CN107908822A  The design method of prefabricated doublylinked beam in a kind of overall assembled shear wall building structure  Google Patents
The design method of prefabricated doublylinked beam in a kind of overall assembled shear wall building structure Download PDFInfo
 Publication number
 CN107908822A CN107908822A CN201710981864.XA CN201710981864A CN107908822A CN 107908822 A CN107908822 A CN 107908822A CN 201710981864 A CN201710981864 A CN 201710981864A CN 107908822 A CN107908822 A CN 107908822A
 Authority
 CN
 China
 Prior art keywords
 doubly
 prefabricated
 linked
 coupling beam
 reinforcement
 Prior art date
 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
 Granted
Links
Classifications

 G—PHYSICS
 G06—COMPUTING; CALCULATING OR COUNTING
 G06F—ELECTRIC DIGITAL DATA PROCESSING
 G06F30/00—Computeraided design [CAD]
 G06F30/10—Geometric CAD
 G06F30/13—Architectural design, e.g. computeraided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads

 E—FIXED CONSTRUCTIONS
 E04—BUILDING
 E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
 E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
 E04B1/18—Structures comprising elongated loadsupporting parts, e.g. columns, girders, skeletons
 E04B1/20—Structures comprising elongated loadsupporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
Landscapes
 Engineering & Computer Science (AREA)
 Physics & Mathematics (AREA)
 Architecture (AREA)
 Geometry (AREA)
 General Physics & Mathematics (AREA)
 Theoretical Computer Science (AREA)
 Civil Engineering (AREA)
 Structural Engineering (AREA)
 Computer Hardware Design (AREA)
 Computational Mathematics (AREA)
 Mathematical Analysis (AREA)
 Mathematical Optimization (AREA)
 Pure & Applied Mathematics (AREA)
 Evolutionary Computation (AREA)
 General Engineering & Computer Science (AREA)
 Electromagnetism (AREA)
 Buildings Adapted To Withstand Abnormal External Influences (AREA)
Abstract
The invention discloses a kind of design method of prefabricated doublylinked beam in overall assembled shear wall building structure, including establish single coupling beam analysis model；Castinplace coupling beam and prefabricated doublylinked beam are distinguished, the prefabricated doublylinked beam has upper coupling beam, lower coupling beam and the castinplace join domain being connected with upper coupling beam and lower coupling beam end, which is connected with the wall of shear wall；The bending stiffness reduction coefficient of prefabricated doublylinked beam is set；Obtained prefabricated doublylinked beam is substituted into single coupling beam analysis model, single coupling beam of corresponding position is replaced as doublylinked beam, obtains doublylinked beam computation model, structure Design and Calculation is carried out to doublylinked beam computation model, obtain prefabricated doublylinked beam structure and arrangement of reinforcement as a result, the area of reinforcement of prefabricated doublylinked beam is calculated；With reference to the area of reinforcement of obtained prefabricated doublylinked beam and the construction of prefabricated doublylinked beam, the actual arrangement of reinforcement of prefabricated doublylinked beam is chosen；According to the structure of prefabricated doublylinked beam and actual arrangement of reinforcement, construction drawing is drawn, completes the design of prefabricated doublylinked beam.
Description
Technical field
The present invention relates to a kind of design method of building structure, in particular to a kind of overall assembled shear wall building knot
The design method of prefabricated doublylinked beam in structure.
Background technology
Assembly of shear wall structure is made of a series of longitudinally, laterally shear walls and superstructure, for bearing vertical load
It is common structure type in skyscraper with the space structure of horizontal loading.The steel reinforced concrete shearing force structure of rational design
Antilateral displacement and torsional rigidity it is big, under horizontal loads, lateral displacement is smaller, has good antidetonation and wind resistance.
The feature of shear wall structure lateral deformation under horizontal loads is flexure type, i.e. the stratified deformation of substructure is smaller, more
It is bigger toward top stratified deformation.Fabricated shear wall is entirety of the rigidity to structure of partition wall with castinplace shear wall difference
Stiffness contribution, the common structure of partition wall form of fabricated shear wall whether there is parting partition wall, bottom transverse joint partition wall, bottom transverse joint+side perps
Partition wall, and different structure of partition wall forms contributes difference to the overall stiffness of structure, wherein integrally firm to structure without parting partition wall
Degree contribution is maximum, and bottom transverse joint+side perps partition wall contributes structure overall stiffness minimum.
Under normal working load and wind action, structure should be in elastic state, and coupling beam should not produce
Raw plastic hinge.And under small shake effect, coupling beam allows crack occur, but bearing capacity is met the requirements, and coupling beam permits under middle shake effect
Permitted bending resistance surrender occur, but shearing resistance is unyielding, and under big shake effect, coupling beam allows to destroy, but needs certain prolong
Property, belong to ductile fracture.Under normal circumstances, the spandepth radio of coupling beam is smaller, then the Line stiffness of coupling beam is bigger, the internal force of coupling beam and
Arrangement of reinforcement also can be bigger, and the arrangement of reinforcement for be easy to causeing coupling beam has exceeded the maximum ratio of reinforcement of specification, or crosssection of coupling beam checking computations are unsatisfactory for
It is required that so as to cause coupling beam brittle break occur when destroying, due to brittle break before destruction without obvious deformation or other pre
Million, harm is larger, is the failure mode that designer needs to avoid.Therefore how to ensure that coupling beam has higher energy dissipation capacity, with
And preferable ductility, it is the major issue for having to consider in structureproperty design.
The design of Tall Shear Wall Structures antiseismic performanceization is carried out using prefabricated energy consumption Design of Connecting Beam method, can effectively be subtracted
Small coupling beam internal force and arrangement of reinforcement, and since prefabricated energy consumption coupling beam has preferable ductility, make overall structure that there is energy consumption well
Ability, reduces response of the structure under geological process, so as to improve the antiseismic performance of structure, it is enough to ensure that structure has
Security.
The content of the invention
The object of the present invention is to provide a kind of design side of prefabricated doublylinked beam in overall assembled shear wall building structure
Method, the design method are firm by reducing coupling beam rigidity and structure suitable for the larger situation of structure overall stiffness and coupling beam rigidity
Degree, so as to reduce the seismic force of structure, and then saves the material utilization amount of structure.
What the abovementioned purpose of the present invention was realized by following technical solution：A kind of overall assembled shear wall building knot
The design method of prefabricated doublylinked beam in structure, it is characterised in that this method comprises the following steps：
Step (1)：Single coupling beam analysis model in overall assembled shear wall building structure is established, according to building structure
Facade and plane, which are split, to be required, and using existing finite element method, structure design meter is carried out to single coupling beam analysis model
Calculate, determine depth of beam and beam length, coupling beam is defined as to beam of the spandepth radio less than 5；
Step (2)：The coupling beam determined according to step (1), by the analysis to coupling beam position, further discriminates between castinplace company
Beam and prefabricated doublylinked beam, wherein, the coupling beam of Lift ＆ Stairs position is castinplace coupling beam, and the coupling beam of other positions is prefabricated doublylinked
Beam, the prefabricated doublylinked beam have upper coupling beam, lower coupling beam and the castinplace bonding pad being connected with upper coupling beam and lower coupling beam end
Domain, the castinplace join domain are connected with the wall of shear wall；
Step (3)：The prefabricated doublylinked beam determined according to step (2), sets the bending stiffness reduction system of prefabricated doublylinked beam
Number, the bending stiffness reduction coefficient of single coupling beam is η in rounding body fabricated shear wall building structure, then prefabricated doublylinked beam is anti
Curved Stiffness degradation coefficient is 0.76 η；
Step (4)：The prefabricated doublylinked beam that step (3) is obtained is substituted into single coupling beam analysis model of step (1), will be right
The single coupling beam that should locate is replaced as doublylinked beam, doublylinked beam computation model is obtained, using existing finite element method, to doublylinked
Beam computation model carry out structure Design and Calculation, obtain the structure of prefabricated doublylinked beam, and obtain the arrangement of reinforcement of prefabricated doublylinked beam as a result,
The area of reinforcement As of prefabricated doublylinked beam is calculated by arrangement of reinforcement result；
Step (5)：The structure that prefabricated doublylinked beam is calculated by step (4) is as follows：The total high H of prefabricated doublylinked Liang, lower company
Deckmolding is h1, and the slit width between upper coupling beam, lower coupling beam is h2, and the height of the upper castinplace part of coupling beam is hb, upper coupling beam preerection
Height be h3, h3=Hh1h2hb；Upper coupling beam, the end of lower coupling beam preerection are by the castinplace join domain phase
Hold together, the length of the castinplace join domain is 100mm, and the longitudinal tensile reinforcing bar of prefabricated doublylinked beam stretches into shear wall
Interior anchorage length is not less than 1.2La, and wherein La is the anchorage length of longitudinal tensile reinforcing bar；
Step (6)：Obtained with reference to the area of reinforcement As and step (5) of the prefabricated doublylinked beam that step (4) obtains prefabricated double
The construction of coupling beam, chooses the actual arrangement of reinforcement of prefabricated doublylinked beam, real to be not less than As with area of reinforcement A, and is not more than 1.05As；
Step (7)：The actual arrangement of reinforcement that the structure and step (6) of the prefabricated doublylinked beam obtained according to step (5) obtain,
Construction drawing is drawn, completes the design of prefabricated doublylinked beam in overall assembled shear wall building structure.
In the present invention, in the step (3), η values are 0.7.
In the step (5), H >=400mm, h1 240mm, h2 10mm, hb 140mm.
In order to make structure have certain ductility, coupling beam failure mode should be bending failure, and equivalent connecting beam ensures that bending resistance is firm first
Degree is consistent.This section fundamental formular equivalent to more coupling beam bending resistances derives, and obtains final coupling beam bending stiffness reduction system
Number.
If coupling beam a height of h, decksiding b, beam Dan Gangwei K, transformation matrix T, it is assumed that beam central axes offset distance is dk.
The axial rigidity of bar,
The bending stiffness of bar,
Rigidity after offset, K'=T^{T}KT (4)
Bending stiffness after offset,
Rotary inertia after offset,
If the radical of more coupling beams is n, every coupling beam rotary inertia is J1 in more coupling beams, and more coupling beam rotary inertias are Jn,
Then：
Rotary inertia reduction coefficient,
When n=2 is prefabricated doublylinked beam, γ 2=0.4375；When n=3 is three coupling beams, γ 3=0.3333.Bending stiffness with
Deckmolding is 3 power relations, therefore equivalent connecting beam highly should be 0.76 times of prefabricated doublylinked depth of beam, i.e.,
By bending stiffness Equivalent Calculation coupling beam, a reduction bending stiffness is answered, should not directly change depth of beam, it is otherwise equivalent
Coupling beam is cut area and is cut area less than prefabricated doublylinked beam；When carrying out prefabricated doublylinked beam arrangement of reinforcement, if coupling beam reinforcing bar is put down
It is assigned among prefabricated doublylinked beam, when underreinforced presses minimum steel ratio, rolled steel dosage can be caused to increase.
Bearing capacity is less than single coupling beam after prefabricated doublylinked beam surrender, relatively early to enter strain, but ductility is better than single coupling beam.
For single coupling beam structure when top displacement reaches 10mm, the damage of most coupling beams, which comes into, closes on failure stage, with continuing plus
Carry, single coupling beam is destroyed rapidly, and depression of bearing force is obvious.Prefabricated doublylinked girder construction is when top displacement reaches 11mm, most coupling beams
Damage, which comes into, closes on failure stage, and with continuing to load, prefabricated doublylinked beam destroys, but depression of bearing force compares phase
To gentle, good ductility is shown.
The lower coupling beam of prefabricated doublylinked beam uses prefabricated coupling beam, and upper coupling beam is using overlapping coupling beam, compared to lower coupling beam using prefabricated
Coupling beam, upper coupling beam save the technique that template is added in lower coupling beam using castinplace coupling beam.In the prefabricated of lower coupling beam and upper coupling beam
Part is after installation is complete, can the castinplace concrete on the face of coupling beam directly on prefabricated, installation is simple, and easy for construction, raising finishes
The speed of application and construction quality of structure.
It is lateral that the prefabricated energy consumption Design of Connecting Beam method of overall assembled shear wall structure of the present invention is suitable for shear wall structure
The larger situation of rigidity, the rigidity of structure can be obviously reduced by the present invention, so as to reduce big shake lower structure seismic response, increased
Add structure ductility, achieve the purpose that to ensure structural seismic resistance safety.Particularly prefabricated coupling beam shearing is excessive, it is difficult to meets shearing resistance
The situation of bearing capacity, the rigidity of prefabricated coupling beam can be obviously reduced by the present invention, so as to reduce coupling beam shearing, met
On the premise of conceptual Design of Earthquake Resistance, reach the target saved building materials, reduce cost.
Compared with prior art, the present invention has following remarkable result：
(1) present invention calculates coupling beam using bending stiffness equivalent method, only by carrying out reduction to bending stiffness, you can
Realize the elastic calculation of prefabricated doublylinked beam, illustrate using bending stiffness equivalent method can quickly to prefabricated doublylinked beam model into
Row calculates.
It is (2) of the invention that since the stress amount of shear walls of overall assembled shear wall structure is more, the rigidity of structure is partially firm,
Method by setting the prefabricated doublylinked beam of assembled energy consumption, the overall stiffness of structure reduce about 7%, are cut so as to reduce earthquake
Power about 8%.It is partially firm to solve overall assembled shear wall structure, seismic force problem bigger than normal.
(3) present invention is under big shake effect, and when the story drift of structure reaches 1/750, intermediate floor partial precast is double
Coupling beam initially enters surrender, and with the increasing of seismic force, the scope of surrender further increases, and component damage scope compares Dan Lian
Beam is big by 15%, has given full play to the energy consumption effect of coupling beam, has added coupling beam energy dissipation capacity and structure ductility.
(4) bending stiffness of the prefabricated doublylinked beam of the present invention is smaller, reduce structure overall stiffness and seismic response it is same
When, the arrangement of reinforcement of component is also obviously reduced, and structural material dosage about reduces 7%, has obvious economic benefit.
(5) the lower coupling beam of the prefabricated doublylinked beam of the present invention uses prefabricated coupling beam, and upper coupling beam is using overlapping coupling beam, compared to lower company
Beam uses prefabricated coupling beam, and upper coupling beam saves the technique that template is added in lower coupling beam using castinplace coupling beam, and installation is simple, applies
Work is convenient, improves the speed of application and construction quality of structure.
Brief description of the drawings
The present invention is described in further details with reference to the accompanying drawings and detailed description.
Fig. 1 is the planar structure schematic diagram for the case history being designed using design method of the present invention；
Fig. 2 is the Threedimensional CAD schematic diagram for the case history being designed using design method of the present invention；
Fig. 3 is the structure diagram of prefabricated doublylinked beam in design method of the present invention；
Fig. 4 is the story drift curve map under geological process using the case history of design method of the present invention；
Fig. 5 is coupling beam positional structure schematic diagram in design method of the present invention；
Fig. 6 is the distribution schematic diagram of coupling beam reduction coefficient in design method of the present invention；
Fig. 7 is the distribution schematic diagram that wall is numbered in design method of the present invention；
Single coupling beam arrangement of reinforcement result of calculation distribution schematic diagram when Fig. 8 is small shake；
Fig. 9 is arrangement of reinforcement result of calculation distribution schematic diagram in prefabricated doublylinked beam under the conditions of small shake；
Single coupling beam arrangement of reinforcement result of calculation distribution schematic diagram when Figure 10 is middle shake；
Figure 11 is arrangement of reinforcement result of calculation distribution schematic diagram in prefabricated doublylinked beam under the conditions of middle shake；
Figure 12 is 3s moment list coupling beam degree of impairment structure diagrams under the conditions of big shake；
Figure 13 is 2s moment prefabricated doublylinked beam degree of impairment structure diagram under the conditions of big shake；
Figure 14 is 20s moment list coupling beam degree of impairment structure diagrams under the conditions of big shake；
Figure 15 is 20s moment prefabricated doublylinked beam degree of impairment structure diagram under the conditions of big shake；
Single coupling beam is in the corresponding coupling beam reinforcement stresses cloud atlas of ultimate bearing capacity, reinforcement stresses when Figure 16 is big shake
394MPa；
Figure 17 should in the corresponding coupling beam reinforcement stresses cloud atlas of ultimate bearing capacity, reinforcing bar for prefabricated doublylinked beam under the conditions of big shake
Power is 400MPa；
Single coupling beam is in node district concrete plastic strain figure, the larger compressive strain of concrete when Figure 18 is big shake
0.036；
Figure 19 is prefabricated doublylinked beam under the conditions of big shake in node district concrete plastic strain figure, the larger compressive strain of concrete
0.033；
Figure 20 is to match somebody with somebody reinforcement structure schematic diagram using the reality of single coupling beam of design method of the present invention；
Figure 21 is to match somebody with somebody reinforcement structure schematic diagram using the reality of the prefabricated doublylinked beam of design method of the present invention.
Description of reference numerals
1st, upper coupling beam；2nd, lower coupling beam；3rd, wall；4th, castinplace join domain.
Embodiment
Case history and result of calculation
This project is a Tall Shear Wall Structures, and more than ground totally 33 layers, structure heights of roofs is 99m, and fortification intensity is
7 degree, two class places, fundamental wind pressure 0.5kN/m2, surface roughness is C classes, as shown in Figure 1 and Figure 2.
Since the rigidity of structure of overall assembled shear wall is larger, the deformation of structure is smaller, as shown in figure 3, passing through setting
Prefabricated doublylinked beam reduces the rigidity of structure, reduces the response under geological process.
It was found from the relative storey displacement angular curve of Fig. 4, the story drift in 0 degree and 90 degree direction is respectively 1/1428 and 1/
1701, much smaller than Criterion restriction 1/1000, there is larger rich degree, by setting prefabricated doublylinked beam to reduce the rigidity of structure and ground
Brisance.
Table 1 is compared and analyzed using 6 coupling beam schemes, wherein difference of the prefabricated doublylinked beam according to upper and lower coupling beam height
Divide 5 kinds of situations, the crosssection of coupling beam size of each scheme is shown in Table 1.
Table 1：Crosssection of coupling beam size (mm)
Former scheme  Scheme 1  Scheme 2  Scheme 3  Scheme 4  Scheme 5  
Upper coupling beam  200×500  200×140  200×200  200×250  200×300  200×350 
Lower coupling beam    200×360  200×300  200×250  200×200  200×150 
Under horizontal force action, the top displacement and base shear of shear wall the results are shown in Table shown in 2.
Table 2：Displacementshearing result (kN, mm)
Table 3：Line stiffness kN/m
Former scheme  Scheme 1  Scheme 2  Scheme 3  Scheme 4  Scheme 5  
1  14118  12625  11077  10704  11100  11846 
2  8678  8372  8000  7561  10325  9915 
3  2784  2282  2133  2141  2173  2259 
It was found from table 2 and table 3, the structure Line stiffness of 1~scheme of scheme 5 is respectively less than the Line stiffness of former scheme, wherein up and down
3 Line stiffness of scheme when coupling beam is highly identical is minimum, is the 76% of former scheme Line stiffness, and the Line stiffness of scheme 1 is maximum, for original
The 89% of scheme Line stiffness.
When structure maximum story drift be less than Criterion restriction 20% when, 2~scheme of scheme 4 can be used, when structure most
When big story drift is the 10%~20% of Criterion restriction, scheme 1 and scheme 5 can be used, this project is due to the maximum of structure
Story drift is less than the 20% of Criterion restriction, and the scheme 3 for choosing prefabricated doublylinked beam rigidity minimum is designed.
The design method of prefabricated doublylinked beam, includes the following steps in the overall assembled shear wall building structure
(1), single coupling beam in overall assembled shear wall building structure is established using the finite element method of the prior art
Single coupling beam analysis model, according to building structure and plane split require, using existing finite element method, to list
Coupling beam analysis model carries out structure Design and Calculation, determines depth of beam and beam length, and coupling beam is defined as to beam of the spandepth radio less than 5,
As shown in Figure 5；
(2), the coupling beam determined according to step (1), by the analysis to coupling beam position, further discriminate between castinplace coupling beam and
Prefabricated doublylinked beam, wherein, the coupling beam of Lift ＆ Stairs position is castinplace coupling beam, and the coupling beam of other positions is prefabricated doublylinked beam, in advance
Doublylinked beam processed has upper coupling beam 1, lower coupling beam 2 and the castinplace join domain 4 being connected with upper coupling beam 1 and lower 2 end of coupling beam,
The castinplace join domain 4 is connected with the wall 3 of shear wall；
(3), the prefabricated doublylinked beam determined according to step (2), sets the bending stiffness reduction coefficient of prefabricated doublylinked beam, by
Highly it is 500mm in this item purpose coupling beam, therefore bending stiffness reduction coefficient takes 0.76, castinplace coupling beam Stiffness degradation coefficient
For 0.7, the Stiffness degradation coefficient of prefabricated energy consumption coupling beam is 0.53, if as shown in fig. 6, i.e. rounding body fabricated shear wall is built
The bending stiffness reduction coefficient of single coupling beam is η in building structure, then the bending stiffness reduction coefficient of prefabricated doublylinked beam is 0.76 η；
(4), the prefabricated doublylinked sill bolt for obtaining step (3) enters in single coupling beam analysis model of step (1), by corresponding position
Single coupling beam be replaced as doublylinked beam, doublylinked beam computation model is obtained, using existing finite element method, to doublylinked beam meter
Calculate model and carry out structure Design and Calculation, obtain the structure of prefabricated doublylinked beam, wherein, always high H is 400mm to prefabricated doublylinked Liang, lower company
2 high h1 of beam is 240mm, and the slit width h2 between upper coupling beam 1, lower coupling beam 2 is 10mm, and the height of upper 1 castinplace part of coupling beam is that hb is
140mm, the height h3 of upper 1 preerection of coupling beam is 10mm, h3=Hh1h2hb；Upper coupling beam 1, lower coupling beam 2 preerection
End is connected to an entirety by castinplace join domain 4, and the length of the castinplace join domain 4 is 100mm, prefabricated doublylinked beam
The anchorage length that longitudinal tensile reinforcing bar is stretched into shear wall is not less than 1.2La, and wherein La is that the anchoring of longitudinal tensile reinforcing bar is grown
Degree；
At the same time existing finite element method is used to doublylinked beam computation model, obtain the arrangement of reinforcement of prefabricated doublylinked beam as a result,
The area of reinforcement As of prefabricated doublylinked beam is calculated by arrangement of reinforcement result；
1) small shake result of calculation
Table 4：Small shake overall calculation the results list
It was found from the small shake overall calculation result of table 4, prefabricated doublylinked beam increases about 4% than the cycle of single coupling beam, and shearing subtracts
Small by about 3%, the displacement under geological process is reduced by about 4%, and the displacement under wind load is reduced by about 7%；Just again than being reduced by about 7%, position
Move than being reduced by about 1% with floor bearing capacity ratio.
Table 5：Single operating mode internal force contrast under small shake
A) under geological process, shear wall axle power most size about 14% of the prefabricated doublylinked beam than single coupling beam.
B) under geological process, prefabricated doublylinked beam shears most size 6% than the shear wall of single coupling beam.
C) under geological process, shear wall moment of flexure most size about 3% of the prefabricated doublylinked beam than single coupling beam.
It was found from the small shake arrangement of reinforcement result of Fig. 8, Fig. 9, the arrangement of reinforcement of the node reinforcement ratio list coupling beam of prefabricated doublylinked beam few about 8%~
10%.
2) shake result of calculation in
Table 6：Middle shake global index
The middle shake overall calculation result of table 6 understands that prefabricated doublylinked beam is reduced by about 1% than the shearing of single coupling beam, geological process
Under displacement be reduced by about 6%~9%.
It was found from the small shake arrangement of reinforcement result of Figure 10, Figure 11, the arrangement of reinforcement few about 8% of the node reinforcement ratio list coupling beam of prefabricated doublylinked beam
~11%.
3) result of calculation is shaken greatly
Big shaking force elasticplastic calculation analysis is carried out using artificial ripple.Acceleration takes 220cm/s2, and calculating is 20s when holding.
It was found from Figure 12, Figure 13, plastic hinge that single coupling beam scheme occurs in 3s moment indivedual coupling beams, and prefabricated doublylinked beam
In 2s moment parts coupling beam, in middle and upper part, has there is plastic hinge to scheme in floor, and it is obvious than single coupling beam scheme to go out to cut with scissors the time
It is early, illustrate that the coupling beam of prefabricated doublylinked beam scheme consumes energy in advance.
It was found from Figure 14, Figure 15, single coupling beam to go out to cut with scissors scope fewer than prefabricated doublylinked beam, single coupling beam in bottom floor not
There is plastic hinge, and all there is plastic hinge there are coupling beam in the prefabricated substantially all floor of doublylinked beam scheme, illustrates prefabricated doublylinked
The coupling beam of beam scheme more takes full advantage of the energy consumption of coupling beam.
From Figure 16, Figure 17, underbeam tension reinforcement almost enters yielding stage at the same time on prefabricated doublylinked beam；And Dan Lian
Beam tension reinforcement and not up to yield limit, depression of bearing force are due to that node district concrete reaches capacity compression strength, crushing
Destroy, node district concrete plastic strain is as shown in Figure 18, Figure 19.When single coupling beam crushing of concrete destroys, the larger pressure of concrete
Strain as 0.036, damage envelope concentrates on the end of coupling beam, and compressive strain is larger more than 0.02 region, single coupling beam at this time
Top displacement is 20mm, is taken under same vertices displacement, and the prefabricated larger compressive strain of doublylinked beam concrete is 0.033, but compressive strain is big
In 0.02 region very little.
Table 7：Big shake global index
The big shake overall calculation result of table 7 understands that prefabricated doublylinked beam scheme is reduced by about 6% than the shearing of single coupling beam scheme
~8%, the displacement under geological process is reduced by about 23%~25%, the reason is that since the coupling beam of prefabricated doublylinked beam scheme is in earthquake
Effect is very fast to there is plastic hinge, and plastic hinge occurs in most of coupling beam, has given full play to the energy consumption effect of coupling beam, and coupling beam is bent
Structure integrally reduces after clothes, reduces the response under geological process.
(5), with reference to the area of reinforcement As of prefabricated doublylinked beam obtained above and the construction of prefabricated doublylinked beam, choose prefabricated
The actual arrangement of reinforcement of doublylinked beam, it is real to be not less than As with area of reinforcement A, and it is not more than 1.05As, choose representational coupling beam and carry out
It is real to illustrate with reinforcing bar, as shown in Figure 20, Figure 21.
The gluten and bottom muscle of single coupling beam are 3 φ 20 (942mm2), and prefabricated doublylinked beam gluten and bottom muscle are 2 φ 16
(804mm2), saves the amount of reinforcement about 15% of coupling beam.
(6), according to the structure of the prefabricated doublylinked beam of abovementioned acquisition and actual arrangement of reinforcement, construction drawing is drawn, completes overall dress
Design with prefabricated doublylinked beam in formula shear wall building structure.
Performancebased seismic design is carried out to structure under abovementioned prefabricated energy consumption Design of Connecting Beam method standard, to highlayer shear force wall
The antiseismic performance of structural elements is accurately analyzed, and engineer is rapidly carried out the antiseismic performance of Tall Shear Wall Structures
Design.
The above embodiment of the present invention is not limiting the scope of the present invention, and embodiments of the present invention are unlimited
In this, all this kind the above according to the present invention, according to the ordinary technical knowledge and customary means of this area, is not taking off
Under the premise of the abovementioned basic fundamental thought of the present invention, the modification for the other diversified forms made to said structure of the present invention, replace
Or change, it should all fall within the scope and spirit of the invention.
Claims (3)
 A kind of 1. design method of prefabricated doublylinked beam in overall assembled shear wall building structure, it is characterised in that this method bag Include following steps：Step (1)：Establish in overall assembled shear wall building structure single coupling beam analysis model, according to the facade of building structure and Plane, which is split, to be required, and using existing finite element method, is carried out structure Design and Calculation to single coupling beam analysis model, is determined beam Height and beam length, coupling beam is defined as to beam of the spandepth radio less than 5；Step (2)：The coupling beam determined according to step (1), by the analysis to coupling beam position, further discriminates between castinplace coupling beam and pre Doublylinked beam processed, wherein, the coupling beam of Lift ＆ Stairs position is castinplace coupling beam, and the coupling beam of other positions is prefabricated doublylinked beam, described Prefabricated doublylinked beam has upper coupling beam, lower coupling beam and the castinplace join domain being connected with upper coupling beam and lower coupling beam end, this is existing Join domain is poured with the wall of shear wall to be connected；Step (3)：The prefabricated doublylinked beam determined according to step (2), sets the bending stiffness reduction coefficient of prefabricated doublylinked beam, rounding The bending stiffness reduction coefficient of single coupling beam is η in body fabricated shear wall building structure, then the bending stiffness folding of prefabricated doublylinked beam It is 0.76 η to subtract coefficient；Step (4)：The prefabricated doublylinked beam that step (3) is obtained is substituted into single coupling beam analysis model of step (1), by corresponding position Single coupling beam is replaced as doublylinked beam, obtains doublylinked beam computation model, and using existing finite element method, mould is calculated to doublylinked beam Type carries out structure Design and Calculation, obtains the structure of prefabricated doublylinked beam, and obtain the arrangement of reinforcement of prefabricated doublylinked beam as a result, by arrangement of reinforcement knot The area of reinforcement As of prefabricated doublylinked beam is calculated in fruit；Step (5)：The structure that prefabricated doublylinked beam is calculated by step (4) is as follows：Always high H, lower coupling beam are high by prefabricated doublylinked Liang For h1, the slit width between upper coupling beam, lower coupling beam is h2, and the height of the upper castinplace part of coupling beam is hb, the height of upper coupling beam preerection Spend for h3, h3=Hh1h2hb；Upper coupling beam, the end of lower coupling beam preerection are connected to one by the castinplace join domain A entirety, the length of the castinplace join domain is 100mm, and the longitudinal tensile reinforcing bar of prefabricated doublylinked beam stretches into the anchoring in shear wall Length is not less than 1.2La, and wherein La is the anchorage length of longitudinal tensile reinforcing bar；Step (6)：The prefabricated doublylinked beam obtained with reference to the area of reinforcement As and step (5) of the prefabricated doublylinked beam that step (4) obtains Construction, choose the actual arrangement of reinforcement of prefabricated doublylinked beam, it is real to be not less than As with area of reinforcement A, and be not more than 1.05As；Step (7)：The actual arrangement of reinforcement that the structure and step (6) of the prefabricated doublylinked beam obtained according to step (5) obtain, drafting are applied Work figure, completes the design of prefabricated doublylinked beam in overall assembled shear wall building structure.
 2. the design method of prefabricated doublylinked beam in overall assembled shear wall building structure according to claim 1, it is special Sign is：In the step (3), η values are 0.7.
 3. the design method of prefabricated doublylinked beam in overall assembled shear wall building structure according to claim 1, it is special Sign is：In the step (5), H >=400mm, h1 240mm, h2 10mm, hb 140mm.
Priority Applications (1)
Application Number  Priority Date  Filing Date  Title 

CN201710981864.XA CN107908822B (en)  20171020  20171020  Design method of prefabricated doubleconnecting beam in integrallyassembled shear wall building structure 
Applications Claiming Priority (1)
Application Number  Priority Date  Filing Date  Title 

CN201710981864.XA CN107908822B (en)  20171020  20171020  Design method of prefabricated doubleconnecting beam in integrallyassembled shear wall building structure 
Publications (2)
Publication Number  Publication Date 

CN107908822A true CN107908822A (en)  20180413 
CN107908822B CN107908822B (en)  20201222 
Family
ID=61841564
Family Applications (1)
Application Number  Title  Priority Date  Filing Date 

CN201710981864.XA Active CN107908822B (en)  20171020  20171020  Design method of prefabricated doubleconnecting beam in integrallyassembled shear wall building structure 
Country Status (1)
Country  Link 

CN (1)  CN107908822B (en) 
Cited By (3)
Publication number  Priority date  Publication date  Assignee  Title 

CN109472084A (en) *  20181105  20190315  长沙远大住工智能科技有限公司  Assembled architecture design method and system, computer equipment and storage medium 
CN109815436A (en) *  20181205  20190528  田淑明  Shake can repair Method for Checking in small eccentricity tension concrete shear force wall 
CN111576880A (en) *  20200511  20200825  武汉理工大学  Assembling construction method for connecting beam of windowing hole superposed shear wall 
Citations (6)
Publication number  Priority date  Publication date  Assignee  Title 

US20080022623A1 (en) *  20060728  20080131  Paul Brienen  Coupling beam and method of use in building construction 
CN101122151A (en) *  20070530  20080213  北京工业大学  Bidirectional singlerow reinforcement shear wall structure and manufacturing method thereof 
US20120151860A1 (en) *  20101215  20120621  YeouFong Li  Ductile shear reinforced bar layout applied to reinforced concrete shear wall structures 
CN104652654A (en) *  20150211  20150527  沈阳建筑大学  Novel assembled shear wall structure 
CN106049709A (en) *  20160729  20161026  重庆渝发建设有限公司  Connecting system of hybrid coupled shear wall and construction method 
CN106480998A (en) *  20150902  20170308  贵州建工集团第四建筑工程有限责任公司  A kind of region constrained concrete shear wall and preparation method thereof 

2017
 20171020 CN CN201710981864.XA patent/CN107908822B/en active Active
Patent Citations (6)
Publication number  Priority date  Publication date  Assignee  Title 

US20080022623A1 (en) *  20060728  20080131  Paul Brienen  Coupling beam and method of use in building construction 
CN101122151A (en) *  20070530  20080213  北京工业大学  Bidirectional singlerow reinforcement shear wall structure and manufacturing method thereof 
US20120151860A1 (en) *  20101215  20120621  YeouFong Li  Ductile shear reinforced bar layout applied to reinforced concrete shear wall structures 
CN104652654A (en) *  20150211  20150527  沈阳建筑大学  Novel assembled shear wall structure 
CN106480998A (en) *  20150902  20170308  贵州建工集团第四建筑工程有限责任公司  A kind of region constrained concrete shear wall and preparation method thereof 
CN106049709A (en) *  20160729  20161026  重庆渝发建设有限公司  Connecting system of hybrid coupled shear wall and construction method 
NonPatent Citations (2)
Title 

焦柯 等: "多连梁的计算方法及抗震性能分析", 《建筑结构》 * 
郭海山 等: "装配式高层混凝土剪力墙结构新技术开发与示范", 《施工技术》 * 
Cited By (4)
Publication number  Priority date  Publication date  Assignee  Title 

CN109472084A (en) *  20181105  20190315  长沙远大住工智能科技有限公司  Assembled architecture design method and system, computer equipment and storage medium 
CN109815436A (en) *  20181205  20190528  田淑明  Shake can repair Method for Checking in small eccentricity tension concrete shear force wall 
CN111576880A (en) *  20200511  20200825  武汉理工大学  Assembling construction method for connecting beam of windowing hole superposed shear wall 
CN111576880B (en) *  20200511  20210903  武汉理工大学  Assembling construction method for connecting beam of windowing hole superposed shear wall 
Also Published As
Publication number  Publication date 

CN107908822B (en)  20201222 
Similar Documents
Publication  Publication Date  Title 

CN204112504U (en)  A kind of new steel structure bean column node adopting topseatangle steel to be connected with extended end plate  
CN107908822A (en)  The design method of prefabricated doublylinked beam in a kind of overall assembled shear wall building structure  
CN1333141C (en)  Combined concrete shear wall with builtin eccentric supporting steel truss and its making method  
CN101566013A (en)  Main factory building structure system for largescale thermal power plant  
CN101230602A (en)  Profiled bar concrete combination shearing wall and construction method thereof  
CN110688696A (en)  Parameter determination method and device for tunnel supporting structure  
CN105908865A (en)  Steel plate shear wall  
Esmaili et al.  Study of structural RC shear wall system in a 56story RC tall building  
CN109868897A (en)  Need to lay the assembled RC frame structure of antibuckling support based on storey stiffness  
CN108952290A (en)  The energydissipating and shockabsorbing body structure at overhead only column station  
CN104499572A (en)  Earthquakeresistant wall and steel beam connecting node  
CN102535749A (en)  Doublefunction multicavity steel tube concrete column provided with soft steel sleeve at bottom, and manufacturing method thereof  
CN106245820A (en)  It is a kind of that segmentation prestressing force Selfresetting damage concentration is prefabricated waves shear wall  
Gasii  The flat doublelayer gridcable steelconcrete composite structure  
Polak  Ductility of Reinforced Concrete Flat Slab‐Column Connections  
CN101509276A (en)  Steel reinforced concrete frameoffcentering steel shotcrete combined structure system  
CN207553644U (en)  A kind of rcframebeam column reinforcing joint  
CN103790258B (en)  Selfresetting concrete frameeccentrically braces structure system after a kind of shake  
CN109972738A (en)  Combine arch structure  
CN108875131A (en)  Asymmetric girder steel quadrate steel pipe column node shears evaluation method  
CN106284650A (en)  Highlight lines area frame structure  
CN206070739U (en)  Highlight lines area frame structure  
Witzany et al.  Precast reinforced concrete demountable system of multistorey buildings  
Lacki et al.  Numerical analysis of prefabricated steelconcrete composite floor in typical lipsk building  
Frenzel  Numerical simulation ofsinglespan lightweight concrete sandwich slabs 
Legal Events
Date  Code  Title  Description 

PB01  Publication  
PB01  Publication  
SE01  Entry into force of request for substantive examination  
SE01  Entry into force of request for substantive examination  
CB02  Change of applicant information 
Address after: Liwan District Guangzhou City, Guangdong province 510010 Liuhua Road No. 97 Applicant after: Guangdong Architectural Design and Research Institute Co., Ltd Address before: Guangzhou City, Guangdong province 510010 Liuhua Road No. 97 Applicant before: ARCHITECTURAL DESIGN Research Institute OF GUANGDONG PROVINCE 

CB02  Change of applicant information  
GR01  Patent grant  
GR01  Patent grant 