量、量子数可控的涡旋电子束。
The invention discloses a device for generating a controllable vortex electron beam based on TEM, which is characterized by comprising an electron gun to generate a plane electron beam; a magnetic field controller; On the plane electron beam channel, the magnetic field controller generates a magnetic field with controllable strength, and the magnetic field is used to modulate the phase of the plane electron beam. The invention also discloses a method for generating a controllable vortex electron beam by using the above device. The device forms a magnetic monopole-like magnetic field distribution in an electron microscope to obtain a vortex electron beam with a single orbital angular momentum and a controllable quantum number.
Description
技术领域technical field
本发明属于涡旋电子束生成领域,具体涉及一种产生可控涡旋电子束的装置及方法。The invention belongs to the field of vortex electron beam generation, and in particular relates to a device and method for generating a controllable vortex electron beam.
背景技术Background technique
近年来的预测和实验证明:改变电子波阵面的基本结构可以使电子波具有许多特定的性质,该特定的性质能够在常用透射电子显微镜中实现新的功能。如果重构的电子束具有连续的涡旋波阵面,则该电子束被称为涡旋电子束。在涡旋电子束中,电子概率电流遵循涡旋路径,在沿轴传播方向上,具有方位角动量分量。Predictions and experiments in recent years have shown that changing the basic structure of the electron wavefront can make the electron wave have many specific properties, which can realize new functions in commonly used transmission electron microscopes. If the reconstructed electron beam has a continuous vortex wavefront, the electron beam is called a vortex electron beam. In a vortex electron beam, the electron probabilistic current follows a vortex path, in the direction of along-axis propagation, with an azimuthal momentum component.
单一涡旋束可以由Ψ∝f(r)·exp(ilφ)·exp(ikzz)描述,其中,(r,φ,z)是圆柱坐标;kz是射束的前向动量;l为涡旋阶数,也被称为拓扑荷数,单一涡旋束在围绕涡旋中心的回路中相位改变2πl。在单一涡旋束中,涡旋阶数l与绕组数(描述涡旋的关键参数)成正比,此外,涡旋阶数l也与波束的轨道角动量(OAM)有关,这是一个涡旋束非常有趣的特性。携带轨道角动量的涡旋电子束已经在纳米颗粒操控(旋转、移动、束缚等)以及磁性探测(有望达到原子级分辨)方面应用的巨大潜力。A single vortex beam can be described by Ψ∝f(r) exp(ilφ) exp(ik z z), where (r, φ, z) are cylindrical coordinates; k z is the forward momentum of the beam; l is the vortex order, also known as the topological charge, a single vortex bundle changes phase by 2πl in a loop around the vortex center. In a single vortex beam, the vortex order l is proportional to the number of windings (a key parameter describing the vortex), in addition, the vortex order l is also related to the beam's orbital angular momentum (OAM), which is a vortex bunch of very interesting properties. Vortex electron beams carrying orbital angular momentum have great potential for nanoparticle manipulation (rotation, movement, confinement, etc.) as well as magnetic detection (with the promise of atomic resolution).
为控制操纵电子波的相位以产生特定轨道角动量量子数,人们研究了各种各样方法以产生涡旋电子束。到目前,人们能够产生涡旋电子束的方法包括:相位片法、全息重构法、类磁单极场法。Various methods have been investigated to generate vortex electron beams in order to control the phase of manipulating electron waves to generate specific orbital angular momentum quantum numbers. Up to now, the methods of generating vortex electron beams include: phase plate method, holographic reconstruction method, and magnetic-like monopole field method.
相位片法是指利用涡旋相位片,将入射到该涡旋相位片的平面波变成涡旋波。研究者通过平面电子束干涉的方法验证涡旋电子束的产生。一个2π的相位差,将产生拓扑荷数为1的涡旋电子束。该相位片法虽能产生涡旋电子束,但是存在以下缺点:(1)产生的拓扑荷数较低,很多时候不能满足需求;(2)相位片的使用寿命有限,这主要是因为:相位片材料在高能量的电子束的作用下不稳定,容易被破坏、污染;(3)相位片的加工困难,无法做到理想的涡旋形结构,近似阶梯结构的相位片不利用产生单一的涡旋电子束。The phase plate method refers to the use of a vortex phase plate to convert a plane wave incident on the vortex phase plate into a vortex wave. The researchers verified the generation of vortex electron beams by means of plane electron beam interference. A 2π phase difference will produce a vortex electron beam with a topological charge of 1. Although the phase plate method can generate vortex electron beams, it has the following disadvantages: (1) the number of topological charges generated is low, which cannot meet the requirements in many cases; (2) the service life of the phase plate is limited, mainly because: The plate material is unstable under the action of high-energy electron beams, and is easily damaged and polluted; (3) the processing of the phase plate is difficult, and the ideal vortex structure cannot be achieved. Vortex electron beam.
全息重构法是迄今为止用于产生电子涡流束的最常见的方法。研究者利用全息光阑观察到了涡旋电子束,但是所产生的涡旋电子束是多束携带不同轨道角动量的电子束,而拓展其应用需要单一电子束,要从多束中选择单束有很大的困难。此外,全息光阑会将大部分电子束挡住,强度损失较大,效率低,在电子显微表征中表现为信号较弱。Holographic reconstruction is by far the most common method used to generate electron eddy current beams. The researchers observed the vortex electron beam using the holographic aperture, but the generated vortex electron beam is a multi-beam carrying different orbital angular momentum, and expanding its application requires a single electron beam, which needs to be selected from multiple beams. There is great difficulty. In addition, the holographic aperture blocks most of the electron beam, resulting in a large loss of intensity, low efficiency, and a weak signal in electron microscopic characterization.
类磁单极场法是指利用小磁针末端的类磁单极子特性作用于入射的电子束,根据Aharonov-Bohm效应而产生了涡旋电子束。虽然该方法解决了全息重构法遮住大部分电子束的缺点,但是小磁针产生的磁场不可控,无法产生不同轨道角动量的涡旋电子束。The magnetic-like monopole field method refers to the use of the magnetic-like monopole characteristics at the end of a small magnetic needle to act on the incident electron beam, and a vortex electron beam is generated according to the Aharonov-Bohm effect. Although this method solves the disadvantage that the holographic reconstruction method blocks most of the electron beams, the magnetic field generated by the small magnetic needle is uncontrollable and cannot generate vortex electron beams with different orbital angular momentums.
发明内容SUMMARY OF THE INVENTION
鉴于上述,本发明提供了一种产生涡旋电子束的装置及方法。该装置能够产生可控轨道角动量的涡旋电子束。In view of the above, the present invention provides an apparatus and method for generating a vortex electron beam. The device is capable of generating a vortex electron beam with controllable orbital angular momentum.
本发明的第一实施方式提供了一种基于TEM(透射电子显微镜)产生可控涡旋电子束的装置,包括:The first embodiment of the present invention provides a device for generating a controllable vortex electron beam based on a TEM (transmission electron microscope), including:
电子枪,产生平面电子束;An electron gun, which produces a flat electron beam;
磁场控制器;Magnetic field controller;
绕有导电线圈的磁针,通过电学设备负载的芯片设置于平面电子束通道上,受所述磁场控制器作用产生强度可控的磁场,所述磁场用于调制所述平面电子束的相位。A magnetic needle wound with a conductive coil is disposed on the plane electron beam channel through a chip loaded by an electrical device, and is acted by the magnetic field controller to generate a magnetic field with a controllable intensity, and the magnetic field is used to modulate the phase of the plane electron beam.
纳米级磁化铁磁针的尖端处产生有效的单极场。Aharanov-Bohm效应可以用于理解这种单极场对电子束的影响。当平面电子波与假想的磁单极子相互作用时,将会产生涡旋电子束。一个包含磁通量的封闭电荷路径可以获得Aharonov-Bohm(A-B)相:An effective monopole field is generated at the tip of a nanoscale magnetized ferroneedle. The Aharanov-Bohm effect can be used to understand the effect of this monopole field on the electron beam. When a plane electron wave interacts with a hypothetical magnetic monopole, a vortex electron beam is created. A closed charge path containing magnetic flux can obtain the Aharonov-Bohm (A-B) phase:
A是磁矢量电位,是量子物理学中使用的数学工具,是具有真实意义的,A*ds是指包围区域的磁通量。e是电荷,是常数,c是光速。A is the magnetic vector potential, which is a mathematical tool used in quantum physics and has real meaning, and A*ds refers to the magnetic flux in the surrounding area. e is the charge, is a constant and c is the speed of light.
即使这个电子没有穿越有磁场线的区域,由量子力学效应,这个A-B相仍然可以产生。而在经典力学中因没有力作用在电荷上将没有任何效应。在无限圆柱体磁场线区,A-B效应常常被讨论。因为这可以避免在磁场为B=rotA的特殊点产生的特殊效果。形式如下:Even if the electron does not pass through the area with the magnetic field lines, the A-B phase can still be generated due to quantum mechanical effects. Whereas in classical mechanics there would be no effect because there is no force acting on the charge. In the region of infinite cylindrical magnetic field lines, the A-B effect is often discussed. Because this avoids special effects at special points where the magnetic field is B=rotA. The form is as follows:
r是圆柱体半径,r径向矢量。r is the radius of the cylinder, r is the radial vector.
计算垂直穿越半无限圆柱体磁通线的电子的Aharonov-Bohm相,将会获得依赖于圆柱体末端的线性方位角的方程式:Calculating the Aharonov-Bohm phase of the electrons traversing the magnetic flux lines of the semi-infinite cylinder perpendicularly yields an equation that depends on the linear azimuth of the cylinder ends:
这意味着通过的电子确实将转变为涡旋状态:This means that passing electrons will indeed transition into a vortex state:
Ψout=Ψinexp(imφ)Ψ out = Ψ in exp(imφ)
其中m取决于磁单极子的电荷,φ是垂直于电子波传播的平面中的方位角。对于一个真单极场,这里电荷是量子化的,这个导致一个整数m(g=mc/(2*e)),一个完美的相涡旋拓扑电荷m。where m depends on the charge of the magnetic monopole and φ is the azimuth angle in the plane perpendicular to the electron wave propagation. For a true unipolar field, the charge here is quantized, this leads to an integer m (g=mc/(2*e)), a perfect phase vortex topological charge m.
因此,本发明利用磁场控制器,调控流经线圈的电流,就会调控磁针尖端的磁场大小,从而获得不同轨道角动量并且可控的涡旋电子束。Therefore, the present invention utilizes a magnetic field controller to control the current flowing through the coil, so as to control the size of the magnetic field at the tip of the magnetic needle, thereby obtaining controllable vortex electron beams with different orbital angular momentums.
所述的芯片为含有电极片的载片,对所述导电线圈起支撑和连接作用。载片可以为玻璃片、硅片或者氧化铝陶瓷片等。The chip is a carrier containing electrode sheets, which supports and connects the conductive coils. The carrier sheet can be a glass sheet, a silicon wafer, or an alumina ceramic sheet, or the like.
作为优选,所述芯片可以为样品芯片。Preferably, the chip can be a sample chip.
作为优选,所述电学设备为电学样品杆或光阑杆。Preferably, the electrical device is an electrical sample rod or an aperture rod.
作为优选,所述磁针水平设于芯片的表面,且磁针的针尖置于芯片的中心。Preferably, the magnetic needle is horizontally arranged on the surface of the chip, and the tip of the magnetic needle is placed in the center of the chip.
作为优选,所述磁针上的导电线圈与芯片的电极片一端相连,经负载芯片的电学设备与所述磁场控制器形成磁场控制回路。芯片置入到电学设备内后,芯片内的电极片另一端与电学设备内的电极片一端连接,并利用内部电路与外界磁场控制器相连,形成完整系统。Preferably, the conductive coil on the magnetic needle is connected to one end of the electrode sheet of the chip, and a magnetic field control loop is formed with the magnetic field controller via an electrical device that loads the chip. After the chip is placed in the electrical equipment, the other end of the electrode sheet in the chip is connected to one end of the electrode sheet in the electrical equipment, and the internal circuit is connected with the external magnetic field controller to form a complete system.
作为优选,所述芯片中心处设有光阑孔,进一步地,所述光阑孔的直径为30~80um,合适的光阑直径有利于获得形态稳定的单一、可控轨道角动量涡旋电子束。Preferably, an aperture hole is provided at the center of the chip. Further, the aperture hole has a diameter of 30-80um, and a suitable aperture diameter is beneficial to obtain single, controllable orbital angular momentum vortex electrons with stable shape bundle.
作为优选,所述磁针的直径为1~20um,长度为80~200um。Preferably, the diameter of the magnetic needle is 1-20um, and the length is 80-200um.
作为优选,所述绕有导电线圈的磁针的制备方法为:首先,选取直径为1~20um的磁性线,并于所述磁性线的表面沉积一绝缘层;然后,于所述绝缘层的表面电镀一导电层,并将所述导电层切割成线圈,形成绕有导电线圈的磁针。Preferably, the preparation method of the magnetic needle wound with the conductive coil is as follows: first, select a magnetic wire with a diameter of 1-20 μm, and deposit an insulating layer on the surface of the magnetic wire; then, on the surface of the insulating layer A conductive layer is electroplated, and the conductive layer is cut into coils to form magnetic needles wound with conductive coils.
所述的磁性线为具有磁性的线状材料,可以为Ni、FeNi合金、CoNi合金,作为优选,所述磁性线为Ni。The magnetic wire is a linear material with magnetic properties, which can be Ni, FeNi alloy, or CoNi alloy. Preferably, the magnetic wire is Ni.
作为优选,所述于所述磁性线的表面沉积一绝缘层的具体过程为:首先,将有机溶剂与氨水经混合、超声、静置处理后,再与TEOS经混合、超声形成绝缘液;然后,将磁性线于所述绝缘液中搅拌加热反应,形成绝缘层。有机溶剂为异丙醇、环己烷等。Preferably, the specific process of depositing an insulating layer on the surface of the magnetic wire is as follows: first, the organic solvent and ammonia water are mixed, ultrasonicated and left to stand, and then mixed with TEOS and ultrasonicated to form an insulating liquid; then , stirring and heating the magnetic wire in the insulating liquid to form an insulating layer. The organic solvent is isopropanol, cyclohexane and the like.
作为优选,所述绝缘材料为SiO2、Al2O3。Preferably, the insulating material is SiO 2 and Al 2 O 3 .
进一步优选,所述于所述磁性线的表面沉积一绝缘层的具体过程为:首先,将有机溶剂与氨水经混合、超声3~10min、静置处理后,再与绝缘材料经混合、超声1~5min形成绝缘液;然后,将磁性线于所述绝缘液中,并在25~65℃下搅拌反应3h~6h,形成厚度为1~5um的绝缘层。Further preferably, the specific process of depositing an insulating layer on the surface of the magnetic wire is as follows: first, the organic solvent and ammonia water are mixed, ultrasonicated for 3-10 min, and left to stand, and then mixed with the insulating material, ultrasonicated for 1 ~5min to form an insulating liquid; then, the magnetic wire is placed in the insulating liquid, and the reaction is stirred at 25~65° C. for 3h~6h to form an insulating layer with a thickness of 1~5um.
作为优选,导电层的材料为Cu、Au、Pt,进一步优选,所述导电层的材料为Cu。作为优选,导电层的厚度为0.1~2um。Preferably, the material of the conductive layer is Cu, Au, and Pt, and more preferably, the material of the conductive layer is Cu. Preferably, the thickness of the conductive layer is 0.1-2um.
作为优选,所述磁场控制器为能够控制输出不同电流的电器或元件,可以为滑动电阻、电流发生器等。Preferably, the magnetic field controller is an electrical appliance or element capable of controlling the output of different currents, and may be a sliding resistor, a current generator, or the like.
本发明的第二实施方式提供了一种利用上述装置产生可控涡旋电子束的方法。A second embodiment of the present invention provides a method for generating a controllable vortex electron beam using the above-described apparatus.
本发明的第三实施方式提供了一种产生可控涡旋电子束的装置,包括:A third embodiment of the present invention provides an apparatus for generating a controllable vortex electron beam, comprising:
电子枪,用于产生平面电子束;Electron guns for generating planar electron beams;
磁场控制单元;Magnetic field control unit;
电子相位调制单元,受所述磁场控制单元作用产生强度可控的磁场,所述磁场用于调制所述平面电子束的相位。The electronic phase modulation unit is acted by the magnetic field control unit to generate a magnetic field with controllable intensity, and the magnetic field is used to modulate the phase of the plane electron beam.
作为优选,所述电子相位调制单元可以为绕有导电线圈的磁针。所述磁场控制单元为电流控制器。Preferably, the electronic phase modulation unit may be a magnetic needle wound with a conductive coil. The magnetic field control unit is a current controller.
相比于现有技术,本发明提供的实施方式具有以下优点:Compared with the prior art, the embodiments provided by the present invention have the following advantages:
(1)克服了相位片法不稳定、使用寿命有限、加工难度大,全息光阑法电子束强度低以及类磁单极法轨道角动量不可控的缺点,基于类磁单极原理,在电子显微镜中形成类磁单极的磁场分布,以获得具有单一轨道角动量,量子数可控的涡旋电子束。(1) It overcomes the shortcomings of unstable phase plate method, limited service life, difficult processing, low electron beam intensity of holographic aperture method and uncontrollable orbital angular momentum of magnetic-like monopole method. A magnetic monopole-like magnetic field distribution is formed in the microscope to obtain a vortex electron beam with a single orbital angular momentum and a controllable quantum number.
(2)磁场控制器可以通过调控线圈电流大小,从而调控磁针尖端的磁场强度,因而可以获得携带不同轨道角动量的涡旋电子束。(2) The magnetic field controller can control the magnetic field strength at the tip of the magnetic needle by adjusting the coil current, so that vortex electron beams with different orbital angular momentum can be obtained.
附图说明Description of drawings
图1是实施例1提供的应用于TEM中产生可控涡旋电子束的装置结构示意图;1 is a schematic structural diagram of a device for generating a controllable vortex electron beam in a TEM provided by Embodiment 1;
图2是实施例2制备的绕有导电线圈的磁针通电后的磁场模拟图。FIG. 2 is a simulation diagram of the magnetic field after the magnetic needle wound with the conductive coil prepared in Example 2 is energized.
具体实施方式Detailed ways
为了更为具体地描述本发明,下面结合附图及具体实施方式对本发明的技术方案进行详细说明。In order to describe the present invention more specifically, the technical solutions of the present invention will be described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1Example 1
参见图1,本实施例提供了一种应用于TEM中产生可控涡旋电子束的装置,该装置包括:电学样品杆1、样品芯片2、绕有导电线圈的磁针3以及磁场控制器4。电学样品杆1的端头设有安装槽,尾部的电极与磁场控制器4连接;样品芯片2的中心处设有光阑孔5,且置于安装槽内,样品芯片2内电极一端与样品杆2内电极连接;绕有导电线圈的磁针3水平置于样品芯片2的表面,且绕有导电线圈的磁针3的尖端与光阑孔5中心对齐,导电线圈与样品芯片2的电极片另一端相连。Referring to FIG. 1 , this embodiment provides a device for generating a controllable vortex electron beam in a TEM. The device includes: an electrical sample rod 1 , a
本实施例中,磁场控制单元为电流控制器。光阑孔5直径为50um。In this embodiment, the magnetic field control unit is a current controller. The diameter of the aperture 5 is 50um.
采用聚焦离子束仪器将磁针3连接于样品芯片2上,具体过程为:The
首先,用一根钨针粘住磁针3的一端部(此时仅物理接触),并在接触部位喷上Pt,使得钨针与磁针3稳固接触;First, stick one end of the
然后,用纳米机械手将钨针缓缓提起(速度不能过快,防止磁针掉落),移至样品芯片2上面,将磁针3的尖端与通孔5中心对准后放置于样品芯片2上,在磁针3尾部与芯片接触地方镀上Pt,使之固定;Then, use the nanomanipulator to slowly lift the tungsten needle (the speed should not be too fast to prevent the magnetic needle from falling), move it to the top of the
最后,切断钨针与磁针3,完成磁针3与样品芯片2的电连接。Finally, the tungsten needle and the
实施例2Example 2
本实施例提供一种制备磁针3的方法,具体为:The present embodiment provides a method for preparing the
首先,选取直径为10um、长为100um的磁性线,该磁性线为Ni。First, a magnetic wire with a diameter of 10um and a length of 100um is selected, and the magnetic wire is Ni.
然后,在磁性线的表面沉积一绝缘层。Then, an insulating layer is deposited on the surface of the magnetic wire.
本实施例中,在磁性线的表面沉积一绝缘层的具体过程为:In this embodiment, the specific process of depositing an insulating layer on the surface of the magnetic wire is as follows:
(1)量取适量的有机溶剂(该有机溶剂可以为环己烷、异丙醇)盛于三颈烧瓶内,并用移液枪滴入适量的去离子水,搅拌10min左右,再加入适量氨水,在室温下超声10min左右,静置;(2)将上述处理后的有机溶剂与TEOS混合后室温下超声5min左右,形成绝缘液;(3)将固定好的磁性线置于烧杯中,将绝缘液慢慢滴入烧杯,在并在45℃下搅拌反应6h,形成厚度为2um的绝缘层。(1) Measure an appropriate amount of organic solvent (the organic solvent can be cyclohexane, isopropanol) and put it in a three-necked flask, and drop an appropriate amount of deionized water with a pipette, stir for about 10 minutes, and then add an appropriate amount of ammonia water , ultrasonicate for about 10 minutes at room temperature, and let stand; (2) after mixing the above-treated organic solvent with TEOS, ultrasonicate for about 5 minutes at room temperature to form an insulating liquid; (3) place the fixed magnetic wire in a beaker, put the The insulating liquid was slowly dropped into the beaker, and the reaction was stirred at 45 °C for 6 h to form an insulating layer with a thickness of 2 μm.
接下来,于绝缘层的表面电镀一导电层。本实施例中,该过程具体为:Next, a conductive layer is electroplated on the surface of the insulating layer. In this embodiment, the process is specifically:
(1)选取铜为导电材料,并用甲醇浸泡铜片和磁性线表面,防止有机物的污染;(2)将铜片与稳压交流电源的正极连接,固定包覆绝缘层磁线的导电胶与稳压交流电源的负极连接,开启电源,开始电镀,在电镀过程中,阳极的铜片发生氧化反应:Cu-2e-→Cu2+,阴极则发生铜离子在线表面被还原的反应:Cu2++2e-→Cu,形成厚度为0.5um的导电层。(1) Select copper as the conductive material, and soak the surface of the copper sheet and the magnetic wire with methanol to prevent organic pollution; (2) Connect the copper sheet to the positive pole of the regulated AC power supply, and fix the conductive glue of the magnetic wire covering the insulating layer with the Connect the negative pole of the regulated AC power supply, turn on the power supply, and start electroplating. During the electroplating process, the copper sheet of the anode undergoes an oxidation reaction: Cu-2e - →Cu 2+ , and the cathode undergoes a reduction reaction of copper ions on the online surface: Cu 2 + +2e - →Cu, forming a conductive layer with a thickness of 0.5um.
最后,于导电层切割成线圈,形成绕有导电线圈的磁针。本实施例中,该过程采用FIB切割法。Finally, the conductive layer is cut into coils to form magnetic needles wound with conductive coils. In this embodiment, the process adopts the FIB cutting method.
采用COMSOL软件对绕有导电线圈的磁针进行磁场模拟测试,测试结果如图2所示。从图2可以看到:在通入电流的情况下,磁针尖端有较强的磁场,并且当电流为2A(图2B)的磁场强度远大于电流为1A(图2A)的磁场强度。The magnetic field simulation test of the magnetic needle wound with the conductive coil is carried out by using COMSOL software, and the test result is shown in Figure 2. It can be seen from Figure 2 that the tip of the magnetic needle has a strong magnetic field when the current is applied, and the magnetic field strength when the current is 2A (Figure 2B) is much greater than that when the current is 1A (Figure 2A).
以上所述的具体实施方式对本发明的技术方案和有益效果进行了详细说明,应理解的是以上所述仅为本发明的最优选实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何修改、补充和等同替换等,均应包含在本发明的保护范围之内。The above-mentioned specific embodiments describe in detail the technical solutions and beneficial effects of the present invention. It should be understood that the above-mentioned embodiments are only the most preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, additions and equivalent substitutions made within the scope shall be included within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710896503.5A CN107919258B (en) | 2017-09-28 | 2017-09-28 | A device and method for generating a controllable vortex electron beam |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710896503.5A CN107919258B (en) | 2017-09-28 | 2017-09-28 | A device and method for generating a controllable vortex electron beam |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107919258A CN107919258A (en) | 2018-04-17 |
CN107919258B true CN107919258B (en) | 2020-06-05 |
Family
ID=61898821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710896503.5A Active CN107919258B (en) | 2017-09-28 | 2017-09-28 | A device and method for generating a controllable vortex electron beam |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107919258B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110824433B (en) * | 2019-10-09 | 2021-11-23 | 清华大学 | Electromagnetic wave quantum state orbital angular momentum radar detection and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104285272A (en) * | 2011-12-20 | 2015-01-14 | 安特卫普大学 | Generating Charged Particle Vortex Waves |
CN104303256A (en) * | 2011-12-20 | 2015-01-21 | 安特卫普大学 | Charged Particle Vortex Wave Generation |
CN106711003A (en) * | 2017-02-15 | 2017-05-24 | 聚束科技(北京)有限公司 | Electron source generating device and electron beam control method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7019308B2 (en) * | 2004-09-01 | 2006-03-28 | Leica Microsystems Lithography Ltd. | Thermal compensation in magnetic field influencing of an electron beam |
-
2017
- 2017-09-28 CN CN201710896503.5A patent/CN107919258B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104285272A (en) * | 2011-12-20 | 2015-01-14 | 安特卫普大学 | Generating Charged Particle Vortex Waves |
CN104303256A (en) * | 2011-12-20 | 2015-01-21 | 安特卫普大学 | Charged Particle Vortex Wave Generation |
CN106711003A (en) * | 2017-02-15 | 2017-05-24 | 聚束科技(北京)有限公司 | Electron source generating device and electron beam control method |
Also Published As
Publication number | Publication date |
---|---|
CN107919258A (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Walter et al. | Metal nanowire arrays by electrodeposition | |
JP4242832B2 (en) | Fabrication method and activation treatment of nanostructured composite field emission cathode | |
Du et al. | Controlled platinum nanoparticles uniformly dispersed on nitrogen-doped carbon nanotubes for methanol oxidation | |
Levchenko et al. | Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation | |
EP1100106A2 (en) | Article comprising aligned nanowires and process for fabricating article | |
Jabbar et al. | Modifying and fine controlling of silver nanoparticle nucleation sites and SERS performance by double silicon etching process | |
US20130299212A1 (en) | Cnt metal composite and method of manufacturing the same | |
US20020179428A1 (en) | Producing apparatus and producing method for manufacturing carbon structure | |
Zhang et al. | Large-scale growth of sharp gold nano-cones for single-molecule SERS detection | |
JP4727928B2 (en) | Metallization of carbon nanotubes for field emission applications | |
CN103510048A (en) | Preparation method of copper nanowire arrays with porous structure and film conductivity measuring method thereof | |
CN107919258B (en) | A device and method for generating a controllable vortex electron beam | |
JP2007327117A (en) | Electrode, apparatus for manufacturing metallic fine particle and method of manufacturing metallic fine particle | |
JP6783942B2 (en) | Adjustable charged particle vortex beam generator and method | |
Wang et al. | Simple physical preparation of single copper atoms on amorphous carbon via Coulomb explosion | |
Abelev et al. | An alternative isolation of tungsten tips for a scanning tunneling microscope | |
CN107887245B (en) | A method and device for generating a controllable vortex electron beam | |
JP4340433B2 (en) | Nozzle for ultrafine ink jet printing and method for producing the same | |
CN109767961A (en) | Pointed cone array type field emitting electronic source with shielding construction and preparation method thereof | |
CN110534879B (en) | Graphene antenna and manufacturing method thereof | |
Roy et al. | Electrochemical synthesis of antimony nanowires and analysis of diffusion layers | |
CN107910239B (en) | A kind of device generating controllable vortex electron beam, method | |
Zhao et al. | Effect of electric field on Fe2O3 nanowire growth during thermal oxidation | |
Nogami et al. | Converting an insulating silicon nanochain to a conducting carbon nanotube by electricalbreakdown | |
CN104253002A (en) | Pinpoint for use in hyperfine nano-processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |