CN107881353A - 铝铜钨合金的形成方法 - Google Patents

铝铜钨合金的形成方法 Download PDF

Info

Publication number
CN107881353A
CN107881353A CN201610863869.8A CN201610863869A CN107881353A CN 107881353 A CN107881353 A CN 107881353A CN 201610863869 A CN201610863869 A CN 201610863869A CN 107881353 A CN107881353 A CN 107881353A
Authority
CN
China
Prior art keywords
aluminum bronze
aluminium
melt
tungsten alloy
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610863869.8A
Other languages
English (en)
Inventor
姚力军
潘杰
相原俊夫
王学泽
仝连海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Jiangfeng Electronic Material Co Ltd
Original Assignee
Ningbo Jiangfeng Electronic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Jiangfeng Electronic Material Co Ltd filed Critical Ningbo Jiangfeng Electronic Material Co Ltd
Priority to CN201610863869.8A priority Critical patent/CN107881353A/zh
Publication of CN107881353A publication Critical patent/CN107881353A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种铝铜钨合金的形成方法,包括:提供铝熔化液、钨粉和铜源;将所述钨粉置于铝熔化液中;将所述铜源置于铝熔化液中;将所述钨粉和铜源置于铝熔化液中后,进行第一保温处理,形成铝铜钨合金熔化液;对所述铝铜钨合金熔化液进行铸锭,形成铝铜钨合金。所述方法能够降低形成铝铜钨合金的工艺难度,且满足铝铜钨合金的使用纯度要求。

Description

铝铜钨合金的形成方法
技术领域
本发明涉及合金制造领域,尤其涉及一种铝铜钨合金的形成方法。
背景技术
合金为两种或两种以上的金属或非金属所组成的具有金属特性的物质。根据组成元素的数目,合金分为二元合金、三元合金和多元合金。
铝铜钨合金为一种重要的三元合金。高纯铝铜钨合金能够应用于多种领域,如:高纯铝铜钨合金用于制备含有铜和钨的高纯铝溅射靶材。
然而,现有技术中形成的高纯铝铜钨合金的制备难度较大。
发明内容
本发明解决的问题是提供一种铝铜钨合金的形成方法,以降低形成铝铜钨合金的工艺难度,且满足铝铜钨合金的使用纯度要求。
为解决上述问题,本发明提供一种铝铜钨合金的形成方法,包括:提供铝熔化液、钨粉和铜源;将所述钨粉置于铝熔化液中;将所述铜源置于铝熔化液中;将所述钨粉和铜源置于铝熔化液中后,进行第一保温处理,形成铝铜钨合金熔化液;对所述铝铜钨合金熔化液进行铸锭,形成铝铜钨合金。
可选的,在将所述钨粉置于铝熔化液中之前,还包括:将所述钨粉设置为一个或者多个钨粉团;采用铝保护层包裹所述钨粉团;将所述钨粉置于铝熔化液中的方法包括:将所述包裹有铝保护层的钨粉团置于铝熔化液中。
可选的,所述铝保护层包括铝箔。
可选的,所述铝保护层的纯度在99.99%以上。
可选的,将所述包裹有铝保护层的钨粉团置于铝熔化液中之前,将包裹有铝保护层的钨粉团烘干。
可选的,各个钨粉团中钨粉的重量为8克~20克。
可选的,所述钨粉团的数量为多个;将多个包裹有铝保护层的钨粉团分散置于铝熔化液中。
可选的,所述钨粉的粒度为3um~10um。
可选的,所述铜源为铜粉或者铜块。
可选的,所述铜源的纯度在99.995%以上。
可选的,所述钨粉的纯度在99.99%以上。
可选的,所述铝熔化液的形成方法包括:提供铝源;将铝源熔化,形成铝熔化液。
可选的,熔化所述铝源的温度为780摄氏度~820摄氏度。
可选的,所述铝源的纯度在99.995%以上。
可选的,所述第一保温处理的参数包括:采用的温度为780摄氏度~820摄氏度,采用的时间为4小时~7小时。
可选的,在对所述铝铜钨合金熔化液进行铸锭之前,还包括:对所述铝铜钨合金熔化液进行搅拌处理;对所述铝铜钨合金熔化液进行搅拌处理后,进行第二保温处理。
可选的,所述第二保温处理的参数包括:采用的温度为780摄氏度~820摄氏度,采用的时间为1小时~3小时。
可选的,在对所述铝铜钨合金熔化液进行铸锭之前,还包括:对所述铝铜钨合金熔化液进行除气处理。
可选的,在对所述铝铜钨合金熔化液进行铸锭之前,还包括:对所述铝铜钨合金熔化液进行扒渣处理。
与现有技术相比,本发明的技术方案具有以下优点:
本发明技术方案提供的铝铜钨合金的形成方法中,由于钨粉为粉末状,因此在进行第一保温处理的过程中,钨粉的钨原子能够通过扩散的方式进入铝熔化液,使得钨粉容易熔入铝熔化液中。由于使用了钨粉作为铝铜钨合金熔化液中钨元素的来源,而高纯度的钨粉容易获取,因此使得铝铜钨合金的形成难度降低,且能满足铝铜钨合金的使用纯度要求。
进一步,将所述钨粉设置为一个或者多个钨粉团,并采用铝保护层包裹所述钨粉团。在将钨粉置于铝熔化液的过程中,铝保护层保护所述钨粉团,使得钨粉团中的钨粉不易受到氧化,能够提高钨粉的利用率。
进一步,将所述包裹有铝保护层的钨粉团置于铝熔化液中之前,将包裹有铝保护层的钨粉团烘干,以除去钨粉团中含有的水汽。避免在将所述钨粉团置于铝熔化液后,钨粉团中的水汽随铝熔化液一起溅射出来,因而避免发生安全事故。
进一步,所述钨粉团的数量为多个,将多个包裹有铝保护层的钨粉团分散置于铝熔化液中,避免多个钨粉团集中在一起,利于钨粉的钨原子扩散进入铝保护层中。
附图说明
图1是本发明一实施例中铝铜钨合金的形成方法的流程图;
图2至图6是本发明一实施例中铝铜钨合金形成过程的结构示意图。
具体实施方式
正如背景技术所述,现有技术中形成的高纯铝铜钨合金的制备难度较大。
一种铝铜钨合金的形成方法,包括:提供铝熔化液、钨铝合金和铜源;将所述钨铝合金置于铝熔化液中;将所述铜源置于铝熔化液中;将所述钨铝合金和铜源置于铝熔化液中后,进行保温处理,形成铝铜钨合金熔化液;对所述铝铜钨合金熔化液进行铸锭,形成铝铜钨合金。
由于钨的熔点很高,约3410摄氏度,铝的熔点只有660摄氏度,钨和铝的熔点相差较大,因此钨很难熔入铝熔化液。故需要采用熔点比钨熔点低的钨铝合金给铝熔化液中引入钨元素,使得容易给铝熔化液中加入钨元素。
然而,由于市场提供的钨铝合金的纯度较低,钨铝合金中含有较多的杂质,因此钨铝合金容易给铝熔化液中引入较多的杂质,导致形成的铝铜钨合金的纯度较低。
为了满足铝铜钨合金的使用纯度要求,一种方法为:采用高纯的钨铝合金作为铝铜钨合金中钨元素的来源。但是由于制备高纯的钨铝合金的难度较大,因此导致形成高纯铝铜钨合金的难度较大。
在此基础上,本发明提供一种铝铜钨合金的形成方法,包括:提供铝熔化液、钨粉和铜源;将所述钨粉置于铝熔化液中;将所述铜源置于铝熔化液中;将所述钨粉和铜源置于铝熔化液中后,进行第一保温处理,形成铝铜钨合金熔化液;对所述铝铜钨合金熔化液进行铸锭,形成铝铜钨合金。
所述方法中,在进行第一保温处理的过程中,钨粉的钨原子通过扩散的方式进入铝熔化液,使得钨粉容易熔入铝熔化液中。由于使用了钨粉作为铝铜钨合金熔化液中钨元素的来源,能够容易保证钨粉的纯度,使得铝铜钨合金的形成难度降低,且能满足铝铜钨合金的使用纯度要求。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
图1是本发明一实施例中铝铜钨合金的形成方法的流程图,包括以下步骤:
S01:提供铝熔化液、钨粉和铜源;
S02:将所述钨粉置于铝熔化液中;
S03:将所述铜源置于铝熔化液中;
S04:将所述钨粉和铜源置于铝熔化液中后,进行第一保温处理,形成铝铜钨合金熔化液;
S05:对所述铝铜钨合金熔化液进行铸锭,形成铝铜钨合金。
下面结合附图对上述步骤进行说明。
参考图2,提供铝熔化液100。
所述铝熔化液100的形成方法包括:提供铝源;将铝源熔化,形成铝熔化液100。
所述铝源的纯度在4N5以上,如4N5、5N或6N,其中,4N5表示纯度为99.995%,5N表示纯度为99.999%,6N表示纯度为99.9999%。所述铝源的纯度较高,保证铝源不会降低后续形成的铝铜钨合金熔化液的纯度。
熔化铝源采用的设备包括熔化炉。
若熔化所述铝源的温度过高,导致工艺浪费,且需要提高熔化所述铝源采用的设备对温度的承受能力。故本实施例中,熔化所述铝源的温度低于820摄氏度。
若熔化所述铝源的温度和第一保温处理的温度相差过大,在后续进行第一保温处理之前,还需要采用较长的时间调节熔化炉的温度使熔化炉的温度上升为第一保温处理需要的温度,使得工艺效率较低。因此,本实施例中,熔化所述铝源的温度和后续进行第一保温处理的温度相同,熔化所述铝源的温度为780摄氏度~820摄氏度。
参考图3,提供钨份110。
本实施例中,将所述钨粉110设置为一个或者多个钨粉团,并采用铝保护层111包裹所述钨粉团。所述铝保护层111包裹钨粉团,使得在后续将钨粉110置于铝熔化液100之前,避免外界环境中的杂质进入钨粉团中。其次,在后续将钨粉110置于铝熔化液100的过程中,铝保护层111保护所述钨粉团,使得钨粉团中的钨粉110不易受到氧化,能够提高钨粉110的利用率。
所述铝保护层111包括铝箔,铝保护层111采用铝箔的优点为:铝箔在铝熔化液100中能够很快熔化,使得钨粉团接触到铝熔化液100到沉入熔化炉的底部的时间较长,利于对钨粉110的钨原子扩散进入铝熔化液100中。
所述钨粉团的数量为一个或多个。本实施例中,以所述钨粉团的数量为两个作为示例。
所述铝保护层111的纯度在4N以上,如4N、5N或6N,其中,4N表示纯度为99.99%,5N表示纯度为99.999%,6N表示纯度为99.9999%。
在后续钨粉团接触到铝熔化液100到沉入熔化炉的底部的过程中,钨粉110能够接触到不同区域的铝熔化液。钨粉团接触到铝熔化液100到沉入熔化炉的底部的时间越长,越利于钨粉110的钨原子扩散进入铝熔化液100中。因此,需要选择各个钨粉团中钨粉110的重量,各个钨粉团中钨粉110的重量不能过重,以使得钨粉团接触到铝熔化液100到沉入熔化炉的底部的时间较长。
其次,若各个钨粉团中钨粉110的重量过轻,则后续导致包裹有铝保护层111的钨粉团漂在铝熔化液100上,铝保护层111会很快熔化而难以保护钨粉团,导致有较多的钨粉110容易在瞬间被氧化,降低钨粉110的利用率。
综上,需要各个钨粉团中钨粉110的重量需要选择的范围。本实施例中,各个钨粉团中钨粉110的重量为8克~20克。
若所述钨粉110的粒度过大,则不利于钨粉110的钨原子扩散进入铝熔化液100中;若所述钨粉110的粒度过小,对钨粉110加工要求较高。故需要选择合适的钨粉110粒度。本实施例中,所述钨粉110的粒度为3um~10um。
所述钨粉110的纯度在4N以上,所述钨粉110的纯度较高,保证钨粉110不会降低后续形成的铝铜钨合金熔化液的纯度。
参考图4,提供铜源120。
所述铜源120为铜粉或者铜块。
所述铜源120的纯度在4N5以上,所述铜源120的纯度较高,保证铜源120不会降低后续形成的铝铜钨合金熔化液的纯度。
参考图5,将所述钨粉110置于铝熔化液100中;将所述铜源120置于铝熔化液100中。
本实施例中,通过将包裹有铝保护层111的钨粉团置于铝熔化液100中,使钨粉110置于铝熔化液100中。在其它实施例中,直接将钨粉110置于铝熔化液100中。
本实施例中,还包括:将所述包裹有铝保护层111的钨粉团置于铝熔化液100中之前,将包裹有铝保护层111的钨粉团烘干,以除去钨粉团中含有的水汽。避免在将所述钨粉团置于铝熔化液100后,钨粉团中的水汽随铝熔化液100一起溅射出来,因而避免发生安全事故。
本实施例中,烘干所述包裹有铝保护层111的钨粉团的参数包括:采用的温度为100摄氏度~150摄氏度,时间为1小时~2小时。
本实施例中,所述钨粉团的数量为多个,将多个包裹有铝保护层111的钨粉团分散置于铝熔化液100中,避免多个钨粉团集中在一起,利于钨粉110的钨原子扩散进入铝熔化液100中。
本实施例中,先将所述钨粉110置于铝熔化液100中,然后将所述铜源120置于铝熔化液100中。在其它实施例中,先将所述铜源置于铝熔化液中,然后将所述钨粉置于铝熔化液中;或者:同时将将所述钨粉和铜源置于铝熔化液中。
参考图6,将所述钨粉110(参考图5)和铜源120(参考图5)置于铝熔化液100中后,进行第一保温处理,形成铝铜钨合金熔化液130。
铜源120熔入铝熔化液100的主要机制为合金化反应和扩散。
所述第一保温处理的作用为:使得进入铝熔化液100中钨粉110通过扩散充分的熔入铝熔化液100中;使得铜源120充分的熔入铝熔化液100中。
由于钨粉110为粉末状,因此在进行第一保温处理的过程中,钨粉110的钨原子通过扩散的方式进入铝熔化液100,使得钨粉110容易熔入铝熔化液100中。由于使用了钨粉110作为铝铜钨合金熔化液130中钨元素的来源,而高纯度的钨粉110容易获取,因此使得后续铝铜钨合金的形成难度降低,且能满足铝铜钨合金的使用纯度要求。
所述第一保温处理的参数包括:采用的温度为780摄氏度~820摄氏度,采用的时间为4小时~7小时。
所述第一保温处理采用的温度的意义在于:若所述第一保温处理采用的温度过低,不利于钨粉110的钨原子扩散进入铝熔化液100中;若所述第一保温处理采用的温度过大,则对设备承受温度的能力的要求过高,且造成工艺浪费。
所述第一保温处理采用的时间的意义在于:若所述第一保温处理采用的时间过短,则钨粉110的钨原子没有足够的时间扩散进入铝熔化液100中,剩余较多的钨粉110在铝熔化液100中,使得形成的铝铜钨合金熔化液130中钨原子的浓度和设计值发生较大偏离;所述第一保温处理采用的时间过长,造成工艺浪费。
本实施例中,所述第一保温处理采用的温度和熔化所述铝源采用的温度相同。在进行第一保温处理的过程中,无需再调整熔化炉的温度,使得工艺操作简化。
本实施例中,还包括:对所述铝铜钨合金熔化液130进行搅拌处理;对所述铝铜钨合金熔化液130进行搅拌处理后,进行第二保温处理。
所述第二保温处理的参数包括:采用的温度为780摄氏度~820摄氏度,采用的时间为1小时~3小时。
所述搅拌处理的作用为:使得第一保温处理后,钨原子在铝铜钨合金熔化液130中的分布均匀。
第二保温处理的作用为:使得剩余少量的钨粉110中的钨原子扩散进入铝铜钨合金熔化液130中。
本实施例中,所述第二保温处理采用的温度和第一保温处理采用的温度相同。在进行第二保温处理的过程中,无需再调整熔化炉的温度,使得工艺操作简化。
本实施例中,还包括:对所述铝铜钨合金熔化液130进行除气处理。
所述铝铜钨合金熔化液130中含有部分氢元素。所述铝铜钨合金熔化液130中的氢元素的来源为铝熔化液100(参考图2)中的氢元素和空气中水汽。所述铝熔化液100中的氢元素的来源为空气中水气和对熔化炉清洗后残留的水。后续对铝铜钨合金熔化液130进行铸锭的过程中,所述铝铜钨合金熔化液130中的氢元素被释放,若铝铜钨合金熔化液130中的氢元素过多,则导致形成的铝铜钨合金的内部容易产生孔,影响铝铜钨合金的形貌。
本实施例中,在后续对铝铜钨合金熔化液130进行铸锭之前,对所述铝铜钨合金熔化液130进行除气处理,使得铝铜钨合金熔化液130中的氢元素减少。相应的,使后续形成的铝铜钨合金的形貌较好。
所述除气处理的方法为:将氩气通入铝铜钨合金熔化液130,在将氩气通入铝铜钨合金熔化液130的同时,对所述铝铜钨合金熔化液130进行搅拌。
将氩气通入铝铜钨合金熔化液130中,从而在铝铜钨合金熔化液130中形成包含氩气的气泡。包含氩气的气泡能够吸收铝铜钨合金熔化液130中氢元素。包含氩气的气泡上升至铝铜钨合金熔化液130表面,释放氩气的同时也将所吸收的氢元素释放。
由于氢元素在氩气中的溶解度大于在铝铜钨合金熔化液130中的溶解度,因此,将氩气通入铝铜钨合金熔化液130中后,铝铜钨合金熔化液130中氢元素会容易进入氩气中。
在除气处理过程中,对所述铝铜钨合金熔化液130进行搅拌的作用为:将所述包含氩气的气泡分散成多个包含氩气的子气泡,使所述子气泡的体积较小。所述子气泡能够分散至铝铜钨合金熔化液130中的多个区域,吸收铝铜钨合金熔化液130中的氢元素,利于将铝铜钨合金熔化液130中氢元素除去。
所述除气处理的方法还包括:降低铝铜钨合金熔化液130的温度。
由于氢元素在铝铜钨合金熔化液130中的含量随着温度的降低而降低,因此降低铝铜钨合金熔化液130的温度有助于降低铝铜钨合金熔化液130中氢元素的含量。本实施例中,降低铝铜钨合金熔化液130的温度至740摄氏度~760摄氏度。
本实施例中,还包括:对所述铝铜钨合金熔化液130进行扒渣处理。
本实施例中,进行除气处理后,进行所述扒渣处理。
所述扒渣处理的作用为:将铝铜钨合金熔化液130表面的氧化皮和铝铜钨合金熔化液130中的渣体去除,避免所述氧化皮和渣体带入后续形成的铝铜钨合金中。
接着,对所述铝铜钨合金熔化液130进行铸锭,形成铝铜钨合金。对所述铝铜钨合金熔化液130进行铸锭的过程中,需要将铝铜钨合金熔化液130浇倒在用于容置铝铜钨合金的模具中,铝铜钨合金熔化液130在模具中冷凝而形成铝铜钨合金。
对所述铝铜钨合金熔化液130进行铸锭的过程中,铝铜钨合金熔化液130的温度控制在660摄氏度~680摄氏度。对所述铝铜钨合金熔化液130进行铸锭的温度选择此范围的意义在于:若在对所述铝铜钨合金熔化液130进行铸锭的过程中,铝铜钨合金熔化液130的温度过大,导致待浇铸的铝铜钨合金熔化液130的温度和模具的温度相差过大,导致形成的铝铜钨合金会出现裂纹缺陷;若铸造浇铸的温度过小,导致铝铜钨合金熔化液130在模具中会快速冷凝,导致铝铜钨合金熔化液130在模具中流动不畅。
本实施例中,所述铝铜钨合金中钨元素的含量的质量百分比在1%以下,使得具有此含量钨元素的铝铜钨合金容易形成。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (19)

1.一种铝铜钨合金的形成方法,其特征在于,包括:
提供铝熔化液、钨粉和铜源;
将所述钨粉置于铝熔化液中;
将所述铜源置于铝熔化液中;
将所述钨粉和铜源置于铝熔化液中后,进行第一保温处理,形成铝铜钨合金熔化液;
对所述铝铜钨合金熔化液进行铸锭,形成铝铜钨合金。
2.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,在将所述钨粉置于铝熔化液中之前,还包括:将所述钨粉设置为一个或者多个钨粉团;
采用铝保护层包裹所述钨粉团;
将所述钨粉置于铝熔化液中的方法包括:将所述包裹有铝保护层的钨粉团置于铝熔化液中。
3.根据权利要求2所述的铝铜钨合金的形成方法,其特征在于,所述铝保护层包括铝箔。
4.根据权利要求2所述的铝铜钨合金的形成方法,其特征在于,所述铝保护层的纯度在99.99%以上。
5.根据权利要求2所述的铝铜钨合金的形成方法,其特征在于,将所述包裹有铝保护层的钨粉团置于铝熔化液中之前,将包裹有铝保护层的钨粉团烘干。
6.根据权利要求2所述的铝铜钨合金的形成方法,其特征在于,各个钨粉团中钨粉的重量为8克~20克。
7.根据权利要求2所述的铝铜钨合金的形成方法,其特征在于,所述钨粉团的数量为多个;将多个包裹有铝保护层的钨粉团分散置于铝熔化液中。
8.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,所述钨粉的粒度为3um~10um。
9.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,所述铜源为铜粉或者铜块。
10.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,所述铜源的纯度在99.995%以上。
11.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,所述钨粉的纯度在99.99%以上。
12.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,所述铝熔化液的形成方法包括:提供铝源;将铝源熔化,形成铝熔化液。
13.根据权利要求12所述的铝铜钨合金的形成方法,其特征在于,熔化所述铝源的温度为780摄氏度~820摄氏度。
14.根据权利要求12所述的铝铜钨合金的形成方法,其特征在于,所述铝源的纯度在99.995%以上。
15.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,所述第一保温处理的参数包括:采用的温度为780摄氏度~820摄氏度,采用的时间为4小时~7小时。
16.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,在对所述铝铜钨合金熔化液进行铸锭之前,还包括:对所述铝铜钨合金熔化液进行搅拌处理;对所述铝铜钨合金熔化液进行搅拌处理后,进行第二保温处理。
17.根据权利要求16所述的铝铜钨合金的形成方法,其特征在于,所述第二保温处理的参数包括:采用的温度为780摄氏度~820摄氏度,采用的时间为1小时~3小时。
18.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,在对所述铝铜钨合金熔化液进行铸锭之前,还包括:对所述铝铜钨合金熔化液进行除气处理。
19.根据权利要求1所述的铝铜钨合金的形成方法,其特征在于,在对所述铝铜钨合金熔化液进行铸锭之前,还包括:对所述铝铜钨合金熔化液进行扒渣处理。
CN201610863869.8A 2016-09-29 2016-09-29 铝铜钨合金的形成方法 Pending CN107881353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610863869.8A CN107881353A (zh) 2016-09-29 2016-09-29 铝铜钨合金的形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610863869.8A CN107881353A (zh) 2016-09-29 2016-09-29 铝铜钨合金的形成方法

Publications (1)

Publication Number Publication Date
CN107881353A true CN107881353A (zh) 2018-04-06

Family

ID=61769027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610863869.8A Pending CN107881353A (zh) 2016-09-29 2016-09-29 铝铜钨合金的形成方法

Country Status (1)

Country Link
CN (1) CN107881353A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822372A (zh) * 2005-02-17 2006-08-23 株式会社神户制钢所 显示器和用于制备该显示器的溅射靶
CN105420678A (zh) * 2014-09-15 2016-03-23 安泰科技股份有限公司 一种Al添加Ni-W合金靶材及其制造方法
CN105908020A (zh) * 2016-05-17 2016-08-31 广东省材料与加工研究所 一种铝-钨复合材料的制备方法
CN106868338A (zh) * 2015-12-10 2017-06-20 南京理工大学 一种取向增强的含钨高铌钛铝合金及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822372A (zh) * 2005-02-17 2006-08-23 株式会社神户制钢所 显示器和用于制备该显示器的溅射靶
CN105420678A (zh) * 2014-09-15 2016-03-23 安泰科技股份有限公司 一种Al添加Ni-W合金靶材及其制造方法
CN106868338A (zh) * 2015-12-10 2017-06-20 南京理工大学 一种取向增强的含钨高铌钛铝合金及其制备方法
CN105908020A (zh) * 2016-05-17 2016-08-31 广东省材料与加工研究所 一种铝-钨复合材料的制备方法

Similar Documents

Publication Publication Date Title
Arh et al. Electroslag remelting: A process overview
JP2011115860A (ja) 鋳造部品の製造方法
JP5847207B2 (ja) チタンインゴット、チタンインゴットの製造方法及びチタンスパッタリングターゲットの製造方法
Yan et al. Complex phase separation of ternary Co–Cu–Pb alloy under containerless processing condition
CN106756081A (zh) 大规格Ti‑Al‑Nb系合金细晶铸锭的制备方法
Li et al. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting
CN110029252A (zh) 一种5g手机中板用高强高韧抗氧化铝镁合金材料及其制备方法
Cockcroft et al. Inclusion precipitation in superalloys
Santos et al. Influence of grain refinement on slurry formation and surface segregation in semi-solid Al-7Si-0.3 Mg castings
CN107151748A (zh) 一种金锗合金焊料的熔炼方法
CN107881353A (zh) 铝铜钨合金的形成方法
CN104959621A (zh) 一种金属颗粒的制备方法及其装置
Górny et al. Effect of Titanium and Boron on the Stability of Grain Refinement of Al-Cu Alloy
EP3452241A1 (en) High quality, void and inclusion free alloy wire
CN101121969A (zh) Ti-6Al-4V合金感应凝壳熔炼过程液态置氢细化凝固组织的方法
CN108103325A (zh) 铝合金的形成方法
Puparattanapong et al. Effect of scandium on porosity formation in Al–6Si–0.3 Mg alloys
CN108103326A (zh) 铝合金的形成方法
Zhang et al. Improved slags for ESR processing of high-carbon chromium bearing steel
KR102450479B1 (ko) 전기 전도도와 차폐 성능이 우수한 키니즈 합금 및 전기 전도도와 차폐 성능이 우수한 전선
SUH et al. Effect of the melting rate on the carbide cell size in an electroslag remelted high speed steel ingot
WO2024124616A1 (zh) 一种高纯铝合金靶材及其制备方法
Chen et al. Study on eutectic microstructure and modification mechanism of Al-Si alloys
US4014688A (en) Contact material for high-power vacuum circuit breakers
CN108517433A (zh) 一种Cu-Cr电触头合金的凝固制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180406