CN107917722A - 一种基于包层超模干涉的光纤反射式探头传感器及其制造方法 - Google Patents

一种基于包层超模干涉的光纤反射式探头传感器及其制造方法 Download PDF

Info

Publication number
CN107917722A
CN107917722A CN201710961296.7A CN201710961296A CN107917722A CN 107917722 A CN107917722 A CN 107917722A CN 201710961296 A CN201710961296 A CN 201710961296A CN 107917722 A CN107917722 A CN 107917722A
Authority
CN
China
Prior art keywords
optical fiber
fiber
interference
photon band
entirely
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710961296.7A
Other languages
English (en)
Inventor
黄薇
刘艳格
王志
游永
程徐
陈胜勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN201710961296.7A priority Critical patent/CN107917722A/zh
Publication of CN107917722A publication Critical patent/CN107917722A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

一种基于包层超模干涉的光纤反射式探头传感器,由一段单模光纤与一段截断的全固光子带隙光纤构成,全固光子带隙光纤上靠近单模光纤一端刻写有长周期光栅,末端为反射面。该传感器的制造方法是:①将全固光子带隙光纤两端通过单模光纤分别与宽带光源及光谱仪相连;②将全固光子带隙光纤两边的单模光纤一端固定,另一端加载砝码,并将全固光子带隙光纤放置于二氧化碳激光打标机的加工区域;③确定高能量二氧化碳激光器的输出激光脉冲能量及加工光栅周期和长度,完成光栅的写制;④切断全固光子带隙光纤远离长周期光栅的一端作为反射面。该传感器可靠性好、结构紧凑、对比度高并可用于传感领域,特别是高温环境下的实地测量。

Description

一种基于包层超模干涉的光纤反射式探头传感器及其制造 方法
技术领域
本发明涉及光纤传感领域,特别地涉及一种基于包层超模干涉的光纤反射式探头传感器及其制造方法。
背景技术
光纤模间干涉仪是光纤领域中的一类重要的光学器件,不仅可用于制造光纤滤波器、多波长激光器、波分复用器等重要器件,在光纤传感领域也有非常广泛的应用。光纤模间干涉仪的原理是采用特定的模式激发与耦合技术。使得纤芯基模与纤芯高阶模或包层模式之间发生耦合与干涉,当外界环境发生变化时,会引起相应光谱干涉峰的漂移,从而能实现对外界各种物理量包括温度、应变、折射率等的监控与传感。与传统光纤传感器相比,微结构光纤模间干涉仪每一个干涉峰都可以响应外界物理量变化,并且结构紧凑、干涉峰光谱带宽窄、分辨率高,在精密传感和多物理参量传感领域有独特的应用价值。
目前国内外已报道的光纤模间干涉仪种类有很多,常见的有拉锥型光纤模间干涉仪、基于错位或塌陷技术的“单模-多模-单模”型模间干涉仪、级联光栅模间干涉仪等。这些干涉仪都有一些固有的缺点:拉锥型干涉仪锥区直径非常细,结构相对脆弱容易折断,并且易受外界其他因素干扰;“单模-多模-单模”型模间干涉仪为了达到比较高的条纹对比度,通常会引起较大的插入损耗;而级联光栅型干涉仪对加工技术要求较高,并且通常难以加工物理参数完全一致的光栅对,因此该类干涉仪重复性低且不易制造。
此外还有基于F-P腔的模间干涉仪,这类腔式结构的干涉仪对制造工艺要求非常高,不利于工业广泛应用。
发明内容
本发明的目的就在于克服上述现有技术中存在的不足,而提供一种基于包层超模干涉的光纤反射式探头传感器,该传感器可靠性好、结构紧凑、对比度高并可用于传感领域,特别是高温环境下的实地测量。
本发明的另一目的是提供上述基于包层超模干涉的光纤反射式探头传感器的制造方法,该方法利用全固光子带隙光纤制造光纤长度、干涉波长、干涉条纹间距都可调的光纤反射式探头传感器。
如上构思,本发明的技术解决方案是:一种基于包层超模干涉的光纤反射式探头传感器,其特征在于:由一段单模光纤与一段截断的全固光子带隙光纤构成,全固光子带隙光纤上靠近单模光纤一端刻写有长周期光栅,末端为反射面。
上述基于包层超模干涉的光纤反射式探头传感器的制造方法,其特征在于:包括以下步骤:
①将全固光子带隙光纤两端通过单模光纤分别与宽带光源及光谱仪相连;
②将全固光子带隙光纤两边的单模光纤一端固定,另一端加载砝码,并将全固光子带隙光纤放置于二氧化碳激光打标机的加工区域;
③确定高能量二氧化碳激光打标机的输出激光脉冲能量参数及加工光栅周期和长度,在全固光子带隙光纤靠近单模光纤的一端写制长周期光栅,监测光谱控制光栅耦合峰在5-10dB之间,当光栅耦合峰达到5-10dB之间时,完成光栅的写制;
④利用光纤切割刀切断全固光子带隙光纤远离长周期光栅的一端作为反射面,并可根据需要在该反射面涂覆上反射薄膜用于增加端面反射光强度,从而形成所述光纤反射式传感探头。
上述反射面上可涂覆反射薄膜。
上述全固光子带隙光纤与单模光纤对芯熔接。
上述宽带光源波长范围覆盖待加工干涉仪的波长变化范围。
上述单模光纤的纤芯直径为8.3μm,直径125μm。
上述全固光子带隙光纤同时支持纤芯LP01模式与高折射率柱中LP01超模传输,其长度大于10mm,直径为125μm,基底材料为纯二氧化硅,包层由5圈低折射率环包围着高折射率柱构成。
上述长周期光栅的栅格周期根据公式:λ=(n1-n2)Λ确定,其中λ是模式耦合波长,n1和n2分别为参与耦合模式有效折射率,Λ为栅格周期。
上述长周期光栅的栅格周期为160μm,栅格数为40个,光栅总长度6.4mm,对应干涉波长范围覆盖1520nm-1580nm。
上述高折射率柱直径约为3.35μm。
上述低折射率环直径约为7.01μm,柱间距约为9.26μm。
本发明与现有技术相比具有以下优点:
1、本发明是基于长周期光栅的反射式模间干涉仪,反射式干涉仪则是通过检测从光纤端面反射回来的光波来识别和处理光信息,结构紧凑,可封装制成光纤探针,便于实地探测。
2、本发明传感器采用一个长周期光栅来实现纤芯基模与LP01超模的耦合与干涉,该光栅同时充当了两种不同模式的分束器与合束器,巧妙地利用反射式结构,克服了级联光栅对不易加工、重复性低的缺点,该干涉仪具有结构简单、对比度高、易于制造、重复性好的优点。
3、本发明干涉的模式为高折射率柱中的传导模式,与常见的包层模式相比,LP01传导超模损耗小、传输稳定,不易受外界其他因素干扰,因此该传感器可靠性高。此外,与空气孔微结构光纤相比,全固光子带隙光纤更易与普通光纤相熔接,加工方便,重复性好。
4、采用本发明方法制造的光纤传感器可用于温度和应变传感,该干涉仪对温度的敏感特性随干涉波长增加而增大,通过选取不同的干涉波长,可以制造不同温度灵敏度的光纤探头,并且可用于高温环境(800℃)下的温度传感测量。
附图说明
图1是用于制造本发明中光纤模间干涉仪的全固光子带隙光纤横截面示意图;
图2是本发明制造方法和制造过程示意图;
图3是本发明中光纤传感探头的结构示意图;
图4是本发明中光纤传感探头的反射干涉光谱图及CCD观测到的模场图;
图5是本发明中光纤传感探头波长与外界温度变化的关系图;
图6是本发明中光纤传感探头波长与外界应力变化的关系图。
具体实施方式
参考图1、图2和图3,一种基于包层超模干涉的光纤反射式探头传感器的制造方法,包括以下步骤:
1、将全固光子带隙光纤两端通过单模光纤分别与宽带光源及光谱仪相连,全固光子带隙光纤与单模光纤对芯熔接,避免引起干涉效应,宽带光源波长范围需覆盖待加工干涉仪的波长变化范围。优选地,步骤(1)中采用的单模光纤的纤芯直径为8.3μm,直径125μm,所用全固光子带隙光纤长度大于10mm。在本发明实施例中,所用全固光子带隙光纤同时支持纤芯LP01模式与高折射率柱中LP01超模传输,横截面结构参考图1所示,全固光子带隙光纤直径为125μm,基底材料为纯二氧化硅,包层由5圈低折射率环(掺氟材料)包围着高折射率柱(掺锗材料)构成的,高折射率柱直径约为3.35μm,低折射率环直径约为7.01μm,柱间距约为9.26μm。
2、将全固光子带隙光纤两边的单模光纤一端用夹子固定,另一端加载砝码,并将全固光子带隙光纤放置于二氧化碳激光打标机的加工区域。优选地,砝码重量为20g-50g之间。
3、确定高能量二氧化碳激光器的输出激光脉冲能量及加工光栅周期和长度,在全固光子带隙光纤靠近单模光纤的一端写制长周期光栅,监测光谱控制光栅耦合峰在5-10dB之间。其中,光栅的栅格周期根据公式:λ=(n1-n2)Λ确定,其中λ是模式耦合波长,n1和n2分别为参与耦合模式有效折射率,Λ为栅格周期。
在本发明实施例中,参与耦合的模式为全固光子带隙中的纤芯基模与包层LP01超模,长周期光栅的栅格周期为160μm,栅格数为40个,光栅总长度6.4mm,对应干涉波长范围覆盖1520nm-1580nm,并可灵活改变栅格周期来调整干涉条纹波长范围。
在本发明实施例中,二氧化碳激光打标机参数如下:有效矢量步长为0.0015mm,有效矢量步长延时为90μs,空矢量步长0.030mm,空矢量步长延时为20μs,Q switch频率为5.000kHz,Q释放时间为60μs,电流为10.000A。
利用上述确定参数的激光脉冲在全固光子带隙光纤靠近单模光纤的一端写制长周期光栅,参考图2所示;并在写制过程中实时观察光谱图,当光栅耦合峰达到5-10dB之间时,完成光栅的写制。
4、利用光纤切割刀切断全固光子带隙光纤远离长周期光栅的一端作为反射面,最终该传感探头由一段单模光纤与一段截断了的全固光子带隙光纤构成(靠近单模一端有长周期光栅),参考图3所示,并可根据需要在末端反射面涂覆上反射薄膜用于增加端面反射光强度。
利用上述制造方法获得的基于包层超模干涉的光纤反射式探头传感器,(参考图3),由一段单模光纤与一段截断的全固光子带隙光纤构成,全固光子带隙光纤上靠近单模一端刻写有长周期光栅,末端为反射面,可根据需要涂覆上反射薄膜。该传感器的单模光纤、全固光子带隙光纤、长周期光栅等物理参数均与上述制造方法所述的物理参数相同。
图4所示为本发明中光纤传感器的反射光谱图及CCD相机观测到的反射端面的模场图,其中,左图中全固光子带隙光纤长度为20mm,右图为25mm。
图5所示为本发明中光纤传感器不同波长对外界温度变化的响应特性,其温度灵敏度分别为30.12pm/℃(B1),49.03pm/℃(B2),50.34pm/℃(B5),温度灵敏度随着干涉波长的增加而增加,因此,我们可以通过调整干涉波长来制造温度灵敏度不同的光纤传感器。
图6所示为本发明中光纤传感器不同波长对外界应力变化的响应特性,其应力灵敏度分别为-0.57pm/με,-0.61pm/με,-0.66pm/με,-0.65pm/με。该干涉仪对外界温度和应变具有良好的线性响应特性。
本发明中未详细说明部分属于本领域技术人员公知常识。

Claims (10)

1.一种基于包层超模干涉的光纤反射式探头传感器,其特征在于:由一段单模光纤与一段截断的全固光子带隙光纤构成,全固光子带隙光纤上靠近单模光纤一端刻写有长周期光栅,末端为反射面。
2.一种根据权利要求1所述的基于包层超模干涉的光纤反射式探头传感器的制造方法,其特征在于:包括以下步骤:
①将全固光子带隙光纤两端通过单模光纤分别与宽带光源及光谱仪相连;
②将全固光子带隙光纤两边的单模光纤一端固定,另一端加载砝码,并将全固光子带隙光纤放置于二氧化碳激光打标机的加工区域;
③确定高能量二氧化碳激光打标机的输出激光脉冲能量参数及加工光栅周期和长度,在全固光子带隙光纤靠近单模光纤的一端写制长周期光栅,监测光谱控制光栅耦合峰在5-10dB之间,当光栅耦合峰达到5-10dB之间时,完成光栅的写制;
④利用光纤切割刀切断全固光子带隙光纤远离长周期光栅的一端作为反射面,并可根据需要在该反射面涂覆上反射薄膜用于增加端面反射光强度,从而形成所述光纤反射式传感探头。
3.根据权利要求1所述的基于包层超模干涉的光纤反射式探头传感器上述反射面上可涂覆反射薄膜。
4.根据权利要求1所述的基于包层超模干涉的光纤反射式探头传感器,其特征在于:上述单模光纤的纤芯直径为8.3μm,直径125μm。
5.根据权利要求1所述的基于包层超模干涉的光纤反射式探头传感器,其特征在于:上述全固光子带隙光纤同时支持纤芯LP01模式与高折射率柱中LP01超模传输,其长度大于10mm,直径为125μm,基底材料为纯二氧化硅,包层由5圈低折射率环包围着高折射率柱构成。
6.根据权利要求1所述的基于包层超模干涉的光纤反射式探头传感器,其特征在于:上述长周期光栅的栅格周期根据公式:λ=(n1-n2)Λ确定,其中λ是模式耦合波长,n1和n2分别为参与耦合模式有效折射率,Λ为栅格周期。
7.根据权利要求1所述的基于包层超模干涉的光纤反射式探头传感器,其特征在于:上述长周期光栅的栅格周期为160μm,栅格数为40个,光栅总长度6.4mm,对应干涉波长范围覆盖1520nm-1580nm。
8.根据权利要求2所述的基于包层超模干涉的光纤反射式探头传感器,其特征在于:上述全固光子带隙光纤与单模光纤对芯熔接。
9.根据权利要求2所述的基于包层超模干涉的光纤反射式探头传感器,其特征在于:上述宽带光源波长范围覆盖待加工干涉仪的波长变化范围。
10.根据权利要求5所述的基于包层超模干涉的光纤反射式探头传感器,其特征在于:上述高折射率柱直径约为3.35μm、上述低折射率环直径约为7.01μm,柱间距约为9.26μm。
CN201710961296.7A 2017-10-16 2017-10-16 一种基于包层超模干涉的光纤反射式探头传感器及其制造方法 Pending CN107917722A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710961296.7A CN107917722A (zh) 2017-10-16 2017-10-16 一种基于包层超模干涉的光纤反射式探头传感器及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710961296.7A CN107917722A (zh) 2017-10-16 2017-10-16 一种基于包层超模干涉的光纤反射式探头传感器及其制造方法

Publications (1)

Publication Number Publication Date
CN107917722A true CN107917722A (zh) 2018-04-17

Family

ID=61894785

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710961296.7A Pending CN107917722A (zh) 2017-10-16 2017-10-16 一种基于包层超模干涉的光纤反射式探头传感器及其制造方法

Country Status (1)

Country Link
CN (1) CN107917722A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917800A (zh) * 2018-06-21 2018-11-30 国家电网有限公司 无芯光纤混合传感器及实验系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209655A1 (en) * 2002-05-08 2003-11-13 Anbo Wang Optical fiber sensors based on pressure-induced temporal periodic variations in refractive index
US20050169590A1 (en) * 2003-12-31 2005-08-04 Crystal Fibre A/S Liquid crystal infiltrated optical fibre, method of its production, and use thereof
US20060126991A1 (en) * 2004-12-13 2006-06-15 Haiying Huang In-fiber whitelight interferometry using long-period fiber grating
US20070047596A1 (en) * 2005-08-29 2007-03-01 Polaronyx, Inc. Photonic band-gap fiber based mode locked fiber laser at one micron
CN101393301A (zh) * 2008-11-12 2009-03-25 北京交通大学 锥形耦合长周期光纤光栅及其制作方法
CN101726647A (zh) * 2009-12-04 2010-06-09 华中科技大学 一种基于光子晶体光纤光栅的电流传感器
US20110267612A1 (en) * 2008-07-04 2011-11-03 University Of Bath Hollow Core Photonic Crystal Fibre Comprising a Fibre Grating in the Cladding and Its Applications
CN102980685A (zh) * 2012-12-06 2013-03-20 天津理工大学 级联长周期光子晶体光纤光栅温度传感器
CN103033883A (zh) * 2013-01-04 2013-04-10 北京遥测技术研究所 长周期光栅加工方法及长周期光栅
CN103175807A (zh) * 2013-02-18 2013-06-26 南京大学 一种反射型全光纤氢气传感器及其制备和测量方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030209655A1 (en) * 2002-05-08 2003-11-13 Anbo Wang Optical fiber sensors based on pressure-induced temporal periodic variations in refractive index
US20050169590A1 (en) * 2003-12-31 2005-08-04 Crystal Fibre A/S Liquid crystal infiltrated optical fibre, method of its production, and use thereof
US20060126991A1 (en) * 2004-12-13 2006-06-15 Haiying Huang In-fiber whitelight interferometry using long-period fiber grating
US20070047596A1 (en) * 2005-08-29 2007-03-01 Polaronyx, Inc. Photonic band-gap fiber based mode locked fiber laser at one micron
US20110267612A1 (en) * 2008-07-04 2011-11-03 University Of Bath Hollow Core Photonic Crystal Fibre Comprising a Fibre Grating in the Cladding and Its Applications
CN101393301A (zh) * 2008-11-12 2009-03-25 北京交通大学 锥形耦合长周期光纤光栅及其制作方法
CN101726647A (zh) * 2009-12-04 2010-06-09 华中科技大学 一种基于光子晶体光纤光栅的电流传感器
CN102980685A (zh) * 2012-12-06 2013-03-20 天津理工大学 级联长周期光子晶体光纤光栅温度传感器
CN103033883A (zh) * 2013-01-04 2013-04-10 北京遥测技术研究所 长周期光栅加工方法及长周期光栅
CN103175807A (zh) * 2013-02-18 2013-06-26 南京大学 一种反射型全光纤氢气传感器及其制备和测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI HUANG ET: "Fiber Interferometric Probe Based On A Long Period Grating Inscribed In An All-solid Photonic Bandgap Fiber", 《2016 25TH WIRELESS AND OPTICAL COMMUNICATION CONFERENCE》 *
耿梦楣等: "基于全固光子带隙光纤的传感器特性", 《量子电子学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917800A (zh) * 2018-06-21 2018-11-30 国家电网有限公司 无芯光纤混合传感器及实验系统
CN108917800B (zh) * 2018-06-21 2024-03-12 国家电网有限公司 无芯光纤混合传感器及实验系统

Similar Documents

Publication Publication Date Title
Ding et al. Fiber-taper seeded long-period grating pair as a highly sensitive refractive-index sensor
Yao et al. Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating
Busch et al. Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications
CN100367016C (zh) 光纤温度测量仪及其测量方法
Tan et al. Temperature-insensitive humidity sensor based on a silica fiber taper interferometer
CN108195410A (zh) 基于mzi和fpi级联的多参数光纤干涉传感器及其制备方法
CN108181023A (zh) 一种光纤光栅和粗锥光纤温度与应变测试系统及其方法
CN106568466A (zh) 细芯微结构光纤干涉仪传感器及其温度、应变检测方法
Cheng et al. High-sensitivity temperature sensor based on Bragg grating in BDK-doped photosensitive polymer optical fiber
CN109709070A (zh) 复合光纤光栅传感器及其折射率和温度双参量测量方法
CN108225416A (zh) 一种用于多参数测量的多参数传感器的制作方法
CN110441259B (zh) 一种瓣状光纤光栅折射率传感器及其传感方法
CN109682778A (zh) 飞秒激光制备纤芯失配型fbg温度折射率测量方法
Liu et al. Mach-Zehnder interferometer for high temperature (1000° C) sensing based on a few-mode fiber
Qi et al. A compact fiber cascaded structure incorporating hollow core fiber with large inner diameter for simultaneous measurement of curvature and temperature
Zhang et al. A compact SMS refractometer based on HF corrosion scheme
Yang et al. Refractive index and temperature sensor based on cladding-mode Bragg grating excited by abrupt taper interferometer
CN107917722A (zh) 一种基于包层超模干涉的光纤反射式探头传感器及其制造方法
Zhang et al. Curvature and temperature sensor based on bulge-taper structures interferometer with embedded fiber Bragg grating
CN107990920B (zh) 一种具有双生谐振干涉峰的光纤传感器的制造方法
CN104075826B (zh) 光纤‑聚合物探头温度传感器及其制备方法
Zhang et al. Highly sensitive temperature sensor based on a Mach-Zehnder interferometer created in graded index fiber
CN207439572U (zh) 一种全光纤传感器
Kangpeng et al. A Dual-parameter Fabry–Perot Interferometer Sensor Based on Single Mode-Photonic Crystal-Multimode Fiber Structure
Torres-Peiro et al. Sensor applications based on the cutoff properties of liquid-filled Ge-doped microstructured fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180417