CN107886113B - 一种基于卡方检验的电磁频谱噪声提取和滤波方法 - Google Patents

一种基于卡方检验的电磁频谱噪声提取和滤波方法 Download PDF

Info

Publication number
CN107886113B
CN107886113B CN201711023440.9A CN201711023440A CN107886113B CN 107886113 B CN107886113 B CN 107886113B CN 201711023440 A CN201711023440 A CN 201711023440A CN 107886113 B CN107886113 B CN 107886113B
Authority
CN
China
Prior art keywords
value
noise
chi
data
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711023440.9A
Other languages
English (en)
Other versions
CN107886113A (zh
Inventor
周光耀
易翔
沈强
罗冲
魏洪俊
刘波
付刚
朱廷希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Cscc Electronic Technology Co ltd
Original Assignee
Chengdu Cscc Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Cscc Electronic Technology Co ltd filed Critical Chengdu Cscc Electronic Technology Co ltd
Priority to CN201711023440.9A priority Critical patent/CN107886113B/zh
Publication of CN107886113A publication Critical patent/CN107886113A/zh
Application granted granted Critical
Publication of CN107886113B publication Critical patent/CN107886113B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2134Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on separation criteria, e.g. independent component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing
    • G06F2218/04Denoising

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明提供了一种基于卡方检验的电磁频谱噪声提取和滤波算法,本算法通过定量和定性的多标准来判定噪声分布参数,可以处理和区分这些奇异样本,且处理精度与正常样本一样。即在外端设备输入信号数据后,通过本算法实现了噪声提取和滤波,为后续分开输出存储噪声和信号数据提供了数据处理准备,为信号时域和频谱的监测及分析提供了技术支持。

Description

一种基于卡方检验的电磁频谱噪声提取和滤波方法
技术领域
本发明涉及涉及:复杂信号中的样本统计、参数估计、噪声提取和滤波等理论的算法,特别是涉及一种基于卡方检验的电磁频谱噪声提取和滤波算法。
背景技术
随着电子科技的快速发展,电磁频谱环境日趋复杂,对于一些民用电磁频谱的监测和管理要求也越来越高。在复杂的环境下,难以预料未来将接收到的信号的参数。在没有先验信息的情况下,信号和噪声都是具有随机不确定性的。而非民用系统的信号区分度要求更高、处理速度需求更快,更需要对这些信号进行一个快速检验和分离。
在无线电监测中即将接收到的信号的时域和频域特征是未知的,噪声参数也是未知的。对这类信号的处理存在的问题是:唯一的已知条件是白噪声在时域或者频域中的服从高斯分布,因此算法同时实现噪声提取和滤波非常困难。现有一些方法只能单一的提取均值且误差较大、计算复杂、不能得到具体的噪声随机分布的方差。一些滤波算法无法在滤波的同时提取噪声信息。奇异样本的存在会对定量算法的处理结果造成很大偏差,现有算法无法区分和处理奇异样本。因此实现算法的同时需要解决这些问题。而从参数估计出发,利用蒙特卡诺的思想得到噪声和信号的信息,这种思路本身也是新颖的。
发明内容
本发明为复杂信号的噪声提取提供了实现的理论和算法。相比于现有一些处理方法,本算法能同时得到随机噪声的均值和方差,信息量更全面、精度更高,为后续滤波的精度提供了参数条件。和其它算法相比,这种通过参数估计来提取噪声和滤波的方式,过程简单、适用性更广、便于移植和功能提取。由于通过统计的方法进行计算,数据量的增加对处理速度的影响相比而言更小,即使信号和噪声相差很小都能识别出来。普遍的随机理论和算法处理奇异性样本非常困难,奇异样本又是不可能避免的且会造成很大偏差。本算法通过定量和定性的多标准来判定噪声分布参数,可以处理和区分这些奇异样本,且处理精度与正常样本一样。即在外端设备输入信号数据后,通过本算法实现了噪声提取和滤波,为后续分开输出存储噪声和信号数据提供了数据处理准备,为信号时域和频谱的监测及分析提供了技术支持。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:一种基于卡方检验的电磁频谱噪声提取和滤波算法,包括如下步骤:
步骤1:分区及统计处理:截取某时刻每段信号数据,对数据的值从最小值到最大值的范围内(集合U)按一定宽度D进行分区并得到分区个数N:
U=∪Ai (1)
Figure BDA0001447924840000021
对样本数据进行频数直方图统计,并转换为统计概率Pi,并求得概率累积值:
Figure BDA0001447924840000022
步骤2:统计特征量计算:以分区个数为循环变量,第i次循环时取 i个分区,对概率进行整理,并将其向右对称复制,得到数量为2i的一组数据,这组数据的统计概率如下:
Figure BDA0001447924840000023
根据新的循环过程中的统计概率,得到最大似然估计下的均值和方差为:
Figure BDA0001447924840000024
步骤3:参数的正定迭代:以最大似然估计下的参数为初值,为满足最小二乘法,可得:
Figure BDA0001447924840000031
为保证方差的非负性,需保证迭代的正定性,得正定的迭代公式如下:
Figure BDA0001447924840000032
其中
Figure BDA0001447924840000034
表示标准高斯分布的分布函数式,(7)式右边分子分母均是正定,保证了方差取值始终有意义,使得迭代收敛,所以迭代总会成功;
步骤4:分布检验和拟合度记录:以迭代结果的方差和均值作为高斯白噪声的分布函数的参数拟合结果,进行卡方检验,卡方分布的自变量为:
Figure BDA0001447924840000033
以自变量和其自由度作为卡方分布的参数,可求得卡方分布的值。其中卡方分布的值由编写的伽马函数和不完全伽马函数进行数值计算。由此得到的卡方分布计算值作为样本分布参数估计的显著性检验标准,即参数估计的拟合度Fi,记为第i步拟合度;
步骤5:重复更新选定值:重复第2步到第4步,得每组的拟合度。由第一到第四标准,记录各标准下的横坐标最大处的参数值;求出所有拟合度中最大值处的参数值;求出拟合度中处于最右边的一个极大值处的参数值;
步骤6:提取噪声及滤波:根据噪声的拟合的参数值,得到均值为噪声线,并得到高斯分布的占概率较大的部分,取μ±3σ的范围视为随机噪声的范围,对这个范围内的噪声进行滤波,得到信号,并通过接口函数输出信号与噪声的计算结果;
步骤7更新时间:下一时刻,重复第1到第6步,不断得到数据信息,为实时输出提供数据;
建立与无线电频谱扫描相接的动态库和调用方法:将某选中频谱段的每一次扫描的数据进行频谱分段,创建多线程分别对每段频谱进行噪声提取,同时调用动态库的算法。最终得到每个时刻每个频率分段的噪声的均值线、方差和滤掉噪声后平滑信号。
进一步的,所述第一到第四标准为0.05、0.01、0.002、0.0002。
进一步的,所述步骤5中,最终的符合高斯白噪声的参数值的判定规则包括如下方法:
若第一到第四标准的横坐标值与最右极值标准的接近,取最右极值处的参数值;
若第一到第四标准中有多个比较接近,且其中存在横坐标值远大于 (在一定程度上远离)最右极值标准的,取这些远大于最右极值的横坐标对应的参数值为最终结果;
若第一到第四标准大部分接近且这些部分的横坐标远小于最右极值标准的横坐标,则取最右极值。
区别与现有技术,本发明的有益效果是:
1.本算法实现了无线电信号的噪声提取和滤波:利用参数估计和分布拟合检验,将统计特性转换成了参数结果。通过频段扫描的数据最终噪声的均值线、方差和滤掉噪声后的平衡信号,为后续电磁空间频谱监测和分析提供了新的技术支持。
2.对奇异性样本依然可行:本算法利用定量和定性的多标准判定得到最终结果,不局限于以前常用的定量的显著性标准的概念,由奇异性样本仍然可以得到同样精度的参数;
3.计算量小,内存消耗较小,信号和噪声之间识别度大:本算法通过最大似然估计和最小二乘法估计的结合对参数进行迭代,减少迭代次数。移植性和通用性较好。将原始数据都转换为统计数据,因此数据数量的增加仅仅影响统计过程而对参数求解过程影响较小,可处理大量数据。在信号和噪声参数值相差较小的情况下依然可以准确的提取信号。
4.可实现无线电信号扫描数据的实时处理:将无线电信号的频谱扫描的数据结果进行分段,通过建立多线程调用动态库算法的方法同时对每段频谱进行噪声提取和滤波,大大减少了计算速度,使得频谱扫描的速度和噪声提取及滤波的计算速度相对同步。
附图说明
图1是本发明实施例基于卡方检验的电磁频谱噪声提取和滤波算法流程图。
图2是本发明实施例第一组信号的信号频谱扫描数据图
图3是本发明实施例第一组信号电平统计概率图。
图4是本发明实施例第一组信号噪声参数分段提取结果。
图5是本发明实施例第二组信号的信号频谱扫描数据图
图6是本发明实施例第二组信号电平统计概率图。
图7是本发明实施例第二组信号噪声参数分段提取结果。
图8是本发明实施例第三组信号的信号频谱扫描数据图
图9是本发明实施例第三组信号电平统计概率图。
图10是本发明实施例第三组信号噪声参数分段提取结果。
图11是本发明实施例第四组信号的信号频谱扫描数据图
图12是本发明实施例第四组信号电平统计概率图。
图13是本发明实施例第四组信号噪声参数分段提取结果。
图14是本发明实施例第五组信号的信号频谱扫描数据图
图15是本发明实施例第五组信号电平统计概率图。
图16是本发明实施例第五组信号噪声参数分段提取结果。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1是本发明实施例一种基于卡方检验的电磁频谱噪声提取和滤波算法,包括如下步骤:
步骤1:分区及统计处理:截取某时刻每段信号数据,对数据的值从最小值到最大值的范围内(集合U)按一定宽度D进行分区并得到分区个数N:
U=∪Ai (1)
Figure BDA0001447924840000061
对样本数据进行频数直方图统计,并转换为统计概率Pi,并求得概率累积值:
Figure BDA0001447924840000062
步骤2:统计特征量计算:以分区个数为循环变量,第i次循环时取 i个分区,对概率进行整理,并将其向右对称复制,得到数量为2i的一组数据,这组数据的统计概率如下:
Figure BDA0001447924840000063
根据新的循环过程中的统计概率,得到最大似然估计下的均值和方差为:
Figure BDA0001447924840000064
步骤3:参数的正定迭代:以最大似然估计下的参数为初值,为满足最小二乘法,可得:
Figure BDA0001447924840000065
为保证方差的非负性,需保证迭代的正定性,得正定的迭代公式如下:
Figure BDA0001447924840000071
其中
Figure BDA0001447924840000072
表示标准高斯分布的分布函数式,(7)式右边分子分母均是正定,保证了方差取值始终有意义,使得迭代收敛,所以迭代总会成功;
步骤4:分布检验和拟合度记录:以迭代结果的方差和均值作为高斯白噪声的分布函数的参数拟合结果,进行卡方检验,卡方分布的自变量为:
Figure BDA0001447924840000073
以自变量和其自由度作为卡方分布的参数,可求得卡方分布的值。其中卡方分布的值由编写的伽马函数和不完全伽马函数进行数值计算。由此得到的卡方分布计算值作为样本分布参数估计的显著性检验标准,即参数估计的拟合度Fi,记为第i步拟合度;
步骤5:重复更新选定值:重复第2步到第4步,得每组的拟合度。由第一到第四标准,显著标准为:0.05、0.01、0.002、0.0002,记录各标准下的横坐标最大处的参数值,由于存在奇异性样本,单靠第一到第四显著性标准无法保证能确定所有情况下的源分布的参数,故引入最右极值标准,依次求出所有拟合度中最右边的一个极大值处的参数值;求出拟合度中处于最右边的一个极大值处的参数值,由理论推导和数据试验,可根据以下判定规则得到最终的符合高斯白噪声的参数值:
①若第一到第四标准的横坐标值与最右极值标准的接近,取最右极值处的参数值;
②若第一到第四标准中有多个比较接近,且其中存在横坐标值远大于(在一定程度上远离)最右极值标准的,取这些远大于最右极值的横坐标对应的参数值为最终结果;
③若第一到第四标准大部分接近且这些部分的横坐标远小于最右极值标准的横坐标,则取最右极值;
步骤6:提取噪声及滤波:根据噪声的拟合的参数值,得到均值为噪声线,并得到高斯分布的占概率较大的部分,取μ±3σ的范围视为随机噪声的范围,对这个范围内的噪声进行滤波,得到信号,并通过接口函数输出信号与噪声的计算结果;
步骤7更新时间:下一时刻,重复第1到第6步,不断得到数据信息,为实时输出提供数据;
建立与无线电频谱扫描相接的动态库和调用方法:将某选中频谱段的每一次扫描的数据进行频谱分段,创建多线程分别对每段频谱进行噪声提取,同时调用动态库的算法。最终得到每个时刻每个频率分段的噪声的均值线、方差和滤掉噪声后平滑信号。
具体而言,为了验证算法的可行性和正确性,将实际接收到的无线电信号的频谱扫描数据带入算法,通过本算法计算其信号中噪声的分布参数,与频谱扫描数据的统计概率结果进行对比。对0到1000MHz的无线电信号进行扫描,扫描间距为25KHz,每组扫描数据个数为40001个,按5000个点为一个分区,分为8个分区计算,取算法中计算直方图统计分区的宽度为1db,即Ai+1-Ai=1db,如图2至图16所示为同一设备的五组无线电信号的频谱扫描图、信号电平统计概率图和通过本算法计算得到的噪声参数分段提取结果,其中图4、图7、图10、图13和图 16是通过本算法对图2、图5、图8、图11和图14对应频谱扫描数据的噪声提取计算结果,同时得出了频率分段噪声的均值和方差,验证了本算法的可行性。由计算结果可见该设备在这个时间段的扫描的信号的高斯噪声的均值在-5db到-7db左右,标准差在7db到8db左右。对比于图3、图6、图9、图12和图15的统计概率图中的极值,其结果与图 4、图7、图10、图13和图16中算法计算的噪声均值是一致的,验证了本算法的正确。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或简介运用在其他相关技术领域,均同理包括在本发明的专利保护范围内。

Claims (3)

1.一种基于卡方检验的电磁频谱噪声提取和滤波方法,包括如下步骤:
步骤1:分区及统计处理:截取某时刻每段信号数据,对数据的值从最小值到最大值的范围内即集合U,按一定宽度D进行分区并得到分区个数N:
U=∪Ai (1)
Figure FDA0002989172850000011
对样本数据进行频数直方图统计,并转换为统计概率Pi,并求得概率累积值:
Figure FDA0002989172850000012
步骤2:统计特征量计算:以分区个数为循环变量,第i次循环时取i个分区,对概率进行整理,并将其向右对称复制,得到数量为2i的一组数据,这组数据的统计概率如下:
Figure FDA0002989172850000013
根据新的循环过程中的统计概率,得到最大似然估计下的均值和方差为:
Figure FDA0002989172850000014
步骤3:参数的正定迭代:以最大似然估计下的参数为初值,所述以最大似然估计下的参数即所述最大似然估计下的均值和方差,为满足最小二乘法,可得:
Figure FDA0002989172850000015
为保证方差的非负性,需保证迭代的正定性,得正定的迭代公式如下:
Figure FDA0002989172850000021
其中
Figure FDA0002989172850000024
表示标准高斯分布的分布函数式,(7)式右边分子分母均是正定,保证了方差取值始终有意义,使得迭代收敛,所以迭代总会成功;
步骤4:分布检验和拟合度记录:以迭代结果的方差和均值作为高斯白噪声的分布函数的参数拟合结果,即步骤3中迭代收敛下得到的参数σ2
Figure FDA0002989172850000023
进行卡方检验,卡方分布的自变量为:
Figure FDA0002989172850000022
以自变量和其自由度作为卡方分布的参数,可求得卡方分布的值;其中卡方分布的值由编写的伽马函数和不完全伽马函数进行数值计算;由此得到的卡方分布计算值作为样本分布参数估计的显著性检验标准,即参数估计的拟合度Fi,记为第i步拟合度;
步骤5:重复更新选定值:重复步骤2到步骤4,得每组的拟合度;由第一到第四显著性检验标准,记录各标准下的横坐标最大处的参数值;求出所有拟合度中最大值处的参数值;求出拟合度中处于最右边的一个极大值处的参数值;
步骤6:提取噪声及滤波:根据噪声的拟合的参数值,得到均值为噪声线,并得到高斯分布的占概率较大的部分,取μ±3σ的范围视为随机噪声的范围,对这个范围内的噪声进行滤波,得到信号,并通过接口函数输出信号与噪声的计算结果;
步骤7:更新时间:下一时刻,重复步骤1到步骤6,不断得到数据信息,为实时输出提供数据;
建立与无线电频谱扫描相接的动态库和调用方法:将某选中频谱段的每一次扫描的数据进行频谱分段,创建多线程分别对每段频谱进行噪声提取,同时调用动态库的算法;最终得到每个时刻每个频率分段的噪声的均值线、方差和滤掉噪声后平滑信号。
2.根据权利要求1所述的方法,其特征在于:所述第一到第四显著性检验标准为0.05、0.01、0.002、0.0002。
3.根据权利要求1所述的方法,其特征在于:所述步骤5中,最终的符合高斯白噪声的参数值的判定规则包括如下方法:
若第一到第四显著性检验标准的横坐标值与最右极值标准的接近,取最右极值处的参数值;
若第一到第四显著性检验标准中有多个比较接近,且其中存在横坐标值远大于最右极值标准的,取这些远大于最右极值的横坐标对应的参数值为最终结果;
若第一到第四显著性检验标准大部分接近且这些部分的横坐标远小于最右极值标准的横坐标,则取最右极值。
CN201711023440.9A 2017-10-27 2017-10-27 一种基于卡方检验的电磁频谱噪声提取和滤波方法 Active CN107886113B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711023440.9A CN107886113B (zh) 2017-10-27 2017-10-27 一种基于卡方检验的电磁频谱噪声提取和滤波方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711023440.9A CN107886113B (zh) 2017-10-27 2017-10-27 一种基于卡方检验的电磁频谱噪声提取和滤波方法

Publications (2)

Publication Number Publication Date
CN107886113A CN107886113A (zh) 2018-04-06
CN107886113B true CN107886113B (zh) 2021-05-11

Family

ID=61782503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711023440.9A Active CN107886113B (zh) 2017-10-27 2017-10-27 一种基于卡方检验的电磁频谱噪声提取和滤波方法

Country Status (1)

Country Link
CN (1) CN107886113B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461302A (zh) * 2018-09-17 2019-03-12 北京交通大学 一种基于卡方检验的数据分段方法
CN111863016B (zh) * 2020-06-15 2022-09-02 云南国土资源职业学院 一种天文时序信号的噪声估计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616323A1 (de) * 1986-05-15 1987-11-19 Licentia Gmbh Rauschsperre fuer einen digitalen empfaenger
CN103745487A (zh) * 2013-12-20 2014-04-23 西北工业大学 基于结构化稀疏先验的贝叶斯高光谱解混压缩感知方法
CN105024771A (zh) * 2015-07-20 2015-11-04 西安电子科技大学 一种Alpha稳定分布噪声下频谱感知方法
CN105158749A (zh) * 2015-08-26 2015-12-16 哈尔滨工业大学 高频雷达海杂波幅度统计分布检验方法
CN106992523A (zh) * 2017-04-25 2017-07-28 国网上海市电力公司 一种用于含光伏和热负荷的电力系统的潮流计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070014468A1 (en) * 2005-07-12 2007-01-18 Gines David L System and method for confidence measures for mult-resolution auto-focused tomosynthesis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3616323A1 (de) * 1986-05-15 1987-11-19 Licentia Gmbh Rauschsperre fuer einen digitalen empfaenger
CN103745487A (zh) * 2013-12-20 2014-04-23 西北工业大学 基于结构化稀疏先验的贝叶斯高光谱解混压缩感知方法
CN105024771A (zh) * 2015-07-20 2015-11-04 西安电子科技大学 一种Alpha稳定分布噪声下频谱感知方法
CN105158749A (zh) * 2015-08-26 2015-12-16 哈尔滨工业大学 高频雷达海杂波幅度统计分布检验方法
CN106992523A (zh) * 2017-04-25 2017-07-28 国网上海市电力公司 一种用于含光伏和热负荷的电力系统的潮流计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于最小二乘的同步多用户非周期长码直扩信号扩频序列估计;张天骐 等;《电波科学学报》;20191231;第31卷(第6期);第1114-1123页 *

Also Published As

Publication number Publication date
CN107886113A (zh) 2018-04-06

Similar Documents

Publication Publication Date Title
US11057788B2 (en) Method and system for abnormal value detection in LTE network
CN108846835B (zh) 基于深度可分离卷积网络的图像变化检测方法
CN108090567B (zh) 电力通信系统故障诊断方法及装置
CN113067653B (zh) 一种频谱感知方法、装置、电子设备及介质
CN108022146A (zh) 征信数据的特征项处理方法、装置、计算机设备
CN107886113B (zh) 一种基于卡方检验的电磁频谱噪声提取和滤波方法
CN114757587B (zh) 一种基于大数据的产品质量控制系统及方法
CN108197795B (zh) 恶意团体账户识别方法、装置、终端及存储介质
CN111709775A (zh) 一种房产价格评估方法、装置、电子设备及存储介质
CN113626812A (zh) 基于结构特征筛选及负载扩展的机器学习木马检测方法
CN113052577A (zh) 一种区块链数字货币虚拟地址的类别推测方法及系统
CN111783812A (zh) 违禁图像识别方法、装置和计算机可读存储介质
CN114169460A (zh) 样本筛选方法、装置、计算机设备和存储介质
CN106951918B (zh) 一种用于冷冻电镜分析的单颗粒图像聚类方法
CN113886821A (zh) 基于孪生网络的恶意进程识别方法、装置、电子设备及存储介质
CN111414528B (zh) 确定设备标识的方法、装置、存储介质及电子设备
CN114168788A (zh) 音频审核的处理方法、装置、设备及存储介质
CN116894455A (zh) 确定用于人工神经网络的后训练量化的代表性输入数据集的方法和系统
CN115564156A (zh) 基于机器学习的事务聚集发生预警方法及其应用
CN111222567B (zh) 氮化物密度的相似性分析方法和设备
CN114970601A (zh) 一种电力设备局部放电类型识别方法、设备及存储介质
CN114463345A (zh) 基于动态自适应网络的多参数乳腺磁共振图像分割方法
CN114297075A (zh) 代码的检测方法、装置、电子设备及计算机可读介质
CN114722401A (zh) 一种设备安全测试方法、装置、设备及存储介质
CN113656354A (zh) 日志分类方法、系统、计算机设备和可读存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant