CN107879388A - A kind of method using heavy metal ion in particle stabilized foam quickly cleaning water - Google Patents
A kind of method using heavy metal ion in particle stabilized foam quickly cleaning water Download PDFInfo
- Publication number
- CN107879388A CN107879388A CN201711135312.3A CN201711135312A CN107879388A CN 107879388 A CN107879388 A CN 107879388A CN 201711135312 A CN201711135312 A CN 201711135312A CN 107879388 A CN107879388 A CN 107879388A
- Authority
- CN
- China
- Prior art keywords
- heavy metal
- acid
- metal ions
- waste water
- foam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000006260 foam Substances 0.000 title claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 13
- 239000002245 particle Substances 0.000 title claims description 6
- 238000004140 cleaning Methods 0.000 title claims 2
- 150000002500 ions Chemical class 0.000 claims abstract description 51
- 239000002351 wastewater Substances 0.000 claims abstract description 44
- 239000008259 solid foam Substances 0.000 claims abstract description 25
- 235000014113 dietary fatty acids Nutrition 0.000 claims abstract description 17
- 239000000194 fatty acid Substances 0.000 claims abstract description 17
- 229930195729 fatty acid Natural products 0.000 claims abstract description 17
- 150000004665 fatty acids Chemical class 0.000 claims abstract description 13
- 238000003756 stirring Methods 0.000 claims abstract description 11
- 239000003513 alkali Substances 0.000 claims abstract description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 24
- 239000002253 acid Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 9
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 238000007667 floating Methods 0.000 claims description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 2
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 claims description 2
- 229910017604 nitric acid Inorganic materials 0.000 claims description 2
- 239000003208 petroleum Substances 0.000 claims description 2
- 125000001931 aliphatic group Chemical group 0.000 claims 6
- 238000009938 salting Methods 0.000 claims 4
- 239000000344 soap Substances 0.000 claims 3
- 230000001154 acute effect Effects 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 19
- 239000012266 salt solution Substances 0.000 abstract description 6
- 239000003344 environmental pollutant Substances 0.000 abstract description 2
- 238000002156 mixing Methods 0.000 abstract description 2
- 231100000719 pollutant Toxicity 0.000 abstract description 2
- 239000012629 purifying agent Substances 0.000 abstract description 2
- 238000001228 spectrum Methods 0.000 abstract description 2
- FBUKVWPVBMHYJY-UHFFFAOYSA-N nonanoic acid Chemical compound CCCCCCCCC(O)=O FBUKVWPVBMHYJY-UHFFFAOYSA-N 0.000 description 12
- 229910021645 metal ion Inorganic materials 0.000 description 11
- 239000011651 chromium Substances 0.000 description 10
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 9
- 229940082004 sodium laurate Drugs 0.000 description 9
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 6
- -1 fatty acid salt Chemical class 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- 238000011069 regeneration method Methods 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000005639 Lauric acid Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 2
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 2
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 2
- 239000005642 Oleic acid Substances 0.000 description 2
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 2
- 239000005643 Pelargonic acid Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- 238000009388 chemical precipitation Methods 0.000 description 2
- 239000013064 chemical raw material Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229920001661 Chitosan Polymers 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229910001430 chromium ion Inorganic materials 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229940070765 laurate Drugs 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000000622 liquid--liquid extraction Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
- C02F2101/22—Chromium or chromium compounds, e.g. chromates
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Removal Of Specific Substances (AREA)
Abstract
本发明公开了一种利用颗粒稳定的泡沫快速净化水中重金属离子的方法,包括如下步骤:1)将脂肪酸与碱溶液混合反应后,制得盐溶液;2)将含重金属离子废水的pH值调至4‑8,将步骤1)中制备得到的盐溶液加入废水中,剧烈搅拌形成固体泡沫,将废水中的重金属离子携带至固体泡沫中,实现废水中重金属离子的去除。本方法利用废水中的重金属离子与净化剂直接结合生成固体泡沫可将这些离子一起净化除去,操作简单、快捷,对水中大多数重金属离子污染物有广谱适用性。
The invention discloses a method for rapidly purifying heavy metal ions in water by using particle-stabilized foam, which comprises the following steps: 1) preparing a salt solution after mixing and reacting fatty acid with an alkali solution; 2) adjusting the pH value of waste water containing heavy metal ions To 4‑8, add the salt solution prepared in step 1) into the wastewater, stir vigorously to form a solid foam, and carry the heavy metal ions in the wastewater into the solid foam to realize the removal of the heavy metal ions in the wastewater. The method utilizes the heavy metal ions in the waste water to be directly combined with the purifying agent to generate solid foam, which can purify and remove these ions together, has simple and fast operation, and has wide-spectrum applicability to most heavy metal ion pollutants in water.
Description
技术领域technical field
本发明属于废水处理领域,具体涉及一种颗粒稳定的泡沫(固体泡沫法)快速净化水中重金属离子的方法。The invention belongs to the field of waste water treatment, in particular to a method for rapid purification of heavy metal ions in water by particle-stabilized foam (solid foam method).
技术背景technical background
随着工业化的发展,资源、环境问题也日益成为社会关注的焦点问题。化工以及金属冶炼行业在生产过程中会产生大量废水,这些废水必须经过净化处理,达标后方可排放。在废水中,重金属离子的污染是一个非常严重的问题。因此,对于废水中重金属离子的去除及回收是非常重要的。With the development of industrialization, resource and environmental issues have increasingly become the focus of social attention. The chemical industry and metal smelting industry will produce a large amount of wastewater in the production process, which must be purified and treated before being discharged after reaching the standard. In wastewater, the pollution of heavy metal ions is a very serious problem. Therefore, it is very important for the removal and recovery of heavy metal ions in wastewater.
目前,对于含重金属离子废水的净化方法,有化学法和物理法两类。化学法是目前的主要方法,包括化学沉淀法和电解法,适用于含较高浓度重金属离子的废水。化学沉淀法是将金属离子转变为不溶物通过过滤等操作而除去,这种方法去除后的剩余离子浓度往往较高,且沉淀物质的分离处理较为不易。电解法主要用于电镀废水处理,其问题是不能将金属离子去除彻底。At present, there are two types of purification methods for wastewater containing heavy metal ions: chemical methods and physical methods. Chemical method is the main method at present, including chemical precipitation method and electrolysis method, which is suitable for wastewater containing high concentration of heavy metal ions. The chemical precipitation method converts metal ions into insoluble substances and removes them through operations such as filtration. The concentration of residual ions after removal by this method is often high, and the separation and treatment of precipitated substances is relatively difficult. Electrolysis is mainly used for electroplating wastewater treatment, but the problem is that metal ions cannot be completely removed.
物理法主要有溶剂萃取分离、离子交换法、膜分离技术及吸附法。溶剂萃取法是采用萃取剂通过络合作用与重金属离子结合,此方法在萃取过程中溶剂流失及再生过程能源消耗较大。离子交换法是采用离子交换树脂、螯合剂等与金属离子进行交换,其缺点是离子交换剂化学性质不稳定,易失效,再生操作费用较高。膜分离技术利用一种特殊的半透膜,在外界压力的作用下,将溶剂和溶质进行分离或浓缩,包括电渗析和隔膜电解,它们在运行中存在电极极化、结垢、腐蚀等问题,限制了其应用。吸附法利用多孔性固态物质的吸附作用去除水中重金属离子。吸附法中传统吸附剂是活性炭,活性炭虽然吸附能力强,去除率高,但再生效率低,价格贵,因而应用受到限制。近年来,逐渐开发出了一系列吸附材料,如壳聚糖及其衍生物、改性的海泡石、蒙脱石等,但其重复利用问题一直未有较好的解决方法。Physical methods mainly include solvent extraction separation, ion exchange method, membrane separation technology and adsorption method. The solvent extraction method uses the extractant to combine with heavy metal ions through complexation. In this method, the solvent is lost during the extraction process and the energy consumption in the regeneration process is relatively large. The ion exchange method uses ion exchange resins, chelating agents, etc. to exchange metal ions. The disadvantage is that the chemical properties of the ion exchanger are unstable, easy to fail, and the regeneration operation cost is relatively high. Membrane separation technology uses a special semi-permeable membrane to separate or concentrate solvents and solutes under the action of external pressure, including electrodialysis and diaphragm electrolysis, which have problems such as electrode polarization, scaling, and corrosion during operation. , limiting its application. The adsorption method uses the adsorption of porous solid substances to remove heavy metal ions in water. The traditional adsorbent in the adsorption method is activated carbon. Although activated carbon has strong adsorption capacity and high removal rate, its regeneration efficiency is low and its price is expensive, so its application is limited. In recent years, a series of adsorption materials have been gradually developed, such as chitosan and its derivatives, modified sepiolite, montmorillonite, etc., but there has been no good solution to the problem of its reuse.
因此,寻求一种快速、高效且成本低廉、操作简单的对废水中重金属离子进行去除及回收的方法,对于废水排放的环境问题以及废水中金属回收的资源充分利用问题都有重要意义。Therefore, finding a fast, efficient, low-cost, and simple-to-operate method for removing and recovering heavy metal ions in wastewater is of great significance for the environmental problems of wastewater discharge and the full utilization of resources for metal recovery in wastewater.
发明内容Contents of the invention
为了解决现有技术中存在的技术问题,本发明的目的在于提供一种利用颗粒稳定的泡沫快速净化水中重金属离子的方法。本方法利用废水中的重金属离子与净化剂直接结合生成固体泡沫可将这些离子一起净化除去,操作简单、快捷,对水中大多数重金属离子污染物有广谱适用性。In order to solve the technical problems in the prior art, the purpose of the present invention is to provide a method for rapidly purifying heavy metal ions in water by using particle-stabilized foam. The method utilizes the heavy metal ions in the waste water to be directly combined with the purifying agent to generate solid foam, which can purify and remove these ions together, has simple and fast operation, and has wide-spectrum applicability to most heavy metal ion pollutants in water.
为了解决以上技术问题,本发明的技术方案为:In order to solve the above technical problems, the technical solution of the present invention is:
一种利用颗粒稳定的泡沫快速净化水中重金属离子的方法,包括如下步骤:A method for rapidly purifying heavy metal ions in water using particle-stabilized foam, comprising the steps of:
1)将脂肪酸与碱溶液混合反应后,制得盐溶液;1) After fatty acid and alkali solution are mixed and reacted, salt solution is prepared;
2)将含重金属离子废水的pH值调至4-8,将步骤1)中制备得到的盐溶液加入废水中,剧烈搅拌形成固体泡沫,将废水中的重金属离子携带至固体泡沫中,实现废水中重金属离子的去除。2) Adjust the pH value of the wastewater containing heavy metal ions to 4-8, add the salt solution prepared in step 1) into the wastewater, stir vigorously to form a solid foam, and carry the heavy metal ions in the wastewater into the solid foam to realize the waste water removal of heavy metal ions.
脂肪酸盐与待提取的重金属离子结合,生成固体泡沫浮于废水表面,通过简单过滤即可实现固体泡沫与废水的分离,操作简单,去除速度快。The fatty acid salt combines with the heavy metal ions to be extracted to form solid foam that floats on the surface of the wastewater. The solid foam can be separated from the wastewater by simple filtration, and the operation is simple and the removal speed is fast.
在对含重金属离子废水进行处理的过程中,不需要其它有机溶剂,不会造成有机萃取剂的流失,更不会对废水造成二次污染。In the process of treating wastewater containing heavy metal ions, no other organic solvents are required, and the organic extractant will not be lost, nor will it cause secondary pollution to the wastewater.
废水中重金属离子的提取过程不需要复杂的萃取工艺,将水相简单混合搅拌即可,整个过程非常迅速,几分钟内即可完成,相比于传统的液液萃取方法需要较长时间的接触与平衡,本发明的方法大大节约了处理时间。合适条件下,Pb2+、Cd2+、Hg2+、Cr3+、Cu2+、Ni2+、Zn2+离子去除率均可高于99%,Cd2+可达99.96%,废水中残留量低于0.5ppm,满足国家排放要求的标准。脂肪酸为普通化工原料,价格低廉,废水处理的成本低。The extraction process of heavy metal ions in wastewater does not require complicated extraction process, just simply mix and stir the water phase. The whole process is very fast and can be completed within a few minutes. Compared with the traditional liquid-liquid extraction method, it requires a longer contact time. On balance, the method of the present invention saves considerable processing time. Under suitable conditions, the removal rate of Pb 2+ , Cd 2+ , Hg 2+ , Cr 3+ , Cu 2+ , Ni 2+ , Zn 2+ ions can be higher than 99%, and Cd 2+ can reach 99.96%. The residue in the medium is less than 0.5ppm, which meets the national emission requirements. Fatty acid is a common chemical raw material with low price, and the cost of wastewater treatment is low.
优选的,上述方法还包括将泡沫与废水分离的步骤。将泡沫分离,即可将废水中的重金属离子去除;对泡沫进行处理,即可实现脂肪酸的再生,不会有萃取剂的浪费。Preferably, the above method further includes the step of separating the foam from the waste water. The heavy metal ions in the wastewater can be removed by separating the foam; the regeneration of fatty acids can be realized by treating the foam without waste of extractant.
优选的,步骤1)中,所述碱溶液为NaOH溶液或KOH溶液。强碱溶液容易实现与脂肪酸的充分反应,生成相应的盐。Preferably, in step 1), the alkaline solution is NaOH solution or KOH solution. The strong alkaline solution can easily realize the full reaction with the fatty acid to generate the corresponding salt.
进一步优选的,步骤1)中,脂肪酸与碱的摩尔比为1:1。Further preferably, in step 1), the molar ratio of fatty acid to base is 1:1.
优选的,步骤1)中,所述脂肪酸为CnH2n+1COOH(n=7、8、9、10、11、12、13、15、17);或CnH2n-1COOH(n=17)。Preferably, in step 1), the fatty acid is C n H 2n+1 COOH (n=7, 8, 9, 10, 11, 12, 13, 15, 17); or C n H 2n-1 COOH ( n=17).
优选的,步骤1)中,所述盐溶液中脂肪酸盐的浓度为10-50mM。Preferably, in step 1), the concentration of fatty acid salt in the salt solution is 10-50mM.
优选的,步骤2)中,含重金属离子废水中含有的重金属为Pb2+、Cd2+、Hg2+、Cr3+、Cu2 +、Ni2+或Zn2+。Preferably, in step 2), the heavy metal contained in the wastewater containing heavy metal ions is Pb 2+ , Cd 2+ , Hg 2+ , Cr 3+ , Cu 2+ , Ni 2+ or Zn 2+ .
优选的,步骤2)中,含重金属离子废水的pH值调至5-7。Preferably, in step 2), the pH value of the wastewater containing heavy metal ions is adjusted to 5-7.
优选的,步骤2)中,盐溶液与废水的体积比为1:1-1:5。Preferably, in step 2), the volume ratio of the salt solution to the waste water is 1:1-1:5.
优选的,上述方法还包括对所述固体泡沫进行处理,回收脂肪酸的步骤。Preferably, the above method further includes the step of treating the solid foam to recover fatty acid.
进一步优选的,对所述固体泡沫进行处理的方法为:将分离出的固体泡沫用酸酸化得到不溶的脂肪酸固体或上浮的脂肪酸油相,分液或过滤即可回收脂肪酸。Further preferably, the method for treating the solid foam is: acidifying the separated solid foam with an acid to obtain insoluble fatty acid solids or floating fatty acid oil phase, and the fatty acid can be recovered by liquid separation or filtration.
更进一步优选的,所述酸为盐酸、硫酸、硝酸、乙酸等较强的酸。Even more preferably, the acid is a strong acid such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid and the like.
更进一步优选的,所述有机溶剂为氯仿、乙醚或石油醚。More preferably, the organic solvent is chloroform, diethyl ether or petroleum ether.
更进一步优选的,加入的酸与脂肪酸盐的摩尔比为2:1,用于除去二价重金属离子;或加入的酸与脂肪酸盐的摩尔比为3:1,用于去除三价重金属离子。Even more preferably, the molar ratio of the added acid to fatty acid salt is 2:1 for removing divalent heavy metal ions; or the molar ratio of added acid to fatty acid salt is 3:1 for removing trivalent heavy metal ion.
本发明的有益技术效果为:The beneficial technical effect of the present invention is:
1)去除速度快。净化剂加入后,搅拌即马上形成泡沫,浮于液面上部。1) The removal speed is fast. After the cleaning agent is added, stir to form foam immediately, floating on the top of the liquid surface.
2)分离过程简单。将上部固体泡沫直接取出即可,不需过滤或分液等操作。2) The separation process is simple. The upper solid foam can be taken out directly without filtering or liquid separation.
3)去除率高。合适条件下,Pb2+、Cd2+、Hg2+、Cr3+、Cu2+、Ni2+、Zn2+离子去除率均可高于99%,Cd2+可达99.96%,废水中残留量低于0.5ppm,满足国家排放要求的标准。3) High removal rate. Under suitable conditions, the removal rate of Pb 2+ , Cd 2+ , Hg 2+ , Cr 3+ , Cu 2+ , Ni 2+ , Zn 2+ ions can be higher than 99%, and Cd 2+ can reach 99.96%. The residue in the medium is less than 0.5ppm, which meets the national emission requirements.
4)成本低。脂肪酸为普通化工原料,价格低廉。且可重复利用,再生过程简便。4) Low cost. Fatty acid is a common chemical raw material with low price. And it can be reused, and the regeneration process is simple and convenient.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。The accompanying drawings constituting a part of the present application are used to provide further understanding of the present application, and the schematic embodiments and descriptions of the present application are used to explain the present application, and do not constitute improper limitations to the present application.
图1为月桂酸钠溶液与含不同种类重金属离子的水溶液以反应量混合后的样品照片(金属离子由左至右依次为Cd2+、Pb2+、Hg2+、Cr3+)。Figure 1 is a photograph of a sample after mixing sodium laurate solution with aqueous solutions containing different types of heavy metal ions in reaction amounts (the metal ions are Cd 2+ , Pb 2+ , Hg 2+ , and Cr 3+ from left to right).
图2为月桂酸钠与重金属离子形成的泡沫样品的光学显微照片,金属离子依次为(a)Cd2+、(b)Pb2+、(c)Hg2+、(d)Cr3+。Figure 2 is an optical micrograph of the foam sample formed by sodium laurate and heavy metal ions, the metal ions are (a) Cd 2+ , (b) Pb 2+ , (c) Hg 2+ , (d) Cr 3+ .
图3为月桂酸钠与重金属离子形成的泡沫样品的扫描电子显微照片(SEM),金属离子依次为(a)Cd2+、(b)Pb2+。Fig. 3 is a scanning electron micrograph (SEM) of a foam sample formed by sodium laurate and heavy metal ions, the metal ions are (a) Cd 2+ , (b) Pb 2+ .
具体实施方式Detailed ways
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。It should be pointed out that the following detailed description is exemplary and intended to provide further explanation to the present application. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this application belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terminology used here is only for describing specific implementations, and is not intended to limit the exemplary implementations according to the present application. As used herein, unless the context clearly dictates otherwise, the singular is intended to include the plural, and it should also be understood that when the terms "comprising" and/or "comprising" are used in this specification, they mean There are features, steps, operations, means, components and/or combinations thereof.
实施例1:Example 1:
将壬酸加入到40mM NaOH溶液中,其中壬酸与NaOH摩尔比为1:1,形成澄清溶液;将该溶液加入含镉离子(Cd2+)的废水中,调pH为7.0±0.5,剧烈搅拌;分出上层泡沫,废水中Cd2+即被去除,去除率99.96%。Add nonanoic acid to 40mM NaOH solution, wherein the molar ratio of nonanoic acid to NaOH is 1:1 to form a clear solution; add the solution to waste water containing cadmium ions (Cd 2+ ), adjust the pH to 7.0±0.5, and vigorously Stir; the upper layer of foam is separated, and the Cd 2+ in the wastewater is removed, and the removal rate is 99.96%.
实施例2:Example 2:
将月桂酸与20mM NaOH溶液混合,其中月桂酸与NaOH摩尔比为1:1,形成澄清溶液;将反应量的月桂酸钠溶液加入含有Cd2+、Pb2+、Hg2+、Cr3+的废水中pH分别调至7.0±0.5、5.5±0.5、6.0±0.5、6.0±0.5,剧烈搅拌,形成的固体泡沫;分出上层泡沫,废水中金属离子即被回收去除,去除率分别为99.56%、99.26%、95.54%、98.57%。本实施例中形成的固体泡沫如图1所示,可以看到,月桂酸钠与这些金属离子结合形成漂浮于液相上方的固体泡沫,由于泡沫中大量空气的存在,其密度较小,浮于液面上方,等量的月桂酸钠所形成的固体泡沫体积并不完全相同,说明不同离子形成的泡沫的尺寸分布有一定差异。Mix lauric acid with 20mM NaOH solution, wherein the molar ratio of lauric acid to NaOH is 1:1 to form a clear solution; add the corresponding amount of sodium laurate solution containing Cd 2+ , Pb 2+ , Hg 2+ , Cr 3+ The pH in the waste water was adjusted to 7.0±0.5, 5.5±0.5, 6.0±0.5, 6.0±0.5, and the solid foam was formed by vigorous stirring; the upper layer of foam was separated, and the metal ions in the waste water were recovered and removed, and the removal rate was 99.56 %, 99.26%, 95.54%, 98.57%. The solid foam formed in the present embodiment is as shown in Figure 1. It can be seen that sodium laurate combines with these metal ions to form a solid foam floating above the liquid phase. Due to the presence of a large amount of air in the foam, its density is small and the floating Above the liquid surface, the solid foam volumes formed by the same amount of sodium laurate are not exactly the same, indicating that the size distribution of the foam formed by different ions is somewhat different.
图2为月桂酸钠与重金属离子形成的泡沫样品的光学显微照片,金属离子依次为(a)Cd2+、(b)Pb2+、(c)Hg2+、(d)Cr3+。可以观察到,月桂酸钠与不同金属离子形成的固体泡沫大小呈多分散分布,尺度在20–400μm范围内,金属离子不同,泡沫大小分布也有一定差别,如Cd2+和Cr3+较易形成较大泡沫,而Pb2+和Hg2+则倾向于形成小泡沫。Figure 2 is an optical micrograph of the foam sample formed by sodium laurate and heavy metal ions, the metal ions are (a) Cd 2+ , (b) Pb 2+ , (c) Hg 2+ , (d) Cr 3+ . It can be observed that the size of the solid foam formed by sodium laurate and different metal ions is polydisperse, and the scale is in the range of 20–400 μm. The size distribution of the foam is also different for different metal ions. For example, Cd 2+ and Cr 3+ are easier to Larger foams are formed, while Pb 2+ and Hg 2+ tend to form small foams.
图3为月桂酸钠与Cd2+(a)和Pb2+(b)离子形成的泡沫样品的扫描电子显微照片(SEM)。SEM照片显示了泡沫近似球形的形貌,其壁部是由月桂酸盐固体颗粒形成的,与Cd2+形成的是针状颗粒,而与Pb2+形成的颗粒形貌不规则,近似球状。Fig. 3 is a scanning electron micrograph (SEM) of a foam sample formed by sodium laurate and Cd 2+ (a) and Pb 2+ (b) ions. SEM photos show that the foam is approximately spherical in shape, and its wall is formed by solid particles of laurate, and the particles formed with Cd 2+ are needle-shaped particles, while the particles formed with Pb 2+ are irregular in shape and approximately spherical .
实施例3:Example 3:
将油酸与20mM KOH溶液混合,其中油酸与KOH摩尔比为1:1,形成澄清溶液;将该溶液加入含汞离子(Hg2+)的废水中,调pH为5.0±0.5,剧烈搅拌;分出上层泡沫,废水中Hg2+即被回收去除,去除率99.60%。Mix oleic acid with 20mM KOH solution, wherein the molar ratio of oleic acid to KOH is 1:1 to form a clear solution; add this solution to the wastewater containing mercury ions (Hg 2+ ), adjust the pH to 5.0±0.5, and stir vigorously ; The upper layer of foam is separated, and the Hg 2+ in the wastewater is recovered and removed, and the removal rate is 99.60%.
实施例4:Example 4:
将壬酸与40mM NaOH溶液混合,其中壬酸与NaOH摩尔比为1:1,形成澄清溶液;将该溶液加入含铬离子(Cr3+)的废水中,调pH为7.0±0.3,剧烈搅拌;分出上层泡沫,废水中Cr3+离子即被回收去除,去除率98.60%。Mix nonanoic acid with 40mM NaOH solution, wherein the molar ratio between nonanoic acid and NaOH is 1:1 to form a clear solution; add this solution to the wastewater containing chromium ions (Cr 3+ ), adjust the pH to 7.0±0.3, and stir vigorously ; The upper layer of foam is separated, and the Cr 3+ ions in the waste water are recovered and removed, and the removal rate is 98.60%.
实施例5:Example 5:
在分离出的壬酸与重金属离子形成的固体泡沫中加一定量水;加反应量盐酸,搅拌,静置分为油/水两相;分出上相即回收得到壬酸。Add a certain amount of water to the solid foam formed by the separated pelargonic acid and heavy metal ions; add the reaction amount of hydrochloric acid, stir, and stand still to separate into oil/water two phases; separate the upper phase to recover pelargonic acid.
实施例6:Embodiment 6:
在分离出的月桂酸与重金属离子形成的固体泡沫中加一定量水;加反应量乙酸,搅拌,产生不溶物;过滤即回收得到月桂酸。Add a certain amount of water to the solid foam formed by the separated lauric acid and heavy metal ions; add the reaction amount of acetic acid, stir to produce insoluble matter; filter and recover to obtain lauric acid.
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。The above descriptions are only preferred embodiments of the present application, and are not intended to limit the present application. For those skilled in the art, there may be various modifications and changes in the present application. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of this application shall be included within the protection scope of this application.
Claims (10)
- A kind of 1. method using heavy metal ion in particle stabilized foam quickly cleaning water, it is characterised in that:Including as follows Step:1) by after aliphatic acid and aqueous slkali hybrid reaction, salting liquid is made;2) pH value of heavy metal ion-containing waste water is adjusted to 4-8, the salting liquid being prepared in step 1) is added in waste water, it is acute Strong stirring forms solid foam, and the heavy metal ion in waste water is carried into solid foam, realizes heavy metal ions in wastewater Removal.
- 2. according to the method for claim 1, it is characterised in that:In step 1), the aqueous slkali is that NaOH solution or KOH are molten Liquid;Preferably, the aliphatic acid is CnH2n+1COOH, n=7,8,9,10,11,12,13,15,17;Or CnH2n-1COOH, n=17.
- 3. according to the method for claim 1, it is characterised in that:In step 1), the mol ratio of aliphatic acid and alkali is 1:1;Preferably, in step 1), the concentration of soap is 10-50mM in the salting liquid.
- 4. according to the method for claim 1, it is characterised in that:In step 2), the weight that contains in heavy metal ion-containing waste water Metal is Pb2+、Cd2+、Hg2+、Cr3+、Cu2+、Ni2+Or Zn2+;Preferably, the pH value of heavy metal ion-containing waste water is adjusted to 5-7;Preferably, in step 2), the volume ratio of salting liquid and waste water is 1:1-1:5.
- 5. according to the method for claim 1, it is characterised in that:The step of also including separating foam with waste water.
- 6. according to the method for claim 5, it is characterised in that:Also include handling the solid foam of separation, reclaim The step of aliphatic acid.
- 7. according to the method for claim 6, it is characterised in that:The method handled the solid foam is:It will divide The solid foam acid acidifying separated out obtains insoluble fatty-acid solid or the aliphatic acid oil phase of floating, and liquid separation or filtering can return Receive aliphatic acid.
- 8. according to the method for claim 7, it is characterised in that:The acid is hydrochloric acid, sulfuric acid, nitric acid or acetic acid.
- 9. according to the method for claim 7, it is characterised in that:The organic solvent is chloroform, ether or petroleum ether.
- 10. according to the method for claim 8, it is characterised in that:The acid of addition is 2 with the mol ratio of soap:1, use In removing divalent heavy metal ions;Or the mol ratio of the acid added and soap is 3:1, for remove trivalent heavy metals from Son.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711135312.3A CN107879388A (en) | 2017-11-15 | 2017-11-15 | A kind of method using heavy metal ion in particle stabilized foam quickly cleaning water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711135312.3A CN107879388A (en) | 2017-11-15 | 2017-11-15 | A kind of method using heavy metal ion in particle stabilized foam quickly cleaning water |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107879388A true CN107879388A (en) | 2018-04-06 |
Family
ID=61776898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711135312.3A Pending CN107879388A (en) | 2017-11-15 | 2017-11-15 | A kind of method using heavy metal ion in particle stabilized foam quickly cleaning water |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107879388A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110339592A (en) * | 2019-07-22 | 2019-10-18 | 山东大学 | Heavy metal ion extracting agent based on fatty acid, preparation method and extraction method |
CN113735363A (en) * | 2021-10-15 | 2021-12-03 | 嘉兴学院 | Treatment method of chrome tanning waste liquid |
CN114181717A (en) * | 2021-12-15 | 2022-03-15 | 山东大学 | A kind of preparation method of constructing highly stable foam from fluorocarbon surfactant particles |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4446654A1 (en) * | 1994-12-19 | 1996-06-20 | Tech Wissenschaftliche Ges Thi | Decontamination of e.g. wood, soil, sludge, gravel, waste etc. |
CN105032371A (en) * | 2015-08-31 | 2015-11-11 | 桂林理工大学 | Method for preparing washing-agent or soap-powder modification leersia hexandra heavy metal ion adsorbents |
-
2017
- 2017-11-15 CN CN201711135312.3A patent/CN107879388A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4446654A1 (en) * | 1994-12-19 | 1996-06-20 | Tech Wissenschaftliche Ges Thi | Decontamination of e.g. wood, soil, sludge, gravel, waste etc. |
CN105032371A (en) * | 2015-08-31 | 2015-11-11 | 桂林理工大学 | Method for preparing washing-agent or soap-powder modification leersia hexandra heavy metal ion adsorbents |
Non-Patent Citations (1)
Title |
---|
CAPRATE,MAEN M. HUSEIN , JUAN H. VERA & MARTIN E. WEBERTO CITE T: "Removalof Lead from Aqueous Solutions with Sodium Caprate", 《SEPARATION SCIENCE AND TECHNOLOGY》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110339592A (en) * | 2019-07-22 | 2019-10-18 | 山东大学 | Heavy metal ion extracting agent based on fatty acid, preparation method and extraction method |
CN110339592B (en) * | 2019-07-22 | 2020-05-08 | 山东大学 | Fatty acid-based heavy metal ion extractant and preparation method and extraction method |
CN113735363A (en) * | 2021-10-15 | 2021-12-03 | 嘉兴学院 | Treatment method of chrome tanning waste liquid |
CN114181717A (en) * | 2021-12-15 | 2022-03-15 | 山东大学 | A kind of preparation method of constructing highly stable foam from fluorocarbon surfactant particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105439355B (en) | Waste acid resource reclaim and deep treatment method and device | |
JP2021508667A (en) | The process of recovering lithium from brine | |
JP4880656B2 (en) | Water treatment apparatus and water treatment method | |
CN103663661B (en) | A kind for the treatment of process containing hexavalent chromium trade effluent | |
CN101648759A (en) | Recycling processing method for wastewater produced by processing stainless steel | |
JP7550246B2 (en) | How to recover lithium from brine | |
JP2012236120A (en) | Apparatus and method for recovering fluorine | |
CN101863530B (en) | Continuous advanced treatment system of heavy metal ion-containing tail water and treatment method | |
CN103553249A (en) | Method for acid separation and heavy metal recovery in electroplating waste liquor | |
CN109987742A (en) | Zero-discharge process for nickel hydrometallurgy wastewater containing heavy metals, oils and high-concentration mixed salts | |
CN107879388A (en) | A kind of method using heavy metal ion in particle stabilized foam quickly cleaning water | |
CN203807291U (en) | Power plant desulfurization wastewater zero-emission treatment and reusing device | |
CN107902793A (en) | A kind of processing method of high ammonia-nitrogen wastewater | |
CN108570115A (en) | The recovery method of polysaccharide in a kind of extracellular polymeric | |
CN106542670A (en) | A kind of wet desulphurization waste water zero discharge treatment process | |
CN104150570B (en) | A method for extracting chromium from chromium-containing waste liquid | |
CN104743732A (en) | Method for realizing zero emission and recycling of desulfurization waste water of power plant | |
JP2022515389A (en) | Process for recovering lithium from brine with the addition of alkali | |
CN113651480A (en) | Regeneration system and method for tin-containing waste liquid | |
CN103553257B (en) | A kind of circulating disposal process of RE waste water and system | |
CN110339592B (en) | Fatty acid-based heavy metal ion extractant and preparation method and extraction method | |
CN107857331B (en) | A method for recycling and removing copper ions in waste water by using solid foam method | |
JP2014133188A (en) | Water treatment method and water treatment apparatus | |
CN110981156B (en) | A three-phase separation method of sludge based on alkali modification | |
CN221955935U (en) | Pickling waste liquid recycling system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180406 |