CN107907968A - 摄像光学镜头 - Google Patents
摄像光学镜头 Download PDFInfo
- Publication number
- CN107907968A CN107907968A CN201710974781.8A CN201710974781A CN107907968A CN 107907968 A CN107907968 A CN 107907968A CN 201710974781 A CN201710974781 A CN 201710974781A CN 107907968 A CN107907968 A CN 107907968A
- Authority
- CN
- China
- Prior art keywords
- lens
- camera
- curvature
- radius
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明涉及光学镜头领域,公开了一种摄像光学镜头,该摄像光学镜头自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;且满足下列关系式:‑3≤f1/f≤‑1,1.7≤n2≤2.2,1≤f6/f7≤10;2≤(R1+R2)/(R1‑R2)≤10;1.7≤n3≤2.2。该摄像光学镜头能获得高成像性能的同时,获得低TTL。
Description
技术领域
本发明涉及光学镜头领域,特别涉及一种适用于智能手机、数码相机等手提终端设备,以及监视器、PC镜头等摄像装置的摄像光学镜头。
背景技术
近年来,随着智能手机的兴起,小型化摄影镜头的需求日渐提高,而一般摄影镜头的感光器件不外乎是感光耦合器件(Charge Coupled Device,CCD)或互补性氧化金属半导体器件(Complementary Metal-OxideSemicondctor Sensor,CMOS Sensor)两种,且由于半导体制造工艺技术的精进,使得感光器件的像素尺寸缩小,再加上现今电子产品以功能佳且轻薄短小的外型为发展趋势,因此,具备良好成像品质的小型化摄像镜头俨然成为目前市场上的主流。为获得较佳的成像品质,传统搭载于手机相机的镜头多采用三片式或四片式透镜结构。并且,随着技术的发展以及用户多样化需求的增多,在感光器件的像素面积不断缩小,且系统对成像品质的要求不断提高的情况下,五片式、六片式、七片式透镜结构逐渐出现在镜头设计当中。迫切需求具有优秀的光学特征、超薄且色像差充分补正的广角摄像镜头。
发明内容
针对上述问题,本发明的目的在于提供一种摄像光学镜头,能在获得高成像性能的同时,满足超薄化和广角化的要求。
为解决上述技术问题,本发明的实施方式提供了一种摄像光学镜头,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第二透镜的折射率为n2,所述第三透镜的折射率为n3,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,满足下列关系式:
-3≤f1/f≤-1,1.7≤n2≤2.2,1≤f6/f7≤10;
2≤(R1+R2)/(R1-R2)≤10;
1.7≤n3≤2.2。
本发明实施方式相对于现有技术而言,通过上述透镜的配置方式,利用在焦距、折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径的数据上有特定关系的透镜的共同配合,使摄像光学镜头能在获得高成像性能的同时,满足超薄化和广角化的要求。
优选的,所述第一透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述第一透镜的轴上厚度为d1,且满足下列关系式:0.11≤d1≤0.33。
优选的,所述第二透镜具有正屈折力,其物侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:0.38≤f2/f≤1.29;
-2.68≤(R3+R4)/(R3-R4)≤-0.61;0.25≤d3≤0.80。
优选的,所述第三透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:1.52≤f3/f≤6.20;1.42≤(R5+R6)/(R5-R6)≤5.53;0.14≤d5≤0.53。
优选的,所述第四透镜具有负屈折力,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:-4.86≤f4/f≤-0.75;0.22≤(R7+R8)/(R7-R8)≤2.66;0.15≤d7≤0.92。
优选的,所述第五透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:0.24≤f5/f≤0.77;0.60≤(R9+R10)/(R9-R10)≤2.03;0.44≤d9≤1.70。
优选的,所述第六透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:-10.93≤f6/f≤-1.47;-0.59≤(R11+R12)/(R11-R12)≤3.91;0.13≤d11≤0.55。
优选的,所述第七透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:0.86≤(R13+R14)/(R13-R14)≤3.09;-1.51≤f7/f≤-0.44;0.18≤d13≤0.61。
优选的,所述摄像光学镜头的光学总长TTL小于或等于6.55毫米。
优选的,所述摄像光学镜头的光圈F数小于或等于2.21。
本发明的有益效果在于:根据本发明的摄像光学镜头具有优秀的光学特性,超薄,广角且色像差充分补正,尤其适用于由高像素用的CCD、CMOS等摄像元件构成的手机摄像镜头组件和WEB摄像镜头。
附图说明
图1是本发明第一实施方式的摄像光学镜头的结构示意图;
图2是图1所示摄像光学镜头的轴向像差示意图;
图3是图1所示摄像光学镜头的倍率色差示意图;
图4是图1所示摄像光学镜头的场曲及畸变示意图;
图5是本发明第二实施方式的摄像光学镜头的结构示意图;
图6是图5所示摄像光学镜头的轴向像差示意图;
图7是图5所示摄像光学镜头的倍率色差示意图;
图8是图5所示摄像光学镜头的场曲及畸变示意图;
图9是本发明第三实施方式的摄像光学镜头的结构示意图;
图10是图9所示摄像光学镜头的轴向像差示意图;
图11是图9所示摄像光学镜头的倍率色差示意图;
图12是图9所示摄像光学镜头的场曲及畸变示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施方式中,为了使读者更好地理解本发明而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本发明所要求保护的技术方案。
(第一实施方式)
参考附图,本发明提供了一种摄像光学镜头10。图1所示为本发明第一实施方式的摄像光学镜头10,该摄像光学镜头10包括七个透镜。具体的,所述摄像光学镜头10,由物侧至像侧依序包括:光圈S1、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6以及第七透镜L7。第七透镜L7和像面Si之间可设置有光学过滤片(filter)GF等光学元件。第一透镜L1为塑料材质,第二透镜L2为玻璃材质,第三透镜L3为玻璃材质,第四透镜L4为塑料材质,第五透镜L5为塑料材质,第六透镜L6为塑料材质,第七透镜L7为塑料材质。
在此,定义整体摄像光学镜头10的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第二透镜的折射率为n2,所述第三透镜的折射率为n3,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7。所述摄像光学镜头10满足下列关系式:-3≤f1/f≤-1,1.7≤n2≤2.2,1≤f6/f7≤10;2≤(R1+R2)/(R1-R2)≤10;1.7≤n3≤2.2。
-3≤f1/f≤-1,规定了第一透镜L1的负屈折力。超过上限规定值时,虽然有利于镜头向超薄化发展,但是第一透镜L1的负屈折力会过强,难以补正像差等问题,同时不利于镜头向广角化发展。相反,超过下限规定值时,第一透镜的负屈折力会变过弱,镜头难以向超薄化发展。优选的,满足-3≤f1/f≤-1.50。
1.7≤n2≤2.2,规定了第二透镜L2的折射率,在此范围内更有利于向超薄化发展,同时利于修正像差。优选的,满足1.74≤n4≤1.85。
1≤f6/f7≤10,规定了第六透镜L6的焦距f6与第七透镜L7的焦距f7的比值,可有效降低摄像用光学透镜组的敏感度,进一步提升成像质量。优选的,满足3≤f6/f7≤8.35。
2≤(R1+R2)/(R1-R2)≤10,规定了第一透镜L1的形状,在范围外时,随着向超薄广角化发展,很难补正轴外画角的像差等问题。优选的,满足2.50≤(R1+R2)/(R1-R2)≤5.55。
1.7≤n3≤2.2,规定了第三透镜L3的折射率,有利于实现超薄化。优选的,满足1.8≤n3≤2.0。
当本发明所述摄像光学镜头10的焦距、各透镜的焦距、相关透镜的折射率、摄像光学镜头的光学总长、轴上厚度和曲率半径满足上述关系式时,可以使摄像光学镜头10具有高性能,且满足低TTL的设计需求。
本实施方式中,第一透镜L1的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力;整体摄像光学镜头的焦距为f,第一透镜L1焦距f1,第一透镜L1的轴上厚度d1满足下列关系式:0.11≤d1≤0.33,有利于实现超薄化。优选的,0.18≤d1≤0.26。
本实施方式中,第二透镜L2的物侧面于近轴处为凸面,具有正屈折力;整体摄像光学镜头10的焦距为f,第二透镜L2焦距f2,第二透镜L2物侧面的曲率半径R3,第二透镜L2像侧面的曲率半径R4,以及第二透镜L2的轴上厚度d3满足下列关系式:0.38≤f2/f≤1.29,通过将第二透镜L2的正光焦度控制在合理范围,以合理而有效地平衡由具有负光焦度的第一透镜L1产生的球差以及系统的场曲量;-2.68≤(R3+R4)/(R3-R4)≤-0.61,规定了第二透镜L2的形状,在范围外时,随着镜头向超薄广角化发展,难以补正轴上色像差问题;0.25≤d3≤0.80,有利于实现超薄化。优选的,0.61≤f2/f≤1.03;-1.67≤(R3+R4)/(R3-R4)≤-0.77;0.40≤d3≤0.64。
本实施方式中,第三透镜L3的物侧面于近轴处为凹面,像侧面于近轴处为凸面,具有正屈折力;整体摄像光学镜头10的焦距为f,第三透镜L3焦距f3,第三透镜L3物侧面的曲率半径R5,第三透镜L3像侧面的曲率半径R6,以及第三透镜L3的轴上厚度d5满足下列关系式:1.52≤f3/f≤6.20,有利于系统获得良好的平衡场曲的能力,以有效地提升像质;1.42≤(R5+R6)/(R5-R6)≤5.53,可有效控制第三透镜L3的形状,有利于第三透镜L3成型,并避免因第三透镜L3的表面曲率过大而导致成型不良与应力产生;0.14≤d5≤0.53,有利于实现超薄化。优选的,2.44≤f3/f≤4.96;2.28≤(R5+R6)/(R5-R6)≤4.43;0.23≤d5≤0.42。
本实施方式中,第四透镜L4的像侧面于近轴处为凹面,具有负屈折力;整体摄像光学镜头10的焦距为f,第四透镜L4焦距f4,第四透镜L4物侧面的曲率半径R7,第四透镜L4像侧面的曲率半径R8,以及第四透镜L4的轴上厚度d7满足下列关系式:-4.86≤f4/f≤-0.75,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性;0.22≤(R7+R8)/(R7-R8)≤2.66,规定的是第四透镜L4的形状,在范围外时,随着超薄广角化的发展,很难补正轴外画角的像差等问题;0.15≤d7≤0.92,有利于实现超薄化。优选的,-3.04≤f4/f≤-0.94;0.35≤(R7+R8)/(R7-R8)≤2.13;0.24≤d7≤0.74。
本实施方式中,第五透镜L5的物侧面于近轴处为凹面,像侧面于近轴处为凸面,具有正屈折力;整体摄像光学镜头10的焦距为f,第五透镜L5焦距f5,第五透镜L5物侧面的曲率半径R9,第五透镜L5像侧面的曲率半径R10,以及第五透镜L5的轴上厚度d9满足下列关系式:0.24≤f5/f≤0.77,对第五透镜L5的限定可有效的使得摄像镜头的光线角度平缓,降低公差敏感度;0.60≤(R9+R10)/(R9-R10)≤2.03,规定的是第五透镜L5的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题;0.44≤d9≤1.70,有利于实现超薄化。优选的,0.39≤f5/f≤0.62;0.96≤(R9+R10)/(R9-R10)≤1.63;0.70≤d9≤1.36。
本实施方式中,第六透镜L6的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力;整体摄像光学镜头10的焦距为f,第六透镜L6焦距f6,第六透镜L6物侧面的曲率半径R11,第六透镜L6像侧面的曲率半径R12,以及第六透镜L6的轴上厚度d11满足下列关系式:-10.93≤f6/f≤-1.47,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性;-0.59≤(R11+R12)/(R11-R12)≤3.91,规定的是第六透镜L6的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题;0.13≤d11≤0.55,有利于实现超薄化。优选的,-6.83≤f6/f≤-1.84;0.95≤(R11+R12)/(R11-R12)≤3.13;0.20≤d11≤0.44。
本实施方式中,第七透镜L7的物侧面于近轴处为凸面,像侧面于近轴处为凹面,具有负屈折力;整体摄像光学镜头10的焦距为f,所述第七透镜L7物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,第七透镜L7焦距f7,以及第七透镜L7的轴上厚度d13满足下列关系式:0.86≤(R13+R14)/(R13-R14)≤3.09,规定的是第七透镜L7的形状,在条件范围外时,随着超薄广角化发展,很难补正轴外画角的像差等问题;-1.51≤f7/f≤-0.44,通过光焦度的合理分配,使得系统具有较佳的成像品质和较低的敏感性;0.18≤d13≤0.61,有利于实现超薄化。优选的,-0.94≤f7/f≤-0.55;0.29≤d13≤0.49。
本实施方式中,摄像光学镜头10的光学总长TTL小于或等于6.55毫米,有利于实现超薄化。优选的,摄像光学镜头10的光学总长TTL小于或等于6.25。
本实施方式中,摄像光学镜头10的光圈F数小于或等于2.21。大光圈,成像性能好。优选的,摄像光学镜头10的光圈F数小于或等于2.17。
如此设计,能够使得整体摄像光学镜头10的光学总长TTL尽量变短,维持小型化的特性。
下面将用实例进行说明本发明的摄像光学镜头10。各实例中所记载的符号如下所示。距离、半径与中心厚度的单位为mm。
TTL:光学长度(第1透镜L1的物侧面到成像面的轴上距离);
优选的,所述透镜的物侧面和/或像侧面上还可以设置有反曲点和/或驻点,以满足高品质的成像需求,具体的可实施方案,参下所述。
以下示出了依据本发明第一实施方式的摄像光学镜头10的设计数据,焦距、距离、半径与中心厚度的单位为mm。
表1、表2示出本发明第一实施方式的摄像光学镜头10的设计数据。
【表1】
其中,各符号的含义如下。
S1:光圈;
R:光学面的曲率半径、透镜时为中心曲率半径;
R1:第一透镜L1的物侧面的曲率半径;
R2:第一透镜L1的像侧面的曲率半径;
R3:第二透镜L2的物侧面的曲率半径;
R4:第二透镜L2的像侧面的曲率半径;
R5:第三透镜L3的物侧面的曲率半径;
R6:第三透镜L3的像侧面的曲率半径;
R7:第四透镜L4的物侧面的曲率半径;
R8:第四透镜L4的像侧面的曲率半径;
R9:第五透镜L5的物侧面的曲率半径;
R10:第五透镜L5的像侧面的曲率半径;
R11:第六透镜L6的物侧面的曲率半径;
R12:第六透镜L6的像侧面的曲率半径;
R13:第七透镜L7的物侧面的曲率半径;
R14:第七透镜L7的像侧面的曲率半径;
R15:光学过滤片GF的物侧面的曲率半径;
R16:光学过滤片GF的像侧面的曲率半径;
d:透镜的轴上厚度与透镜之间的轴上距离;
d0:光圈S1到第一透镜L1的物侧面的轴上距离;
d1:第一透镜L1的轴上厚度;
d2:第一透镜L1的像侧面到第二透镜L2的物侧面的轴上距离;
d3:第二透镜L2的轴上厚度;
d4:第二透镜L2的像侧面到第三透镜L3的物侧面的轴上距离;
d5:第三透镜L3的轴上厚度;
d6:第三透镜L3的像侧面到第四透镜L4的物侧面的轴上距离;
d7:第四透镜L4的轴上厚度;
d8:第四透镜L4的像侧面到第五透镜L5的物侧面的轴上距离;
d9:第五透镜L5的轴上厚度;
d10:第五透镜L5的像侧面到第六透镜L6的物侧面的轴上距离;
d11:第六透镜L6的轴上厚度;
d12:第六透镜L6的像侧面到第七透镜L7的物侧面的轴上距离;
d13:第七透镜L7的轴上厚度;
d14:第七透镜L7的像侧面到光学过滤片GF的物侧面的轴上距离;
d15:光学过滤片GF的轴上厚度;
d16:光学过滤片GF的像侧面到像面的轴上距离;
nd:d线的折射率;
nd1:第一透镜L1的d线的折射率;
nd2:第二透镜L2的d线的折射率;
nd3:第三透镜L3的d线的折射率;
nd4:第四透镜L4的d线的折射率;
nd5:第五透镜L5的d线的折射率;
nd6:第六透镜L6的d线的折射率;
nd7:第七透镜L7的d线的折射率;
ndg:光学过滤片GF的d线的折射率;
vd:阿贝数;
v1:第一透镜L1的阿贝数;
v2:第二透镜L2的阿贝数;
v3:第三透镜L3的阿贝数;
v4:第四透镜L4的阿贝数;
v5:第五透镜L5的阿贝数;
v6:第六透镜L6的阿贝数;
v7:第七透镜L7的阿贝数;
vg:光学过滤片GF的阿贝数。
表2示出本发明实施方式1的摄像光学镜头10中各透镜的非球面数据。
【表2】
其中,k是圆锥系数,A4、A6、A8、A10、A12、A14、A16是非球面系数。
IH:像高
y=(x2/R)/[1+{1-(k+1)(x2/R2)}1/2]+A4x4+A6x6+A8x8+A10x10+A12x12+A14x14+A16x16 (1)
为方便起见,各个透镜面的非球面使用上述公式(1)中所示的非球面。但是,本发明不限于该公式(1)表示的非球面多项式形式。
表3、表4示出本发明实施方式1的摄像光学镜头10中各透镜的反曲点以及驻点设计数据。其中,R1、R2分别代表第一透镜L1的物侧面和像侧面,R3、R4分别代表第二透镜L2的物侧面和像侧面,R5、R6分别代表第三透镜L3的物侧面和像侧面,R7、R8分别代表第四透镜L4的物侧面和像侧面,R9、R10分别代表第五透镜L5的物侧面和像侧面,R11、R12分别代表第六透镜L6的物侧面和像侧面,R13、R14分别代表第七透镜L7的物侧面和像侧面。“反曲点位置”栏位对应数据为各透镜表面所设置的反曲点到摄像光学镜头10光轴的垂直距离。“驻点位置”栏位对应数据为各透镜表面所设置的驻点到摄像光学镜头10光轴的垂直距离。
【表3】
【表4】
图2、图3分别示出了波长为470nm、555nm、650nm的光经过第一实施方式的摄像光学镜头10后的轴向像差以及倍率色差示意图。图4则示出了,波长为555nm的光经过第一实施方式的摄像光学镜头10后的场曲及畸变示意图,图4的场曲S是弧矢方向的场曲,T是子午方向的场曲。
后出现的表13示出各实例1、2、3中各种数值与条件式中已规定的参数所对应的值。
如表13所示,第一实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.810mm,全视场像高为2.994mm,对角线方向的视场角为74.79°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第二实施方式)
第二实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表5、表6示出本发明第二实施方式的摄像光学镜头20的设计数据。
【表5】
表6示出本发明第二实施方式的摄像光学镜头20中各透镜的非球面数据。
【表6】
表7、表8示出本发明实施方式2的摄像光学镜头20中各透镜的反曲点以及驻点设计数据。
【表7】
反曲点个数 | 反曲点位置1 | 反曲点位置2 | 反曲点位置3 | 反曲点位置4 | |
R1 | 1 | 0.625 | |||
R2 | 2 | 0.62 | 0.985 | ||
R3 | 0 | ||||
R4 | 1 | 0.925 | |||
R5 | 1 | 0.975 | |||
R6 | 0 | ||||
R7 | 0 | ||||
R8 | 2 | 0.405 | 1.205 | ||
R9 | 1 | 0.905 | |||
R10 | 1 | 1.315 | |||
R11 | 1 | 0.515 | |||
R12 | 2 | 1.995 | 2.215 | ||
R13 | 2 | 1.195 | 2.195 | ||
R14 | 1 | 0.845 |
【表8】
图6、图7分别示出了波长为470nm、555nm、650nm的光经过第二实施方式的摄像光学镜头20后的轴向像差以及倍率色差示意图。图8则示出了,波长为555nm的光经过第二实施方式的摄像光学镜头20后的场曲及畸变示意图。
如表13所示,第二实施方式满足各条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.898mm,全视场像高为2.994mm,对角线方向的视场角为74.79°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
(第三实施方式)
第三实施方式与第一实施方式基本相同,符号含义与第一实施方式相同,以下只列出不同点。
表9、表10示出本发明第三实施方式的摄像光学镜头30的设计数据。
【表9】
表10示出本发明第三实施方式的摄像光学镜头30中各透镜的非球面数据。
【表10】
表11、表12示出本发明第三实施方式的摄像光学镜头30中各透镜的反曲点以及驻点设计数据。
【表11】
【表12】
图10、图11分别示出了波长为470nm、555nm、650nm的光经过第三实施方式的摄像光学镜头30后的轴向像差以及倍率色差示意图。图12则示出了,波长为555nm的光经过第三实施方式的摄像光学镜头30后的场曲及畸变示意图。
以下表13按照上述条件式列出了本实施方式中对应各条件式的数值。显然,本实施方式的摄像光学系统满足上述的条件式。
在本实施方式中,所述摄像光学镜头的入瞳直径为1.898mm,全视场像高为2.994mm,对角线方向的视场角为74.83°,广角、超薄,其轴上、轴外色像差充分补正,且具有优秀的光学特征。
【表13】
参数及条件式 | 实施例1 | 实施例2 | 实施例3 |
f | 3.891 | 3.891 | 3.890 |
f1 | -5.842 | -11.686 | -7.791 |
f2 | 2.976 | 3.345 | 3.033 |
f3 | 11.861 | 16.082 | 14.860 |
f4 | -9.459 | -4.630 | -4.404 |
f5 | 2.006 | 1.898 | 1.892 |
f6 | -8.580 | -21.259 | -14.639 |
f7 | -2.860 | -2.546 | -2.928 |
f6/f7 | 3.000 | 8.350 | 5.000 |
(R1+R2)/(R1-R2) | 3.246 | 5.548 | 2.500 |
(R3+R4)/(R3-R4) | -1.338 | -0.920 | -1.287 |
(R5+R6)/(R5-R6) | 2.849 | 3.690 | 3.349 |
(R7+R8)/(R7-R8) | 1.773 | 0.435 | 0.495 |
(R9+R10)/(R9-R10) | 1.354 | 1.236 | 1.204 |
(R11+R12)/(R11-R12) | 1.188 | 2.605 | 1.764 |
(R13+R14)/(R13-R14) | 1.990 | 1.718 | 2.058 |
f1/f | -1.501 | -3.003 | -2.003 |
f2/f | 0.765 | 0.860 | 0.780 |
f3/f | 3.049 | 4.133 | 3.820 |
f4/f | -2.431 | -1.190 | -1.132 |
f5/f | 0.515 | 0.488 | 0.486 |
f6/f | -2.205 | -5.464 | -3.763 |
f7/f | -0.735 | -0.654 | -0.753 |
d1 | 0.220 | 0.220 | 0.220 |
d3 | 0.511 | 0.502 | 0.534 |
d5 | 0.289 | 0.354 | 0.326 |
d7 | 0.294 | 0.613 | 0.558 |
d9 | 0.873 | 1.133 | 1.041 |
d11 | 0.250 | 0.364 | 0.277 |
d13 | 0.408 | 0.357 | 0.359 |
Fno | 2.150 | 2.050 | 2.050 |
TTL | 5.549 | 5.950 | 5.876 |
n1 | 1.6713 | 1.6713 | 1.6613 |
n2 | 1.8540 | 1.7432 | 1.8062 |
n3 | 1.8014 | 2.0018 | 1.9229 |
n4 | 1.6613 | 1.6713 | 1.6713 |
n5 | 1.5352 | 1.5352 | 1.5352 |
n6 | 1.5352 | 1.5352 | 1.5352 |
n7 | 1.5352 | 1.5352 | 1.5352 |
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施方式,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
Claims (10)
1.一种摄像光学镜头,其特征在于,所述摄像光学镜头,自物侧至像侧依序包含:第一透镜,第二透镜,第三透镜,第四透镜,第五透镜,第六透镜,以及第七透镜;
所述摄像光学镜头的焦距为f,所述第一透镜的焦距为f1,所述第一透镜物侧面的曲率半径为R1,所述第一透镜像侧面的曲率半径为R2,所述第二透镜的折射率为n2,所述第三透镜的折射率为n3,所述第六透镜的焦距为f6,所述第七透镜的焦距为f7,满足下列关系式:
-3≤f1/f≤-1,1.7≤n2≤2.2,1≤f6/f7≤10;
2≤(R1+R2)/(R1-R2)≤10;
1.7≤n3≤2.2。
2.根据权利要求1所述的摄像光学镜头,其特征在于,所述第一透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述第一透镜的轴上厚度为d1,且满足下列关系式:
0.11≤d1≤0.33。
3.根据权利要求1所述的摄像光学镜头,其特征在于,所述第二透镜具有正屈折力,其物侧面于近轴为凸面;
所述摄像光学镜头的焦距为f,所述第二透镜的焦距为f2,所述第二透镜物侧面的曲率半径为R3,所述第二透镜像侧面的曲率半径为R4,所述第二透镜的轴上厚度为d3,且满足下列关系式:
0.38≤f2/f≤1.29;
-2.68≤(R3+R4)/(R3-R4)≤-0.61;
0.25≤d3≤0.80。
4.根据权利要求1所述的摄像光学镜头,其特征在于,所述第三透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;
所述摄像光学镜头的焦距为f,所述第三透镜的焦距为f3,所述第三透镜物侧面的曲率半径为R5,所述第三透镜像侧面的曲率半径为R6,所述第三透镜的轴上厚度为d5,且满足下列关系式:
1.52≤f3/f≤6.20;
1.42≤(R5+R6)/(R5-R6)≤5.53;
0.14≤d5≤0.53。
5.根据权利要求1所述的摄像光学镜头,其特征在于,所述第四透镜具有负屈折力,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第四透镜的焦距为f4,所述第四透镜物侧面的曲率半径为R7,所述第四透镜像侧面的曲率半径为R8,所述第四透镜的轴上厚度为d7,且满足下列关系式:
-4.86≤f4/f≤-0.75;
0.22≤(R7+R8)/(R7-R8)≤2.66;
0.15≤d7≤0.92。
6.根据权利要求1所述的摄像光学镜头,其特征在于,所述第五透镜具有正屈折力,其物侧面于近轴为凹面,其像侧面于近轴为凸面;
所述摄像光学镜头的焦距为f,所述第五透镜的焦距为f5,所述第五透镜物侧面的曲率半径为R9,所述第五透镜像侧面的曲率半径为R10,所述第五透镜的轴上厚度为d9,且满足下列关系式:
0.24≤f5/f≤0.77;
0.60≤(R9+R10)/(R9-R10)≤2.03;
0.44≤d9≤1.70。
7.根据权利要求1所述的摄像光学镜头,其特征在于,所述第六透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第六透镜的焦距为f6,所述第六透镜物侧面的曲率半径为R11,所述第六透镜像侧面的曲率半径为R12,所述第六透镜的轴上厚度为d11,且满足下列关系式:
-10.93≤f6/f≤-1.47;
-0.59≤(R11+R12)/(R11-R12)≤3.91;
0.13≤d11≤0.55。
8.根据权利要求1所述的摄像光学镜头,其特征在于,所述第七透镜具有负屈折力,其物侧面于近轴为凸面,其像侧面于近轴为凹面;
所述摄像光学镜头的焦距为f,所述第七透镜的焦距为f7,所述第七透镜物侧面的曲率半径为R13,所述第七透镜像侧面的曲率半径为R14,所述第七透镜的轴上厚度为d13,且满足下列关系式:
0.86≤(R13+R14)/(R13-R14)≤3.09;
-1.51≤f7/f≤-0.44;
0.18≤d13≤0.61。
9.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光学总长TTL小于或等于6.55毫米。
10.根据权利要求1所述的摄像光学镜头,其特征在于,所述摄像光学镜头的光圈F数小于或等于2.21。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710974781.8A CN107907968B (zh) | 2017-10-19 | 2017-10-19 | 摄像光学镜头 |
JP2017223370A JP6345862B1 (ja) | 2017-10-19 | 2017-11-21 | 撮像光学レンズ |
US15/842,087 US10222591B1 (en) | 2017-10-19 | 2017-12-14 | Camera optical lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710974781.8A CN107907968B (zh) | 2017-10-19 | 2017-10-19 | 摄像光学镜头 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107907968A true CN107907968A (zh) | 2018-04-13 |
CN107907968B CN107907968B (zh) | 2020-02-04 |
Family
ID=61840637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710974781.8A Active CN107907968B (zh) | 2017-10-19 | 2017-10-19 | 摄像光学镜头 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107907968B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239983A (zh) * | 2020-03-24 | 2020-06-05 | 南京理工大学 | 一种高成像质量的广角摄影镜头 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003140042A (ja) * | 2001-11-02 | 2003-05-14 | West Electric Co Ltd | ズームレンズ |
JP2012002906A (ja) * | 2010-06-15 | 2012-01-05 | Konica Minolta Opto Inc | 投影レンズ及び投影装置 |
CN104076492A (zh) * | 2013-03-29 | 2014-10-01 | 佳能株式会社 | 透镜装置和包括透镜装置的图像拾取装置 |
CN204065536U (zh) * | 2012-02-22 | 2014-12-31 | 富士胶片株式会社 | 摄像透镜及具备该摄像透镜的摄像装置 |
CN106291886A (zh) * | 2015-05-12 | 2017-01-04 | 亚太精密工业(深圳)有限公司 | 广角镜头 |
-
2017
- 2017-10-19 CN CN201710974781.8A patent/CN107907968B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003140042A (ja) * | 2001-11-02 | 2003-05-14 | West Electric Co Ltd | ズームレンズ |
JP2012002906A (ja) * | 2010-06-15 | 2012-01-05 | Konica Minolta Opto Inc | 投影レンズ及び投影装置 |
CN204065536U (zh) * | 2012-02-22 | 2014-12-31 | 富士胶片株式会社 | 摄像透镜及具备该摄像透镜的摄像装置 |
CN104076492A (zh) * | 2013-03-29 | 2014-10-01 | 佳能株式会社 | 透镜装置和包括透镜装置的图像拾取装置 |
CN106291886A (zh) * | 2015-05-12 | 2017-01-04 | 亚太精密工业(深圳)有限公司 | 广角镜头 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239983A (zh) * | 2020-03-24 | 2020-06-05 | 南京理工大学 | 一种高成像质量的广角摄影镜头 |
Also Published As
Publication number | Publication date |
---|---|
CN107907968B (zh) | 2020-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107664817A (zh) | 摄像光学镜头 | |
CN107664813A (zh) | 摄像光学镜头 | |
CN107664819A (zh) | 摄像光学镜头 | |
CN107664816A (zh) | 摄像光学镜头 | |
CN107664821A (zh) | 摄像光学镜头 | |
CN107678138A (zh) | 摄像光学镜头 | |
CN107817584A (zh) | 摄像光学镜头 | |
CN107942483A (zh) | 摄像光学镜头 | |
CN107797233A (zh) | 摄像光学镜头 | |
CN107797242A (zh) | 摄像光学镜头 | |
CN107664818A (zh) | 摄像光学镜头 | |
CN107942484A (zh) | 摄像光学镜头 | |
CN107678133A (zh) | 摄像光学镜头 | |
CN107797234A (zh) | 摄像光学镜头 | |
CN107797235A (zh) | 摄像光学镜头 | |
CN107664822A (zh) | 摄像光学镜头 | |
CN107817582A (zh) | 摄像光学镜头 | |
CN107942487A (zh) | 摄像光学镜头 | |
CN107942485A (zh) | 摄像光学镜头 | |
CN107817585A (zh) | 摄像光学镜头 | |
CN107907969A (zh) | 摄像光学镜头 | |
CN107664814A (zh) | 摄像光学镜头 | |
CN107942488A (zh) | 摄像光学镜头 | |
CN107831586A (zh) | 摄像光学镜头 | |
CN107797240A (zh) | 摄像光学镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200423 Address after: No. 8, 2 floor, 85 Cavendish Science Park Avenue, Singapore Patentee after: Raytheon solutions Pte Ltd Address before: No. 8, 1st floor, Tongju Science and Technology Building, 10 65th Street, Hongmao Bridge, Singapore Patentee before: Raytheon Technology (Singapore) Co., Ltd |