CN107884631A - 一种测量工频电场强度的方法和系统 - Google Patents

一种测量工频电场强度的方法和系统 Download PDF

Info

Publication number
CN107884631A
CN107884631A CN201710993812.4A CN201710993812A CN107884631A CN 107884631 A CN107884631 A CN 107884631A CN 201710993812 A CN201710993812 A CN 201710993812A CN 107884631 A CN107884631 A CN 107884631A
Authority
CN
China
Prior art keywords
electric field
frequency electric
probe
pole plate
uniform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710993812.4A
Other languages
English (en)
Other versions
CN107884631B (zh
Inventor
谢辉春
李睿
卢林
张建功
张业茂
路遥
干喆渊
刘兴发
李妮
胡静竹
张斌
赵军
万皓
王延召
周兵
倪园
刘震寰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710993812.4A priority Critical patent/CN107884631B/zh
Publication of CN107884631A publication Critical patent/CN107884631A/zh
Application granted granted Critical
Publication of CN107884631B publication Critical patent/CN107884631B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/12Measuring electrostatic fields or voltage-potential

Abstract

本发明提供一种测量工频电场强度的方法和系统,所述方法包括采用有限元数值方法进行准静态场的电磁方程求解,模拟计算不同半径且上下水平布置的金属圆形极板在不同极板间距时的均匀电场区域的尺寸;制作与上述仿真条件下完全一致的金属圆形极板并进行电场探头校准试验;根据试验结果结合仿真结果制定一条理论场强和探头读数之比与金属极板间距之间的标定曲线;实际测量时,先对被测电场进行仿真估计,然后根据上述标定曲线,获得真实电场水平。本发明针对不同尺寸的工频电场探头,均可以明确适于其测量的电场范围的尺寸,并通过本发明的标定,消除了该探头的引入带来的对被测电场的畸变影响,从而求出该电场探头测量的区域内的准确电场强度。

Description

一种测量工频电场强度的方法和系统
技术领域
本发明涉及电学物理量测量领域,并且更具体地,涉及一种测量工频电场强度的方法和系统。
背景技术
导体带电条件下,表面附着的电荷在周围空间中就会产生电场分布。通常在用电设备周围都会存在电场。我国交流电网的工作频率为50Hz,交流输变电工程的工频电场既可以由交流输电线路产生,也可以由变电站内各类带电设备产生。高压输变电工程电磁环境参数之一就是工频电场,是输变电工程环境影响评价指标之一。为了获得高压输变电工程设施设备的工频电场强度,通常采用电场传感器进行测量。如变电站工频电场测量、输电线路电场测量、故障诊断、电场环境测量等采用工频电场传感器检测电气设备周围电场的分布及其变化,对电力设备的设计及安全运行具有十分重要的意义。目前,电场测量仪器主要包括悬浮体型、地参考型和光电型,悬浮体型是目前市场上商用最多的型式。悬浮体场强仪的工作原理是测量引入到被测电场的一个孤立导体的两部分之间的工频感应电流和感应电荷。它用于在地面以上的地方测量空间电场,并且不要求一个参考地电位,它通常做成携带式,用一绝缘手柄或绝缘体引入电场。
但是,任何一种导体处在某一电场中,电场就会引起该导体表面电荷的移动。同样导体上所带的电荷也产生一个场,这个电场叠加在原来的电场上,改变了导体附近的整个电场,这时导体周围的场称为“畸变场”。在电场测量中由于悬浮体型传感器的引入势必将引起电场的畸变,即便采用光纤作为电场传感器传输媒介,虽然光纤的隔离作用使得采集信号不会产生较大畸变,但其没有考虑到测量探头处于测量域中,将会影响场域电场的均匀度和原场域电力线的分布变化,从而产生畸变电场,影响测量精度。
对于民房畸变电场而言,其周围电场往往是不均匀的,而离被畸变物体一定距离处存在一定程度的均匀区域,且此均匀区域的大小是有限的,从畸变电场计算结果看出,一般在平台四周直立栏杆周围场强存在畸变,但是远离栏杆一定距离后,场强又变得均匀。为了避免探头引入被测电场时带来的畸变影响,我国国家标准GB/T 12720-91《工频电场测量》仅仅指出解决的原则:进行电场强度测量时观察者必须离探头足够远,以避免使探头处的电场有明显的畸变,探头的尺寸应使得引入探头进行测量时,产生电场的边界面(带电或接地表面)上的电荷分布没有明显的畸变。实际上,对于电场探头的校准与标定也是基于这样一个事实:探头的尺寸足够小,以确保校准时不对均匀电场带来影响。也就是说,校准用的均匀场域尺寸比探头大得多,通常在10倍以上。实际上针对不同尺寸、不同材质的探头,在测量某些狭小区域的电场场域时(如输电线路下方民房女儿墙处),探头尺寸与场域的尺寸关系不再满足探头校准时的试验条件,此时探头带来的畸变影响将导致结果的巨大偏差,如何将畸变影响消除目前没有切实可行的解决方法。
发明内容
为了解决背景技术存在的当探头尺寸与场域的尺寸关系不再满足探头校准时的试验条件时探头带来的畸变影响将导致工频电场测量结果的巨大偏差这一技术问题,本发明提供一种测量工频电场强度的方法,所述方法用于消除工频电场探头对被测电场造成的畸变以测量真实工频电场强度,所述方法包括:
步骤1、测量工频电场的探头的最大对角线长度L;
步骤2、建立N组具有不同半径R,且上下完全一样的水平布置的金属圆形极板的三维仿真模型,其中极板半径R至少是测量探头最大对角线长度L的4倍以上;
步骤3、定义不超过理论工频电场计算值M%的电场场域范围是均匀电场区域,对每一组半径为R金属圆形极板,在上下极板间施加电压U,则计算其在不同极板间距H时定义的均匀工频电场理论强度E0的公式为:
E0=U×(1±M%)/H;
步骤4、根据步骤3计算得出的每一组半径为R的金属圆形极板在不同极板间距H的条件下的均匀工频电场理论强度E0,建立N组(R,H)至(r,H)的映射,其中,所述均匀电场区域是底半径为r,高度为H的圆柱体区域;
步骤5、制作与步骤2中金属圆形极板的仿真模型的半径R完全一致的N组金属圆形极板,并定义工频电场强度的理论计算结果E与探头读数之比为修正系数α,针对每一组半径R的极板,在极板间施加标准电压U,改变探头与下极板间的距离h,获得不同高度h下的修正系数α,并根据修正系数函数α(R,H,h)确定对应于最大对角线长度L的探头的最小的可准确测量的均匀工频电场区域的底半径r0,其中,h=a*H,0<a<1,所述修正系数α是R、H和h的函数,表示为α(R,H,h),计算工频电场强度的理论计算结果E的公式为:
E=U/H;
步骤6、根据在步骤5中得到的h=H/2处的探头读数k,以及步骤3中计算得到的均匀工频电场理论强度E0定义标定系数β=E0/k,由于均匀工频电场理论强度E0与极板间高度H有关,得到β(H)的曲线;
步骤7、实际测量工频电场时,基于民房实际尺寸和实际介质的电气参数,通过有限元计算方法,计算被测电场均匀区域沿表面方向的宽度r1和垂直表面方向的高度H1,当r1>r0时,跳转到步骤8,当r1<r0时,更换最大对角线长度小于L的探头,重复步骤1至步骤6以获得新探头的标定系数曲线β(H);
步骤8、读取在h=H1/2处的探头读数k1,根据步骤6中的标定曲线,查找标定系数曲线β(H)在H1处对应的标定系数β1,并通过探头读数k1和标定系数β1计算真实工频电场强度E1,其中,计算真实工频电场强度E1的公式为:
E1=k11
根据实际条件进行电场有限元仿真的具体做法是,按照民房实际尺寸、实际介质的电气参数,建立三维模型,将三维空间物体进行剖分,使计算场域划分为大量小区域,通过有限元计算方法,在施加边界条件下,将电场的微分或积分方程转化为一组近似的代数方程,并联立求解,从而获得该场域中微分或积分方程的近似数值解,从而得到物体表面的电场分布,对于物体表面,通常都存在一个近似均匀的区域,其电场矢量垂直物体表面且均匀分布,通过仿真即可得到靠近物体表面的均匀区域的范围,即均匀域沿表面方向的宽度为r1、垂直表面方向的高度为H1。
优选地,所述探头的最大对角线长度L,在平板探头中是平面几何图形的对角线长度,在球形探头中是球形的直径,在立方体探头中是两最远对角顶点之间长度,在圆柱体探头是底面圆的直径。
优选地,建立不少于2组的金属圆形极板的三维仿真模型,即N≥2。
优选地,所述M的值根据实际测量工频电场时需要达到的精确程度确定,所述M的值的范围为-100至+100。
优选地,制作的所述金属圆形极板的下极板接地。
根据本发明的另一方面,本发明提供一种测量工频电场强度的系统,所述系统用于消除工频电场探头对被测电场造成的畸变以测量真实工频电场强度,所述系统包括:
探头确定单元,其用于测量工频电场的探头的最大对角线长度L;
三维仿真模型建立单元,其用于建立N组具有不同半径R,且上下完全一样的水平布置的金属圆形极板的三维仿真模型,其中极板半径R至少是测量探头最大对角线长度L的4倍以上;
均匀工频电场理论强度确定单元,其用于定义不超过理论工频电场计算值M%的电场场域范围是均匀电场区域,对每一组半径为R金属圆形极板,在上下极板间施加电压U,则计算其在不同极板间距H时定义的均匀工频电场理论强度E0的公式为:
E0=U×(1±M%)/H;
模型均匀电场确定单元,其用于根据均匀工频电场理论强度确定单元计算得出的每一组半径为R的金属圆形极板在不同极板间距H的条件下的均匀工频电场理论强度E0建立N组(R,H)至(r,H)的映射,其中,所述均匀电场区域是底半径为r,高度为H的圆柱体区域;
修正系数确定单元,其用于制作与三维仿真模型建立单元中建立的具有不同半径R的仿真模型完全一致的N组金属圆形极板,并定义工频电场强度的理论计算结果E与探头读数之比为修正系数α,针对每一组半径R的极板,在极板间施加标准电压U,改变探头与下极板间的距离h,获得不同高度h下的修正系数α,其中,h=a*H,0<a<1,所述修正系数α是R、H和h的函数,表示为α(R,H,h),计算工频电场强度的理论计算结果E的公式为:
E=U/H;
标定系数曲线确定单元,其用于根据修正系数确定单元得到的修正系数函数α(R,H,h),确定对应于最大对角线长度L的探头的最小的可准确测量的均匀工频电场区域的底半径r0,并根据在修正系数确定单元中得到的h=H/2处的探头读数k,以及均匀工频电场理论强度确定单元中计算得到的均匀工频电场理论强度E0定义标定系数β=E0/k,由于均匀工频电场理论强度E0与极板间高度H有关,得到β(H)的曲线;
探头校验单元,其用于在实际测量工频电场时,基于民房实际尺寸和实际介质的电气参数,通过有限元计算方法,计算被测电场均匀区域沿表面方向的宽度r1和垂直表面方向的高度H1,当r1>r0时,在真实工频电场强度确定单元计算得到被测电场的真实工频电场强度,当r1<r0时,探头确定单元将探头更换为最大对角线长度小于L的探头;
真实工频电场强度确定单元,其用于读取在h=H1/2处的探头读数k1,根据标定系数曲线确定单元中的标定曲线,查找标定系数曲线β(H)在H1处对应的标定系数β1,并通过探头读数k1和标定系数β1计算真实工频电场强度E1,其中,计算真实工频电场强度E1的公式为:
E1=k11
优选地,所述探头确定单元得到的最大对角线长度L,在平板探头中是平面几何图形的对角线长度,在球形探头中是球形的直径,在立方体探头中是两最远对角顶点之间长度,在圆柱体探头是底面圆的直径。
优选地,三维仿真模型建立单元建立不少于2组的金属圆形极板的三维仿真模型,即N≥2。
优选地,均匀工频电场理论强度确定单元中的所述M值根据实际测量工频电场时需要达到的精确程度确定,所述M的值的范围为-100至+100。
优选地,修正系数确定单元制作的所述金属圆形极板的下极板接地。
综上所述,本发明采用有限元数值方法进行准静态场的电磁方程求解,模拟计算不同半径上下水平布置金属圆形极板之间,不同极板间距条件下的均匀电场区域的尺寸,然后制作与上述仿真条件下完全一致的金属极板并进行电场探头校准试验,以及根据试验结果结合仿真结果制定一条理论场强和探头读数之比与金属极板间距之间的标定曲线,最后在实际测量时,先对被测电场进行仿真估计,然后根据标定曲线,获得真实电场水平。
本发明所提供的技术方案可针对不同尺寸的工频电场探头,明确得出适于其测量的电场范围的尺寸,且通过本发明的方案,消除了该探头的引入带来的对被测电场的畸变影响,可以给出适于该电场探头测量的区域内的准确电场测量结果。
附图说明
通过参考下面的附图,可以更为完整地理解本发明的示例性实施方式:
图1是本发明具体实施例一的测量工频电场强度的方法的流程图;
图2是本发明具体实施例一建立的金属圆形极板的三维仿真模型图;
图3是本发明具体实施例一的测量工频电场强度的系统的结构图;
图4是本发明具体实施例二中仿真计算获取的均匀电场的云图的示意图;
图5a,图5b和图5c是本发明具体实施例二在不同极板半径和高度时探头在不同高度下的修正系数曲线图;
图6是本发明具体实施例二的标定系数曲线图。
具体实施方式
现在参考附图介绍本发明的示例性实施方式,然而,本发明可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本发明,并且向所属技术领域的技术人员充分传达本发明的范围。对于表示在附图中的示例性实施方式中的术语并不是对本发明的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
具体实施例一
图1是本发明具体实施方式的测量工频电场强度的方法的流程图。如图1所示,本发明所述的测量工频电场强度的方法100从步骤101开始。
在步骤101,测量工频电场的探头的最大对角线长度L;
在步骤102,建立N组具有不同半径R,且上下完全一样的水平布置的金属圆形极板的三维仿真模型,其中极板半径R至少是测量探头最大对角线长度L的4倍以上;
图2是本发明具体实施方式建立的金属圆形极板的三维仿真模型图。如图2所示,所建立的金属圆形极板的三维仿真模型中,极板半径为R,上极板为高压极板,下极板为接地极板,极板间间距为H,探头上表面与接地极板之间的距离为探头高度h。
在步骤103,定义不超过理论工频电场计算值M%的电场场域范围是均匀电场区域,对每一组半径为R金属圆形极板,在上下极板间施加电压U,则计算其在不同极板间距H时定义的均匀工频电场理论强度E0的公式为:
E0=U×(1±M%)/H;
在步骤104,根据步骤103计算得出的每一组半径为R的金属圆形极板在不同极板间距H的条件下的均匀工频电场理论强度E0,建立N组(R,H)至(r,H)的映射,其中,所述均匀电场区域是底半径为r,高度为H的圆柱体区域;
在步骤105,制作与步骤102中金属圆形极板的仿真模型的半径R完全一致的N组金属圆形极板,并定义工频电场强度的理论计算结果E与探头读数之比为修正系数α,针对每一组半径R的极板,在极板间施加标准电压U,改变探头与下极板间的距离h,获得不同高度h下的修正系数α,并根据修正系数函数α(R,H,h)确定对应于最大对角线长度L的探头的最小的可准确测量的均匀工频电场区域的底半径r0,其中,h=a*H,0<a<1,所述修正系数α是R、H和h的函数,表示为α(R,H,h),计算工频电场强度的理论计算结果E的公式为:
E=U/H;
在步骤106,根据在步骤105中得到的h=H/2处的探头读数k,以及步骤103中计算得到的均匀工频电场理论强度E0定义标定系数β=E0/k,由于均匀工频电场理论强度E0与极板间高度H有关,得到β(H)的曲线;
在步骤107,实际测量工频电场时,基于民房实际尺寸和实际介质的电气参数,通过有限元计算方法,计算被测电场均匀区域沿表面方向的宽度r1和垂直表面方向的高度H1,当r1>r0时,跳转到步骤108,当r1<r0时,更换最大对角线长度小于L的探头,重复步骤101至步骤106以获得新探头的标定系数曲线β(H);
在步骤108,读取在h=H1/2处的探头读数k1,根据步骤106中的标定曲线,查找标定系数曲线β(H)在H1处对应的标定系数β1,并通过探头读数k1和标定系数β1计算真实工频电场强度E1,其中,计算真实工频电场强度E1的公式为:
E1=k11
优选地,所述探头的最大对角线长度L,在平板探头中是平面几何图形的对角线长度,在球形探头中是球形的直径,在立方体探头中是两最远对角顶点之间长度,在圆柱体探头是底面圆的直径。
优选地,建立不少于2组的金属圆形极板的三维仿真模型,即N≥2。
优选地,所述M的值根据实际测量工频电场时需要达到的精确程度确定,所述M的值的范围为-100至+100。
优选地,制作的所述金属圆形极板的下极板接地。
图3是本发明具体实施方式的测量工频电场强度的系统的结构图。如图3所示,本发明所述的测量工频电场强度的系统300包括:
探头确定单元301,其用于测量工频电场的探头的最大对角线长度L;
三维仿真模型建立单元302,其用于建立N组具有不同半径R,且上下完全一样的水平布置的金属圆形极板的三维仿真模型,其中极板半径R至少是测量探头最大对角线长度L的4倍以上;
均匀工频电场理论强度确定单元303,其用于定义不超过理论工频电场计算值M%的电场场域范围是均匀电场区域,对每一组半径为R金属圆形极板,在上下极板间施加电压U,则计算其在不同极板间距H时定义的均匀工频电场理论强度E0的公式为:
E0=U×(1±M%)/H;
模型均匀电场确定单元304,其用于根据均匀工频电场理论强度确定单元计算得出的每一组半径为R的金属圆形极板在不同极板间距H的条件下的均匀工频电场理论强度E0建立N组(R,H)至(r,H)的映射,其中,所述均匀电场区域是底半径为r,高度为H的圆柱体区域;
修正系数确定单元305,其用于制作与三维仿真模型建立单元中建立的具有不同半径R的仿真模型完全一致的N组金属圆形极板,并定义工频电场强度的理论计算结果E与探头读数之比为修正系数α,针对每一组半径R的极板,在极板间施加标准电压U,改变探头与下极板间的距离h,获得不同高度h下的修正系数α,其中,h=a*H,0<a<1,所述修正系数α是R、H和h的函数,表示为α(R,H,h),计算工频电场强度的理论计算结果E的公式为:
E=U/H;
标定系数曲线确定单元306,其用于根据修正系数确定单元得到的修正系数函数α(R,H,h),确定对应于最大对角线长度L的探头的最小的可准确测量的均匀工频电场区域的底半径r0,并根据在修正系数确定单元中得到的h=H/2处的探头读数k,以及均匀工频电场理论强度确定单元中计算得到的均匀工频电场理论强度E0定义标定系数β=E0/k,由于均匀工频电场理论强度E0与极板间高度H有关,得到β(H)的曲线;
探头校验单元307,其用于在实际测量工频电场时,基于民房实际尺寸和实际介质的电气参数,通过有限元计算方法,计算被测电场均匀区域沿表面方向的宽度r1和垂直表面方向的高度H1,当r1>r0时,在真实工频电场强度确定单元计算得到被测电场的真实工频电场强度,当r1<r0时,探头确定单元将探头更换为最大对角线长度小于L的探头;
真实工频电场强度确定单元308,其用于读取在h=H1/2处的探头读数k1,根据标定系数曲线确定单元中的标定曲线,查找标定系数曲线β(H)在H1处对应的标定系数β1,并通过探头读数k1和标定系数β1计算真实工频电场强度E1,其中,计算真实工频电场强度E1的公式为:
E1=k11
优选地,所述探头确定单元301得到的最大对角线长度L,在平板探头中是平面几何图形的对角线长度,在球形探头中是球形的直径,在立方体探头中是两最远对角顶点之间长度,在圆柱体探头是底面圆的直径。
优选地,三维仿真模型建立单元302建立不少于2组的金属圆形极板的三维仿真模型,即N≥2。
优选地,均匀工频电场理论强度确定单元303中的所述M值根据实际测量工频电场时需要达到的精确程度确定,所述M的值的范围为-100至+100。
优选地,修正系数确定单元305制作的所述金属圆形极板的下极板接地。
具体实施例二
步骤1、测量工频电场探头直径3cm,对所述探头进行标定校准。
步骤2、建立半径R分别为30cm和40cm,且上下完全一样的水平布置的2组金属圆形极板的三维仿真模型,其中,极板半径R满足是测量探头直径的4倍以上的条件。
步骤3、计算每一组半径为R的金属圆形极板在不同极板间距H的条件下的均匀工频电场理论强度E0,建立(R,H)至(r,H)的映射;
设R=30cm,H=10cm,施加电压480V,理论计算场强E=480/0.1=4800V/m,按照±3%的范围定义均匀区域,即在场强为4800×(1±3%)(V/m)的区域算作均匀区域。
图4是本发明具体实施例二中仿真计算获取的均匀电场的云图的示意图。如图4所示,当极板半径为30cm时,由于仿真计算获取的均匀电场轴对称,故示意图中仅显示均匀电场的一半,其中2号区域为均匀电场区域,计算得出其范围为π×20cm2×10cm的圆柱体区域,即均匀电场圆柱体区域底半径r=20cm,高H1=10cm,于是建立了(30cm,10cm)→(20cm,10cm)的映射关系。
相应地,当极板半径R=30cm,H=15cm时,理论计算场强E=480/0.15=3200V/m,将场强为3200×(1±3%)(V/m)的区域视作均匀区域,计算得到其范围为π×15cm2×15cm的圆柱体区域,即均匀电场圆柱体区域底半径r=15cm,高H=15cm,于是建立了(30cm,15cm)→(15cm,15cm)的映射关系;
同样地,当极板半径R=30cm,H=20cm时,理论计算场强E=480/0.20=2400V/m,将场强为2400×(1±3%)(V/m)的区域视作均匀区域,计算得到其范围为π×5cm2×20cm的圆柱体区域,即均匀电场圆柱体区域底半径r=5cm,高H=20cm,于是建立了(30cm,20cm)→(5cm,20cm)的映射关系。
基于相同的方法,计算极板半径R=40cm,极板高度H为不同数值时的电场均匀区域,可得到如表1所示的不同极板下均匀区域一览表。
表1不同极板下均匀区域一览表
H=10cm H=15cm H=20cm H=25cm
R=30cm π×20cm2×10cm π×15cm2×15cm π×5cm2×20cm
R=40cm π×30cm2×10cm π×26cm2×15cm π×20cm2×20cm π×11.5cm2×25cm
步骤4、建立与三维仿真模型一致的金属圆形极板,采用底面圆直径3cm、高3cm的圆柱体的探头,在不同探头高度h下进行实验以获取探头在不同高度h下的修正系数α,其中,金属圆形极板的半径R=30、40cm,极板间施加的电压为480V,极板间距H=10、15、20cm,修正系数α是电场强度的理论计算结果与探头读数之比。
图5a、图5b和图5c是本发明具体实例二在不同极板半径和高度时探头在不同高度下的修正系数曲线图。其中图5a是极板半径R=30、40cm,极板间距H=10cm,极板间施加的电压为480V时,探头在不同高度h下的修正系数α的曲线图,图5b是极板半径R=30、40cm,极板间距H=15cm,极板间施加的电压为480V时,探头在不同高度h下的修正系数α的曲线图,图5c是极板半径R=30、40cm,极板间距H=20cm,极板间施加的电压为480V时,探头在不同高度h下的修正系数α的曲线图。
分析图5a、图5b和图5c可知,在π×5cm2×20cm(对应于极板R=30cm)狭长的圆柱区域内,与π×20cm2×20cm(对应于极板R=40cm)这个扁平的圆柱区域内相比,修正系数α随探头离地面高度h的变化关系几乎一致,说明该探头对于原电场的感受能力仅与该区域的高度有关,而与该均匀区域的宽度关系不大。这也从侧面说明,即使小到π×5cm2×20cm的区域,探头对原电场的感受能力是可以利用等高度更大的均匀区域的试验得到标定系数的,因此,当所述探头直径为3cm时,对应于该探头的最小的可准确测量的均匀工频电场区域的底半径r0=5cm,且对应于探头直径为3cm时,π×5cm2×20cm的区域底面直径为2×r0=10cm,也就是说,只要在约4倍于探头直径以上宽度的区域内场强能够保持一定程度的均匀,就可以使用该探头进行电场的有效测量。另外,对于不同极板半径R、不同高度H,探头在h=H/2处,修正系数α的大小基本维持在1.48左右,这也说明当探头位于上下极板中间位置时,各种大小的极板标定的结果一致;
步骤5、根据在步骤4中得到的h=H/2处的探头读数k,以及步骤3中计算得到的均匀工频电场理论强度E0定义标定系数β=E0/k,由于均匀工频电场理论强度E0与极板间高度H有关,得到β(H)的曲线,所述β(H)曲线如图6所示。
步骤6、当采用该探头测量实际被测电场时,若采用仿真手段预计的被测电场周围的近似均匀场区域(畸变率在±3%内)的高度(指相对于被测物的高度)为H,且在约4倍于探头直径以上宽度的区域内场电场近似均匀,则采用该探头进行测量,此时的探头须位于H/2的位置处进行测量,并根据图6曲线进行标定。
如被畸变后的场域内有H=1m近似均匀区域,则在距离被畸变物体(或面)0.5m处进行测量,再根据查曲线H=1对应标定系数为0.1625,即将读数乘以0.1625得到此处未引入探头时的电场值,于是消除了电场探头引入时带来的畸变影响。
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该【装置、组件等】”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。

Claims (10)

1.一种测量工频电场强度的方法,其特征在于,所述方法用于消除工频电场探头对被测电场造成的畸变以测量真实工频电场强度,所述方法包括:
步骤1、测量工频电场的探头的最大对角线长度L;
步骤2、建立N组具有不同半径R,且上下完全一样的水平布置的金属圆形极板的三维仿真模型,其中极板半径R至少是测量探头最大对角线长度L的4倍以上;
步骤3、定义不超过理论工频电场计算值M%的电场场域范围是均匀电场区域,对每一组半径为R金属圆形极板,在上下极板间施加电压U,则计算其在不同极板间距H时定义的均匀工频电场理论强度E0的公式为:
E0=U×(1±M%)/H;
步骤4、根据步骤3计算得出的每一组半径为R的金属圆形极板在不同极板间距H的条件下的均匀工频电场理论强度E0,建立N组(R,H)至(r,H)的映射,其中,所述均匀电场区域是底半径为r,高度为H的圆柱体区域;
步骤5、制作与步骤2中金属圆形极板的仿真模型的半径R完全一致的N组金属圆形极板,并定义工频电场强度的理论计算结果E与探头读数之比为修正系数α,针对每一组半径R的极板,在极板间施加标准电压U,改变探头与下极板间的距离h,获得不同高度h下的修正系数α,并根据修正系数函数α(R,H,h)确定对应于最大对角线长度L的探头的最小的可准确测量的均匀工频电场区域的底半径r0,其中,h=a*H,0<a<1,所述修正系数α是R、H和h的函数,表示为α(R,H,h),计算工频电场强度的理论计算结果E的公式为:
E=U/H;
步骤6、根据在步骤5中得到的h=H/2处的探头读数k,以及步骤3中计算得到的均匀工频电场理论强度E0定义标定系数β=E0/k,由于均匀工频电场理论强度E0与极板间高度H有关,得到β(H)的曲线;
步骤7、实际测量工频电场时,基于民房实际尺寸和实际介质的电气参数,通过有限元计算方法,计算被测电场均匀区域沿表面方向的宽度r1和垂直表面方向的高度H1,当r1>r0时,跳转到步骤8,当r1<r0时,更换最大对角线长度小于L的探头,重复步骤1至步骤6以获得新探头的标定系数曲线β(H);
步骤8、读取在h=H1/2处的探头读数k1,根据步骤6中的标定曲线,查找标定系数曲线β(H)在H1处对应的标定系数β1,并通过探头读数k1和标定系数β1计算真实工频电场强度E1,其中,计算真实工频电场强度E1的公式为:
E1=k11
2.根据权利要求1所述的方法,其特征在于,所述探头的最大对角线长度L,在平板探头中是平面几何图形的对角线长度,在球形探头中是球形的直径,在立方体探头中是两最远对角顶点之间长度,在圆柱体探头是底面圆的直径。
3.根据权利要求1所述的方法,其特征在于,建立不少于2组的金属圆形极板的三维仿真模型,即N≥2。
4.根据权利要求1所述的方法,其特征在于,所述M的值根据实际测量工频电场时需要达到的精确程度确定,所述M的值的范围为-100至+100。
5.根据权利要求1所述的方法,其特征在于,制作的所述金属圆形极板的下极板接地。
6.一种测量工频电场强度的系统,其特征在于,所述系统用于消除工频电场探头对被测电场造成的畸变以测量真实工频电场强度,所述系统包括:
探头确定单元,其用于测量工频电场的探头的最大对角线长度L;
三维仿真模型建立单元,其用于建立N组具有不同半径R,且上下完全一样的水平布置的金属圆形极板的三维仿真模型,其中极板半径R至少是测量探头最大对角线长度L的4倍以上;
均匀工频电场理论强度确定单元,其用于定义不超过理论工频电场计算值M%的电场场域范围是均匀电场区域,对每一组半径为R金属圆形极板,在上下极板间施加电压U,则计算其在不同极板间距H时定义的均匀工频电场理论强度E0的公式为:
E0=U×(1±M%)/H;
模型均匀电场确定单元,其用于根据均匀工频电场理论强度确定单元计算得出的每一组半径为R的金属圆形极板在不同极板间距H的条件下的均匀工频电场理论强度E0建立N组(R,H)至(r,H)的映射,其中,所述均匀电场区域是底半径为r,高度为H的圆柱体区域;
修正系数确定单元,其用于制作与三维仿真模型建立单元中建立的具有不同半径R的仿真模型完全一致的N组金属圆形极板,并定义工频电场强度的理论计算结果E与探头读数之比为修正系数α,针对每一组半径R的极板,在极板间施加标准电压U,改变探头与下极板间的距离h,获得不同高度h下的修正系数α,其中,h=a*H,0<a<1,所述修正系数α是R、H和h的函数,表示为α(R,H,h),计算工频电场强度的理论计算结果E的公式为:
E=U/H;
标定系数曲线确定单元,其用于根据修正系数确定单元得到的修正系数函数α(R,H,h),确定对应于最大对角线长度L的探头的最小的可准确测量的均匀工频电场区域的底半径r0,并根据在修正系数确定单元中得到的h=H/2处的探头读数k,以及均匀工频电场理论强度确定单元中计算得到的均匀工频电场理论强度E0定义标定系数β=E0/k,由于均匀工频电场理论强度E0与极板间高度H有关,得到β(H)的曲线;
探头校验单元,其用于在实际测量工频电场时,基于民房实际尺寸和实际介质的电气参数,通过有限元计算方法,计算被测电场均匀区域沿表面方向的宽度r1和垂直表面方向的高度H1,当r1>r0时,在真实工频电场强度确定单元计算得到被测电场的真实工频电场强度,当r1<r0时,探头确定单元将探头更换为最大对角线长度小于L的探头;
真实工频电场强度确定单元,其用于读取在h=H1/2处的探头读数k1,根据标定系数曲线确定单元中的标定曲线,查找标定系数曲线β(H)在H1处对应的标定系数β1,并通过探头读数k1和标定系数β1计算真实工频电场强度E1,其中,计算真实工频电场强度E1的公式为:
E1=k11
7.根据权利要求6所述的系统,其特征在于,所述探头确定单元得到的最大对角线长度L,在平板探头中是平面几何图形的对角线长度,在球形探头中是球形的直径,在立方体探头中是两最远对角顶点之间长度,在圆柱体探头是底面圆的直径。
8.根据权利要求6所述的系统,其特征在于,三维仿真模型建立单元建立不少于2组的金属圆形极板的三维仿真模型,即N≥2。
9.根据权利要求6所述的系统,其特征在于,均匀工频电场理论强度确定单元中的所述M值根据实际测量工频电场时需要达到的精确程度确定,所述M的值的范围为-100至+100。
10.根据权利要求6所述的系统,其特征在于,修正系数确定单元制作的所述金属圆形极板的下极板接地。
CN201710993812.4A 2017-10-23 2017-10-23 一种测量工频电场强度的方法和系统 Active CN107884631B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710993812.4A CN107884631B (zh) 2017-10-23 2017-10-23 一种测量工频电场强度的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710993812.4A CN107884631B (zh) 2017-10-23 2017-10-23 一种测量工频电场强度的方法和系统

Publications (2)

Publication Number Publication Date
CN107884631A true CN107884631A (zh) 2018-04-06
CN107884631B CN107884631B (zh) 2020-08-07

Family

ID=61782049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710993812.4A Active CN107884631B (zh) 2017-10-23 2017-10-23 一种测量工频电场强度的方法和系统

Country Status (1)

Country Link
CN (1) CN107884631B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267704A (zh) * 2018-04-10 2018-07-10 南京信息工程大学 大气电场仪标定平台
CN109917172A (zh) * 2019-03-28 2019-06-21 南方电网科学研究院有限责任公司 一种导线电位的测量方法、测量装置及测量系统
CN111337732A (zh) * 2020-03-26 2020-06-26 清华大学 一种基于电场反演的电压测量方法
CN112067908A (zh) * 2020-08-20 2020-12-11 国网山东省电力公司电力科学研究院 变电站机器人测量工频电场时畸变电场的拟合方法及系统
CN113406404A (zh) * 2021-05-31 2021-09-17 清华大学深圳国际研究生院 一种基于半导体器件的电场强度测量方法
CN113552520A (zh) * 2021-06-17 2021-10-26 中国电力科学研究院有限公司 一种大间隙小直径的工频校准装置校准点位置的计算方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917327A (en) * 1997-09-08 1999-06-29 Vlsi Technology, Inc. Technique and apparatus for testing electrostatic chucks
CN2694287Y (zh) * 2004-03-09 2005-04-20 中国科学院空间科学与应用研究中心 一种电场测量仪器的标定装置
US6984971B1 (en) * 2001-03-14 2006-01-10 The Board Of Regents University Of Oklahoma Low power, low maintenance, electric-field meter
CN101592715A (zh) * 2009-06-30 2009-12-02 陕西师范大学 磁电材料的电诱导磁转换系数测试装置及测试方法
CN102116807A (zh) * 2010-12-29 2011-07-06 重庆大学 一种能够对电场畸变校正的三维工频电场测量的方法及装置
DE102010028390A1 (de) * 2010-04-29 2011-11-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Bestimmung eines Erregerleiterabstandes von einem Magnetfeldsensor, Verfahren zum Kalibrieren des Magnetfeldsensors sowie ein kalibrierbarer Magnetfeldsensor und Verwendung einer Erregerleiterstruktur zur Bestimmung eines Erregerleiterabstandes
CN203275630U (zh) * 2013-04-16 2013-11-06 宿奉祥 工频电场探头校准测试仪
US20130300435A1 (en) * 2010-06-01 2013-11-14 The Regents Of The University Of California Integrated Electric Field Sensor
CN103870070A (zh) * 2012-12-12 2014-06-18 联想(北京)有限公司 一种电场校验方法、装置及电子设备
CN103926475A (zh) * 2014-04-08 2014-07-16 沈阳工业大学 电场测量的方法及其测量系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917327A (en) * 1997-09-08 1999-06-29 Vlsi Technology, Inc. Technique and apparatus for testing electrostatic chucks
US6984971B1 (en) * 2001-03-14 2006-01-10 The Board Of Regents University Of Oklahoma Low power, low maintenance, electric-field meter
CN2694287Y (zh) * 2004-03-09 2005-04-20 中国科学院空间科学与应用研究中心 一种电场测量仪器的标定装置
CN101592715A (zh) * 2009-06-30 2009-12-02 陕西师范大学 磁电材料的电诱导磁转换系数测试装置及测试方法
DE102010028390A1 (de) * 2010-04-29 2011-11-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Bestimmung eines Erregerleiterabstandes von einem Magnetfeldsensor, Verfahren zum Kalibrieren des Magnetfeldsensors sowie ein kalibrierbarer Magnetfeldsensor und Verwendung einer Erregerleiterstruktur zur Bestimmung eines Erregerleiterabstandes
US20130300435A1 (en) * 2010-06-01 2013-11-14 The Regents Of The University Of California Integrated Electric Field Sensor
CN102116807A (zh) * 2010-12-29 2011-07-06 重庆大学 一种能够对电场畸变校正的三维工频电场测量的方法及装置
CN103870070A (zh) * 2012-12-12 2014-06-18 联想(北京)有限公司 一种电场校验方法、装置及电子设备
CN203275630U (zh) * 2013-04-16 2013-11-06 宿奉祥 工频电场探头校准测试仪
CN103926475A (zh) * 2014-04-08 2014-07-16 沈阳工业大学 电场测量的方法及其测量系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LUCA ZILBERTI ET AL.: "On the use of TEM cells for the calibration of power frequency electric", 《MEASUREMENT》 *
张占龙 等: "均匀场域中工频电场畸变效应分析", 《重庆大学学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267704A (zh) * 2018-04-10 2018-07-10 南京信息工程大学 大气电场仪标定平台
CN109917172A (zh) * 2019-03-28 2019-06-21 南方电网科学研究院有限责任公司 一种导线电位的测量方法、测量装置及测量系统
CN111337732A (zh) * 2020-03-26 2020-06-26 清华大学 一种基于电场反演的电压测量方法
CN112067908A (zh) * 2020-08-20 2020-12-11 国网山东省电力公司电力科学研究院 变电站机器人测量工频电场时畸变电场的拟合方法及系统
CN112067908B (zh) * 2020-08-20 2023-06-16 国网山东省电力公司电力科学研究院 变电站机器人测量工频电场时畸变电场的拟合方法及系统
CN113406404A (zh) * 2021-05-31 2021-09-17 清华大学深圳国际研究生院 一种基于半导体器件的电场强度测量方法
CN113406404B (zh) * 2021-05-31 2023-08-01 清华大学深圳国际研究生院 一种基于半导体器件的电场强度测量方法
CN113552520A (zh) * 2021-06-17 2021-10-26 中国电力科学研究院有限公司 一种大间隙小直径的工频校准装置校准点位置的计算方法
CN113552520B (zh) * 2021-06-17 2023-12-08 中国电力科学研究院有限公司 一种大间隙小直径的工频校准装置校准点位置的计算方法

Also Published As

Publication number Publication date
CN107884631B (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN107884631A (zh) 一种测量工频电场强度的方法和系统
Rahmatian et al. 230 kV optical voltage transducers using multiple electric field sensors
Si et al. Method and experimental study of voltage measurement based on electric field integral with Gauss–Legendre algorithm
CN103810355B (zh) 变电站高压开关场工频电场三维分析方法
CN106154047A (zh) 一种接地网接地电阻的测量方法
CN107367635A (zh) 直流充电桩现场测试仪
CN108362928A (zh) 接触网电压非接触式测量设备及方法
CN109738494A (zh) 一种同面阵列电容传感器的敏感场分析方法
CN108961223A (zh) 一种介电功能梯度绝缘双模态无损检测方法
CN105486961B (zh) 基于电晕笼的直流输电线路无线电干扰激发函数测试方法
Zhang et al. Optimization design and research character of the passive electric field sensor
CN108362926A (zh) 一种电压等级识别方法及装置
CN105572510B (zh) 一种基于电晕笼的直流输电线路电晕损失测试方法
Kontargyri et al. Measurement and simulation of the electric field of high voltage suspension insulators
CN108896947B (zh) 换流站直流场暂态电压非接触式测量装置的现场校准方法及暂态电压测量方法
Kontargyri et al. Measurement and simulation of the voltage distribution and the electric field on a glass insulator string
Xiao et al. Improved three-dimension mathematical model for voltage inversion of AC overhead transmission lines
CN104655940A (zh) 一种500kV变电站工频电场和磁场的计算方法
Li et al. Differential structure to improve performance of DC electric field sensors
CN104361802B (zh) 一种容性设备电气运行模拟装置
CN111999564A (zh) 一种电缆附件的内部介电常数值计算方法以及计算装置
Megala et al. Effect of Radio Interference in 765kV Zebra conductor with different bundle configurations
Ya et al. Calibration of a sensor for an ion electric field under HVDC transmission lines
CN109658502A (zh) 一种同面阵列电容传感器的敏感场建模方法
Hull et al. ARL electric-field cage modeling, design and calibration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant