CN107883952A - The adaptive filter method of warp resistance error during a kind of attitude matching - Google Patents

The adaptive filter method of warp resistance error during a kind of attitude matching Download PDF

Info

Publication number
CN107883952A
CN107883952A CN201610875909.0A CN201610875909A CN107883952A CN 107883952 A CN107883952 A CN 107883952A CN 201610875909 A CN201610875909 A CN 201610875909A CN 107883952 A CN107883952 A CN 107883952A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
msubsup
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610875909.0A
Other languages
Chinese (zh)
Inventor
刘冲
李群
朱红
吴亮华
李海军
原润
郭元江
李瑞贤
石志兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Automation Control Equipment Institute BACEI
Original Assignee
Beijing Automation Control Equipment Institute BACEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Automation Control Equipment Institute BACEI filed Critical Beijing Automation Control Equipment Institute BACEI
Priority to CN201610875909.0A priority Critical patent/CN107883952A/en
Publication of CN107883952A publication Critical patent/CN107883952A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Gyroscopes (AREA)

Abstract

The invention belongs to inertial navigation technology, specifically disclose a kind of adaptive filter method of warp resistance error during attitude matching, initially set up flexural property physical model and filtering error model, determine that system state equation separates the warp resistance error between estimation boss's inertial navigation by Kalman filtering process afterwards, establish new flexure physical quantity model, new state matrix is established in view of angle of deflection and angular speed, flexure estimation error between boss's inertial navigation system is completed by Kalman filtering, solves the problems, such as that deflection deformation is brought.

Description

The adaptive filter method of warp resistance error during a kind of attitude matching
Technical field
The invention belongs to inertial navigation technology, and in particular to the adaptive filter of warp resistance error during a kind of attitude matching Wave method.
Background technology
Guided missile is initially directed at the part that partial reference (hereinafter referred to as partial reference) is general VLS, energy Enough the reference information required for initial alignment is provided for the guided missile on naval vessel.In order to ensure the reliability of Transfer Alignment information and standard True property, partial reference system are typically mounted near guided missile inertial navigation.Can so cause partial reference system from main inertial navigation with a distance from Farther out, the deflection deformation on naval vessel influences can not ignore on the Transfer Alignment between boss's inertial navigation, particularly to attitude matching process Influence.
Therefore, in order to ensure the Transfer Alignment precision between boss's inertial navigation, the shadow of naval vessel deflection deformation is at utmost reduced Ring, it is necessary to analyze flexure error, isolate its influence, improve attitude matching precision.
The content of the invention
It is an object of the invention to provide a kind of adaptive filter method of warp resistance error during attitude matching, its energy Alignment error and the estimated accuracy of inertial device error enough between raising boss's inertial navigation, and then improve attitude matching precision.
Technical scheme is as follows:
The adaptive filter method of warp resistance error, comprises the following steps during a kind of attitude matching:
Step 1: establish flexural property physical model
Using the second order Markov process formula of deflection deformation, flexural property model is determined
Wherein,For deflection deformation angular speed, [ξx ξy ξz] it is deflection deformation angle, [wx wy wz] For white noise, [βx βy βz] it is constant;
Step 2: establish filtering error model
Wherein, X is warp resistance error vector, and δ h are height error, δ Vn,δVu,δVeFor velocity error, φnueFor Sub- inertial navigation misalignment, ▽x,▽y,▽zAdd table zero bias, ε for sub- inertial navigationxyzFor sub- inertial navigation gyro zero bias, φaxayaz It is the message delay of primary standard navigation attitude, δ τ for the alignment error of the relatively main inertial navigation of sub- inertial navigation, δ τVFor main reference speed message delay, θxyzFor angle of deflection,To bend angular speed;
Step 3: determine system state equation
Wherein, A1For the reference representation determined according to error model;W is noise error matrix;βxyz= 2.146/ τ, τ are time constant
Step 4: resolving above-mentioned state equation, warp resistance error estimate is drawn.
During a kind of above-mentioned attitude matching in the adaptive filter method of warp resistance error, in described step four Estimation warp resistance error is separated using Kalman filtering process;
The state estimation battle array P related to flexure error and noise battle array Q initial value are:
P0=diag [(0.1 °)2、(0.1°)2、(0.1°)2、(0.1°)2、(0.1°)2、(0.1°)2]
Q=diag [Qx、Qy、Qz]
Wherein,
Wherein,Rotational angular velocity for carrier system relative to navigation system.
The remarkable result of the present invention is:
New flexure physical quantity model, A are established in this method2New state is established in view of angle of deflection and angular speed Matrix, the flexure estimation error between boss's inertial navigation system is completed by Kalman filtering, solve that deflection deformation brings asks Topic.
The adaptive filter method of warp resistance error during the attitude matching of proposition, utilize the error mould of deflection deformation Type, influence of the isolation flexure error to attitude matching process, improves the precision of the every terms of information of partial reference system output, ensures The reliability of Transfer Alignment.The flexure error between estimation boss's inertial navigation is separated using Kalman filtering process, boss is improved and is used to The estimation of alignment error and inertial device error and convergence precision between leading, improve Transfer Alignment essence between boss's inertial navigation system Degree, ensure the reliability of partial reference system output information.
Embodiment
The present invention is described in further detail with reference to specific embodiment.
1st, coordinate system is defined
A), i systems, geocentric inertial coordinate system;
B), n systems, navigational coordinate system;
C), s systems, sub- inertial navigation coordinate system;
D), m systems, primary standard coordinate system;
E), J systems, the frame of reference on warship.
2nd, flexural property analysis and modeling
The attitude matching precision of inertial navigation system is except in addition to by inertia device precision itself and performance impact, also by reference information The influence of quality, carrier movement mode, environmental disturbances etc. factor.The deflection deformation that carrier movement is brought is to influence posture An important factor for process.Research shows that Ship Structure deflection deformation can produce more than 1 ° of misalignment.
Shadow of the Dynamic flexural distorted pattern of carrier by factors such as bearer type, moving condition, parameter, external environments Ring, it is very difficult to establish accurate model.Found by studying, carrier deflection deformation is random disturbance quantity, sound-driving with white noise Second order Markov process is similar.Therefore, the model deformed from second order Markov process as carrier Dynamic flexural, and Think that each axial deflection deformation is separate.
The second order Markov process formula of deflection deformation is as follows:
Wherein,For deflection deformation angular speed, [ξx ξy ξz] it is deflection deformation angle, [wx wy wz] be White noise, [βx βy βz] it is constant.The correlation time τ of each random processiWith corresponding βiBetween relation be βi=2.146/ τi.It is convenient with application in view of project analysis, think β in realistic modelxyz
3rd, filtering error model is established
The dimension of increase by the 6 flexure margin of error on the basis of existing " speed+posture " matching error model, including 3 bending angles miss Difference, 3 flexure angular speeds, the margin of error increase to 24 dimensions, are specially
Wherein, X is warp resistance error vector, and δ h are height error, δ Vn,δVu,δVeFor velocity error, φnueFor Sub- inertial navigation misalignment, ▽x,▽y,▽zAdd table zero bias, ε for sub- inertial navigationxyzFor sub- inertial navigation gyro zero bias, φaxayaz It is the message delay of primary standard navigation attitude, δ τ for the alignment error of the relatively main inertial navigation of sub- inertial navigation, δ τVFor main reference speed message delay, θxyzFor angle of deflection,To bend angular speed.
4th, warp resistance error is resolved
System state equation is:
Wherein, A is sytem matrix, and its expression formula is:
W is noise error matrix.
A1For the reference representation determined according to error model, repeat no more.And A2Expression formula is as follows:
Wherein:βxyz=2.146/ τ, τ are time constant, are set to 5.0 here.
5th, the flexure error between estimation boss's inertial navigation is separated using Kalman filtering process.
The state estimation battle array P related to flexure error and noise battle array Q initial value are:
P0=diag [(0.1 °)2、(0.1°)2、(0.1°)2、(0.1°)2、(0.1°)2、(0.1°)2]
Q=diag [Qx、Qy、Qz]
Wherein:
Rotational angular velocity for carrier system relative to navigation system, is navigation procedure intermediate calculations.

Claims (2)

1. the adaptive filter method of warp resistance error during a kind of attitude matching, it is characterised in that this method includes as follows Step:
Step 1: establish flexural property physical model
Using the second order Markov process formula of deflection deformation, flexural property model is determined
Wherein,For deflection deformation angular speed, [ξx ξy ξz] it is deflection deformation angle, [wx wy wz] it is white noise Sound, [βx βy βz] it is constant;
Step 2: establish filtering error model
<mrow> <mi>X</mi> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mi>&amp;delta;</mi> <mi>h</mi> <mo>,</mo> <msub> <mi>&amp;delta;V</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>&amp;delta;V</mi> <mi>u</mi> </msub> <mo>,</mo> <msub> <mi>&amp;delta;V</mi> <mi>e</mi> </msub> <mo>,</mo> <msub> <mi>&amp;phi;</mi> <mi>n</mi> </msub> <mo>,</mo> <msub> <mi>&amp;phi;</mi> <mi>u</mi> </msub> <mo>,</mo> <msub> <mi>&amp;phi;</mi> <mi>e</mi> </msub> <mo>,</mo> <msub> <mo>&amp;dtri;</mo> <mi>x</mi> </msub> <mo>,</mo> <msub> <mo>&amp;dtri;</mo> <mi>y</mi> </msub> <mo>,</mo> <msub> <mo>&amp;dtri;</mo> <mi>z</mi> </msub> <mo>,</mo> <msub> <mi>&amp;epsiv;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&amp;epsiv;</mi> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&amp;epsiv;</mi> <mi>z</mi> </msub> <mo>,</mo> <msub> <mi>&amp;phi;</mi> <mrow> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;phi;</mi> <mrow> <mi>a</mi> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&amp;phi;</mi> <mrow> <mi>a</mi> <mi>z</mi> </mrow> </msub> <mo>,</mo> <mi>&amp;delta;</mi> <mi>&amp;tau;</mi> <mo>,</mo> <msub> <mi>&amp;delta;&amp;tau;</mi> <mi>V</mi> </msub> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>x</mi> </msub> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>y</mi> </msub> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>z</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>x</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>y</mi> </msub> <mo>,</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>z</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow>
Wherein, X is warp resistance error vector, and δ h are height error, δ Vn,δVu,δVeFor velocity error, φnueIt is used for son Lead misalignment, ▽x,▽y,▽zAdd table zero bias, ε for sub- inertial navigationxyzFor sub- inertial navigation gyro zero bias, φaxayazFor son The alignment error of the relatively main inertial navigation of inertial navigation, δ τ are the message delay of primary standard navigation attitude, δ τVFor main reference speed message delay, θxy, θzFor angle of deflection,To bend angular speed;
Step 3: determine system state equation
<mrow> <mover> <mi>X</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>A</mi> <mi>X</mi> <mo>+</mo> <mi>W</mi> </mrow>
<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>18</mn> <mo>&amp;times;</mo> <mn>6</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>6</mn> <mo>&amp;times;</mo> <mn>18</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>A</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
<mrow> <mi>A</mi> <mn>2</mn> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1.0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1.0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1.0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mi>x</mi> </msub> <msub> <mi>&amp;beta;</mi> <mi>x</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>2.0</mn> <msub> <mi>&amp;beta;</mi> <mi>x</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mi>y</mi> </msub> <msub> <mi>&amp;beta;</mi> <mi>y</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>2.0</mn> <msub> <mi>&amp;beta;</mi> <mi>y</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;beta;</mi> <mi>z</mi> </msub> <msub> <mi>&amp;beta;</mi> <mi>z</mi> </msub> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mn>2.0</mn> <msub> <mi>&amp;beta;</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein, A1For the reference representation determined according to error model;W is noise error matrix;βxyz=2.146/ τ, τ For time constant
Step 4: resolving above-mentioned state equation, warp resistance error estimate is drawn.
2. the adaptive filter method of warp resistance error, its feature exist during a kind of attitude matching as claimed in claim 1 In using Kalman filtering process separation estimation warp resistance error in described step four;
The state estimation battle array P related to flexure error and noise battle array Q initial value are:
P0=diag [(0.1 °)2、(0.1°)2、(0.1°)2、(0.1°)2、(0.1°)2、(0.1°)2]
Q=diag [Qx、Qy、Qz]
Wherein,
<mrow> <msub> <mi>Q</mi> <mi>x</mi> </msub> <mo>=</mo> <mn>4.0</mn> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mi>x</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>x</mi> </mrow> </msubsup> <mo>_</mo> <mi>Q</mi> </mrow> <mn>50</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
<mrow> <msub> <mi>Q</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>4.0</mn> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mi>y</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>y</mi> </mrow> </msubsup> <mo>_</mo> <mi>Q</mi> </mrow> <mn>50</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
<mrow> <msub> <mi>Q</mi> <mi>z</mi> </msub> <mo>=</mo> <mn>4.0</mn> <mo>*</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mi>z</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>z</mi> </mrow> </msubsup> <mo>_</mo> <mi>Q</mi> </mrow> <mn>50</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow>
<mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mi>b</mi> </msubsup> <mo>_</mo> <mi>Q</mi> <mo>=</mo> <msqrt> <mrow> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>x</mi> </mrow> </msubsup> <mo>*</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>x</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>y</mi> </mrow> </msubsup> <mo>*</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>y</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>z</mi> </mrow> </msubsup> <mo>*</mo> <msubsup> <mi>&amp;omega;</mi> <mrow> <mi>n</mi> <mi>b</mi> </mrow> <mrow> <mi>b</mi> <mi>z</mi> </mrow> </msubsup> </mrow> </msqrt> </mrow>
Wherein,Rotational angular velocity for carrier system relative to navigation system.
CN201610875909.0A 2016-09-30 2016-09-30 The adaptive filter method of warp resistance error during a kind of attitude matching Pending CN107883952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610875909.0A CN107883952A (en) 2016-09-30 2016-09-30 The adaptive filter method of warp resistance error during a kind of attitude matching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610875909.0A CN107883952A (en) 2016-09-30 2016-09-30 The adaptive filter method of warp resistance error during a kind of attitude matching

Publications (1)

Publication Number Publication Date
CN107883952A true CN107883952A (en) 2018-04-06

Family

ID=61770148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610875909.0A Pending CN107883952A (en) 2016-09-30 2016-09-30 The adaptive filter method of warp resistance error during a kind of attitude matching

Country Status (1)

Country Link
CN (1) CN107883952A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166217A (en) * 2021-11-25 2022-03-11 哈尔滨工程大学 Carrier flexural deformation angle estimation method based on variable structure multi-model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161578A1 (en) * 2003-12-24 2005-07-28 Applied Technology Associates Optical inertial reference unit for kilohertz bandwidth submicroradian optical pointing and jitter control
CN102621565A (en) * 2012-04-17 2012-08-01 北京航空航天大学 Transfer aligning method of airborne distributed POS (Position and Orientation System)
CN103175545A (en) * 2013-03-15 2013-06-26 戴洪德 Speed and partial angular speed matching anti-interference fast transfer alignment method of inertial navigation system
CN104567930A (en) * 2014-12-30 2015-04-29 南京理工大学 Transfer alignment method capable of estimating and compensating wing deflection deformation
CN105300405A (en) * 2014-07-28 2016-02-03 北京自动化控制设备研究所 Main reference speed time delay estimation and compensation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050161578A1 (en) * 2003-12-24 2005-07-28 Applied Technology Associates Optical inertial reference unit for kilohertz bandwidth submicroradian optical pointing and jitter control
CN102621565A (en) * 2012-04-17 2012-08-01 北京航空航天大学 Transfer aligning method of airborne distributed POS (Position and Orientation System)
CN103175545A (en) * 2013-03-15 2013-06-26 戴洪德 Speed and partial angular speed matching anti-interference fast transfer alignment method of inertial navigation system
CN105300405A (en) * 2014-07-28 2016-02-03 北京自动化控制设备研究所 Main reference speed time delay estimation and compensation method
CN104567930A (en) * 2014-12-30 2015-04-29 南京理工大学 Transfer alignment method capable of estimating and compensating wing deflection deformation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
申亮亮 等: "舰载武器SINS速度+姿态匹配传递对准建模与仿真", 《鱼雷技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166217A (en) * 2021-11-25 2022-03-11 哈尔滨工程大学 Carrier flexural deformation angle estimation method based on variable structure multi-model
CN114166217B (en) * 2021-11-25 2023-07-21 哈尔滨工程大学 Carrier deflection deformation angle estimation method based on variable structure multiple models

Similar Documents

Publication Publication Date Title
CN111426318B (en) Low-cost AHRS course angle compensation method based on quaternion-extended Kalman filtering
CN109029448B (en) Monocular vision inertial positioning&#39;s IMU aided tracking model
CN108180910B (en) One kind being based on the uncertain aircraft quick high accuracy method of guidance of aerodynamic parameter
CN105910602B (en) A kind of Combinated navigation method
CN106289641B (en) Flexible spacecraft centroid position and rotary inertia parametric joint discrimination method
CN109460052A (en) A kind of control method for spelling group aircraft
CN106979781B (en) High-precision transfer alignment method based on distributed inertial network
CN104567930A (en) Transfer alignment method capable of estimating and compensating wing deflection deformation
CN109141476B (en) A kind of decoupling method of angular speed during Transfer Alignment under dynamic deformation
CN106017452B (en) Double tops disturbance rejection north finding method
CN105157724B (en) A kind of Transfer Alignment time delay estimadon and compensation method for adding attitude matching based on speed
CN110244751B (en) Attitude self-adaptive recursion control method and system for hypersonic aircraft
CN104991566B (en) A kind of parameter uncertainty LPV system modeling method for hypersonic aircraft
CN112558477B (en) Unmanned ship state and disturbance observer based on acceleration information
CN106802143A (en) A kind of hull deformation angle measuring method based on inertial instruments and Iterative-Filtering Scheme
CN109931952A (en) The direct analytic expression coarse alignment method of inertial navigation under the conditions of unknown latitude
CN112880704A (en) Intelligent calibration method for fiber optic gyroscope strapdown inertial navigation system
CN107664511A (en) Swaying base coarse alignment method based on velocity information
CN105241319B (en) A kind of guided cartridge of spin at a high speed real-time alignment methods in the air
CN107883952A (en) The adaptive filter method of warp resistance error during a kind of attitude matching
CN113175926B (en) Self-adaptive horizontal attitude measurement method based on motion state monitoring
CN104374389A (en) Indoor mobile robot oriented IMU/WSN (inertial measurement unit/wireless sensor network) integrated navigation method
CN111220182B (en) Rocket transfer alignment method and system
CN111336872B (en) Compensation type simulation method of turntable suitable for simulating projectile attitude motion
CN107576326A (en) Suitable for the star tracking method of high motor-driven carrier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180406

RJ01 Rejection of invention patent application after publication