CN107857196A - A kind of bridge-type container crane swings optimal control system - Google Patents

A kind of bridge-type container crane swings optimal control system Download PDF

Info

Publication number
CN107857196A
CN107857196A CN201711115228.5A CN201711115228A CN107857196A CN 107857196 A CN107857196 A CN 107857196A CN 201711115228 A CN201711115228 A CN 201711115228A CN 107857196 A CN107857196 A CN 107857196A
Authority
CN
China
Prior art keywords
mrow
msup
msub
mtd
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711115228.5A
Other languages
Chinese (zh)
Other versions
CN107857196B (en
Inventor
刘兴高
刘平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201711115228.5A priority Critical patent/CN107857196B/en
Publication of CN107857196A publication Critical patent/CN107857196A/en
Application granted granted Critical
Publication of CN107857196B publication Critical patent/CN107857196B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C17/00Overhead travelling cranes comprising one or more substantially horizontal girders the ends of which are directly supported by wheels or rollers running on tracks carried by spaced supports

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Measurement Of Radiation (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种桥式集装箱起重机摆动最优控制系统,由牵引电机、集装箱位置传感器、模数转换器、数模转换器、现场总线网络、分散控制系统(DCS)、控制室显示、牵引电机控制器构成。控制室工程师指定集装箱需要到达的位置和装卸时间,DCS通过执行内部最优控制算法,输出使本次集装箱装卸摆动能量最小的控制策略,并转换为牵引电机的控制指令,通过现场总线网络发送给牵引电机控制器,电机控制器通过模数转换器输出控制量使牵引电机执行相应动作,同时,位置传感器实时采集集装箱的位置信息并回送给控制室,使工程师随时掌握装卸过程。本发明能够在集装箱装卸过程中使其摆动最小,进而提高港口集装箱装卸的安全性和效率。

The invention discloses an optimal swing control system for a bridge-type container crane. Motor controller composition. The engineer in the control room specifies the location and loading and unloading time of the container, and the DCS executes the internal optimal control algorithm to output the control strategy that minimizes the swing energy of the container loading and unloading, and converts it into a control command for the traction motor, which is sent to The traction motor controller, the motor controller outputs the control value through the analog-to-digital converter to make the traction motor perform corresponding actions. At the same time, the position sensor collects the position information of the container in real time and sends it back to the control room, so that the engineer can grasp the loading and unloading process at any time. The invention can minimize the swing of the container during loading and unloading, thereby improving the safety and efficiency of container loading and unloading at the port.

Description

一种桥式集装箱起重机摆动最优控制系统An Optimal Swing Control System for Bridge Container Crane

技术领域technical field

本发明涉及桥式起重机控制领域,主要是一种桥式集装箱起重机摆动最优控制系统。能自动控制桥式集装箱起重机的装卸,使集装箱在移动过程中摆动能量最小,以提高港口集装箱装卸的安全性和效率。The invention relates to the field of bridge crane control, and mainly relates to an optimal swing control system of a bridge container crane. It can automatically control the loading and unloading of the bridge container crane to minimize the swing energy of the container during the moving process, so as to improve the safety and efficiency of container loading and unloading in the port.

背景技术Background technique

集装箱的装卸对于港口运行至关重要。然而,随着装卸的高速化,集装箱到达指定位置时由于起重机的加减速和负载的提升动作以及风、摩擦引起的扰动等所产生的荷载残留摆动也随之增大,不仅降低了搬运精度、减缓了搬运的速度,也增加了事故发生的可能性。桥式边集装箱起重机作为港口集装箱船装卸的主要设备,其控制策略对于集装箱的安全高效装卸具有重要影响,所以根据具体参数和操作要求对桥式集装箱起重机进行自动最优摆动控制具有重要意义。The handling of containers is critical to port operations. However, with the high speed of loading and unloading, when the container arrives at the designated position, the residual swing of the load due to the acceleration and deceleration of the crane, the lifting action of the load, and the disturbance caused by wind and friction also increases, which not only reduces the handling accuracy, It slows down the speed of handling and increases the possibility of accidents. As the main equipment for loading and unloading container ships in the port, the bridge side container crane's control strategy has an important impact on the safe and efficient loading and unloading of containers. Therefore, it is of great significance to automatically optimize the swing control of the bridge container crane according to specific parameters and operating requirements.

当前,国内桥式起重机的控制方法中很少采用最优控制理论及对应方法,控制器中的参数往往凭已有经验设定,装卸效率和安全性有待进一步提高。采用最优控制方法后的桥式起重机的控制品质和安全性可以得到保障,装卸效率可以进一步提高。At present, the optimal control theory and corresponding methods are rarely used in the control methods of domestic bridge cranes. The parameters in the controller are often set according to the existing experience, and the loading and unloading efficiency and safety need to be further improved. After adopting the optimal control method, the control quality and safety of the bridge crane can be guaranteed, and the loading and unloading efficiency can be further improved.

发明内容Contents of the invention

为了提高港口集装箱装卸的效率,本发明提供了一种桥式集装箱起重机摆动最优控制系统。In order to improve the efficiency of port container loading and unloading, the present invention provides an optimal swing control system for bridge container cranes.

本发明的目的是通过以下技术方案来实现的:一种桥式集装箱起重机摆动最优控制系统,能自动控制桥式集装箱起重机的装卸,使集装箱在移动过程中摆动能量最小,以提港口高集装箱装卸的安全性和效率。由牵引电机、集装箱位置传感器、模数转换器、数模转换器、现场总线网络、分散控制系统(DCS)、控制室显示、牵引电机控制器构成。所述控制系统的运行过程包括:The object of the present invention is achieved through the following technical solutions: an optimal control system for the swing of a bridge container crane, which can automatically control the loading and unloading of the bridge container crane, so that the swing energy of the container is minimized during the movement, so as to increase the port height of the container. Safety and efficiency of loading and unloading. It is composed of traction motor, container position sensor, analog-to-digital converter, digital-to-analog converter, field bus network, distributed control system (DCS), control room display, and traction motor controller. The operating process of the control system includes:

步骤1):控制室工程师指定集装箱需要到达的位置坐标、装卸过程时间限制以及牵引电机的性能参数约束;Step 1): The engineer in the control room specifies the location coordinates that the container needs to reach, the time limit of the loading and unloading process, and the performance parameter constraints of the traction motor;

步骤2):DCS执行内部最优控制算法,获得使集装箱装卸过程摆动角最小的牵引电机速度控制策略;Step 2): DCS executes the internal optimal control algorithm to obtain the traction motor speed control strategy that minimizes the swing angle during container loading and unloading;

步骤3):DCS将得到的电机速度控制策略转换为牵引电机的控制指令,通过现场总线网络发送给牵引电机控制器前段的数模转换器,使牵引电机控制器根据收到的控制指令控制牵引电机执行相应动作;Step 3): The DCS converts the obtained motor speed control strategy into the control command of the traction motor, and sends it to the digital-to-analog converter in the front section of the traction motor controller through the field bus network, so that the traction motor controller controls the traction motor according to the received control command. The motor performs the corresponding action;

步骤4):集装箱位置传感器实时采集集装箱的位置信息,经过经过模数转换后用现场总线网络回送给DCS,并在主控室内显示,使工程师随时监控装卸过程。Step 4): The container position sensor collects the position information of the container in real time, and sends it back to DCS through the field bus network after analog-to-digital conversion, and displays it in the main control room, so that engineers can monitor the loading and unloading process at any time.

所述的DCS,包括信息采集模块、初始化模块、微分代数方程组(Ordinarydifferential equations,简称ODE)快速求解模块、梯度求解模块、非线性规划问题求解模块、控制指令输出模块。其中信息采集模块包括集装箱位置采集、牵引电机性能约束采集、装卸时间设置采集三个子模块,非线性规划(Non-linear Programming,简称NLP)问题求解模块包括寻优方向求解、寻优步长求解、寻优校正、NLP收敛性判断四个子模块。The DCS includes an information collection module, an initialization module, a fast solution module for differential algebraic equations (Ordinarydifferential equations, ODE for short), a gradient solution module, a nonlinear programming problem solution module, and a control instruction output module. The information acquisition module includes three sub-modules: container position acquisition, traction motor performance constraint acquisition, and loading and unloading time setting acquisition. There are four sub-modules for optimization correction and NLP convergence judgment.

港口集装箱集起重机的装卸过程的模型可以描述为:The model of the loading and unloading process of the port container crane can be described as:

其中,t表示时间,u(t)表示由各方向速度分量组成的速度向量;x(t)表示装卸过程的状态信息;F(x(t),u(t),t)是根据起重机的物理学原理建立的微分方程组。从该描述可以看出,集装箱的装卸过程可以用数学上的一组微分方程组来表示。Among them, t represents time, u(t) represents the velocity vector composed of velocity components in various directions; x(t) represents the status information of the loading and unloading process; F(x(t),u(t),t) is according to the A system of differential equations established by the principles of physics. It can be seen from the description that the loading and unloading process of the container can be expressed by a set of differential equations in mathematics.

本系统的控制目标是使集装箱在装卸过程中摆动能量最小,因此目标函数表示为:The control objective of this system is to minimize the swing energy of the container during loading and unloading, so the objective function is expressed as:

其中,t0表示装卸过程的起始时间,tf表示控制室工程师指定的装卸过程终值时间,J表示目标函数,L0(x(t),u(t),t)表示集装箱装卸过程中目标函数中的摆动角函数。Among them, t 0 represents the starting time of the loading and unloading process, t f represents the final value time of the loading and unloading process specified by the engineer in the control room, J represents the objective function, L 0 (x(t),u(t),t) represents the container loading and unloading process The swing angle function in the objective function in .

同时,桥式集装箱起重机受牵引电机性能参数影响和集装箱移动达到位置要求,存在约束条件,其函数表达为:At the same time, the overhead container crane is affected by the performance parameters of the traction motor and the container moves to meet the position requirements, there are constraints, and its function is expressed as:

其中,E(x(t),u(t),t)表示集装箱达到位置约束函数,G(x(t),u(t),t)表示牵引电机性能参数约束函数。因此,桥式集装箱起重机摆动能量最小控制问题可以最终表示为:Among them, E(x(t), u(t), t) represents the container reach position constraint function, and G(x(t), u(t), t) represents the traction motor performance parameter constraint function. Therefore, the minimum swing energy control problem of the bridge container crane can be finally expressed as:

本发明解决其技术问题所采用的技术方案是:在分散控制系统(DCS)中集成了最优控制算法,并以此为基础构建了一种最优控系统。The technical scheme adopted by the present invention to solve the technical problem is: an optimal control algorithm is integrated in a distributed control system (DCS), and an optimal control system is constructed on the basis of this.

所述的控制系统的完整结构包括集装箱位置传感器21、模数转换器22、现场总线网络23、DCS24、控制室显示25、数模转换器26、牵引电机控制器27、牵引电机28。The complete structure of the control system includes a container position sensor 21, an analog-to-digital converter 22, a field bus network 23, a DCS 24, a control room display 25, a digital-to-analog converter 26, a traction motor controller 27, and a traction motor 28.

所述的系统的运行过程包括:The operating process of the system includes:

步骤1):控制室工程师指定集装箱需要到达的位置坐标、装卸过程时间限制以及牵引电机的性能参数约束;Step 1): The engineer in the control room specifies the location coordinates that the container needs to reach, the time limit of the loading and unloading process, and the performance parameter constraints of the traction motor;

步骤2):DCS执行内部最优控制算法,获得使集装箱装卸过程摆动能量最小的牵引电机速度控制策略;Step 2): DCS executes the internal optimal control algorithm to obtain the traction motor speed control strategy that minimizes the swing energy during container loading and unloading;

步骤3):DCS将得到的电机速度控制策略转换为牵引电机的控制指令,通过现场总线网络发送给牵引电机控制器前段的数模转换器,使牵引电机控制器根据收到的控制指令控制牵引电机执行相应动作;Step 3): The DCS converts the obtained motor speed control strategy into the control command of the traction motor, and sends it to the digital-to-analog converter in the front section of the traction motor controller through the field bus network, so that the traction motor controller controls the traction motor according to the received control command. The motor performs the corresponding action;

步骤4):集装箱位置传感器实时采集集装箱的位置信息,经过经过模数转换后用现场总线网络回送给DCS,并在主控室内显示,使工程师随时监控装卸过程。Step 4): The container position sensor collects the position information of the container in real time, and sends it back to DCS through the field bus network after analog-to-digital conversion, and displays it in the main control room, so that engineers can monitor the loading and unloading process at any time.

所述的DCS,包括信息采集模块、初始化模块、ODE求解模块、梯度计算模块、NLP问题求解模块、控制指令输出模块。其中信息采集模块包括集装箱起止位置采集、性能指标采集、速度控制约束采集三个子模块,NLP问题求解模块包括寻优方向计算、寻优步长计算、NLP收敛性判断三个子模块。The DCS includes an information collection module, an initialization module, an ODE solution module, a gradient calculation module, an NLP problem solution module, and a control instruction output module. Among them, the information collection module includes three sub-modules of container starting and ending position collection, performance index collection, and speed control constraint collection. The NLP problem solving module includes three sub-modules: optimization direction calculation, optimization step calculation, and NLP convergence judgment.

所述的DCS,包括信息采集模块、初始化模块、ODE快速求解模块、梯度求解模块、非线性规划问题求解模块、控制指令输出模块。其中信息采集模块包括集装箱位置采集、牵引电机性能约束采集、装卸时间设置采集三个子模块,NLP问题求解模块包括寻优方向求解、寻优步长求解、寻优校正、NLP收敛性判断四个子模块。The DCS includes an information collection module, an initialization module, an ODE fast solution module, a gradient solution module, a nonlinear programming problem solution module, and a control instruction output module. Among them, the information collection module includes three sub-modules: container position collection, traction motor performance constraint collection, loading and unloading time setting collection, and the NLP problem solving module includes four sub-modules: optimization direction solution, optimization step size solution, optimization correction, and NLP convergence judgment .

所述的DCS执行内部最优控制算法得到使集装箱装卸过程摆动角最小的牵引电机速度控制策略,运行步骤如下:The DCS executes an internal optimal control algorithm to obtain a traction motor speed control strategy that minimizes the swing angle of the container loading and unloading process, and the operation steps are as follows:

步骤1):信息采集模块31获取集装箱的初始位置和工程师指定的到达位置、牵引电机性能约束和装卸时间设置;Step 1): the information collection module 31 acquires the initial position of the container and the arrival position specified by the engineer, the performance constraints of the traction motor and the setting of loading and unloading time;

步骤2):初始化模块32开始运行,采用分段常量参数化,设置装卸过程的分段数NE、牵引电机控制量的参数化向量的初始猜测值u(k),设定计算精度tol,将迭代次数k置零;Step 2): The initialization module 32 starts to run, adopts segment constant parameterization, sets the segment number NE of the loading and unloading process, the initial guess value u (k) of the parameterized vector of the traction motor control variable, sets the calculation accuracy tol, and sets The number of iterations k is set to zero;

步骤3):通过ODE快速求解模块33获取本次迭代的状态信息x(k)(t)和目标函数值J(k)Step 3): Obtain the state information x (k) (t) and the objective function value J (k) of this iteration through the ODE fast solution module 33 .

步骤4):通过梯度求解模块34获取本次迭代目标函数梯度信息dJ(k)和约束条件梯度信息g(k);当k=0时跳过步骤5)直接执行步骤7);Step 4): obtain this iterative objective function gradient information dJ (k) and constraint condition gradient information g (k) by gradient solving module 34; Skip step 5) when k=0) and directly execute step 7);

步骤5):NLP问题求解模块35运行,通过NLP收敛性判断模块进行收敛性判断,如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的牵引电机速度控制策略转换为电机的控制指令输出;如果收敛性不满足,则继续执行步骤6);Step 5): The NLP problem solving module 35 runs, and the convergence judgment is performed by the NLP convergence judgment module. If the absolute value of the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration If the value difference is less than the precision tol, it is judged that the convergence is satisfied, and the traction motor speed control strategy of this iteration is converted into the control command output of the motor; if the convergence is not satisfied, then continue to perform step 6);

步骤6):用u(k),J(k),dJ(k),g(k)的值覆盖上一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k加1;Step 6): Cover the last iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and add 1 to the number of iterations k;

步骤7):NLP问题求解模块35利用在步骤3)和4)中获得的目标函数值和梯度信息,求解寻优方向和寻优步长,并进行寻优修正,获得比u(k-1)更优的新的速度控制策略u(k)。该步骤执行完成后再次跳转至步骤3),直至NLP收敛性判断模块满足为止。Step 7): The NLP problem solving module 35 uses the objective function value and gradient information obtained in steps 3) and 4) to solve the optimization direction and the optimization step size, and perform optimization correction to obtain the ratio u (k-1 ) A better new speed control strategy u (k) . After this step is executed, jump to step 3) again until the NLP convergence judgment module is satisfied.

所述的ODE快速求解模块,采用的是四级五阶龙格库塔方法,求解公式为:The described ODE fast solution module adopts the fourth-level fifth-order Runge-Kutta method, and the solution formula is:

其中,t表示时间,ti表示龙格库塔方法选择的积分时刻,h为积分步长,F(·)是描述状态微分方程的函数,K1、K2、K3、K4分别表示龙格库塔法积分过程中的4个节点的函数值,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,Among them, t represents the time, t i represents the integration time selected by the Runge-Kutta method, h is the integration step size, F(·) is the function describing the state differential equation, K 1 , K 2 , K 3 , K 4 represent The function values of the four nodes in the integration process of the Runge-Kutta method, x (k) (t i ) represents the state information of the container at the time t i in the k iteration,

所述的梯度求解模块,采用灵敏度轨迹方程法:The gradient solving module adopts the sensitivity trajectory equation method:

步骤1):定义第k次迭代的灵敏度轨迹方程Γ(k)(t)为:Step 1): Define the sensitivity trajectory equation Γ (k) (t) of the kth iteration as:

Γ(k)(t)的求解公式为:The solution formula of Γ (k) (t) is:

其中,t表示时间,表示第k次迭代中灵敏度轨迹方程对于时间t的导数,F(u(k),x(k)(t),t)是描述状态微分方程的函数,Γ(k)(t0)表示灵敏度轨迹方程在第k次迭代时的初始时刻状态值,x0表示状态微分方程函数的初始时刻状态值。where t represents time, Indicates the derivative of the sensitivity trajectory equation with respect to time t in the kth iteration, F(u (k) ,x (k) (t),t) is a function describing the state differential equation, Γ (k) (t 0 ) represents the sensitivity The initial moment state value of the trajectory equation at the kth iteration, x 0 represents the initial moment state value of the state differential equation function.

步骤2):采用四级五阶龙格库塔方法求解灵敏度轨迹方程Γ(k)(t)在各积分时刻的值,求解公式为:Step 2): Using the fourth-level and fifth-order Runge-Kutta method to solve the value of the sensitivity trajectory equation Γ (k) (t) at each integration time, the solution formula is:

其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,h为积分步长,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,S(·)是描述灵敏度方程的函数,Q1、Q2、Q3、Q4分别表示龙格库塔法积分过程中的4个节点的函数值。Among them, t represents the time, t i represents a certain time point in the control process selected by the Runge-Kutta method, h is the integral step size, x (k) (t i ) represents the container at the time t i in the k iteration The state information of , S(·) is the function describing the sensitivity equation, Q 1 , Q 2 , Q 3 , Q 4 respectively represent the function values of the four nodes in the integration process of the Runge-Kutta method.

步骤3):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解目标函数的梯度信息dJ(k)Step 3): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information dJ (k) of the objective function:

其中,Φ0(u(k),x(k)(t),tf)表示目标函数的终端约束项,L0(u(k),x(k)(t),t)表示目标函数的积分项。Among them, Φ 0 (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the objective function, and L 0 (u (k) ,x (k) (t),t) represents the objective function integral item.

步骤4):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解约束条件的梯度信息g(k)Step 4): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information g (k) of the constraints:

其中,Φj(u(k),x(k)(t),tf)表示第j个约束条件函数的终端约束项,Lj(u(k),x(k)(t),t)表示第j个约束条件函数的积分项,m表示约束条件的个数。Among them, Φ j (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the jth constraint function, L j (u (k) ,x (k) (t),t ) represents the integral term of the jth constraint function, and m represents the number of constraints.

所述的NLP问题求解模块,采用如下步骤实现:Described NLP problem solving module adopts the following steps to realize:

步骤1):如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的速度控制策略转换为牵引电机的控制指令输出;如果收敛性不满足,则继续执行步骤2);Step 1): If the absolute value difference between the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration is less than the accuracy tol, it is judged that the convergence is satisfied, and this iteration The speed control strategy of the traction motor is converted into the control command output of the traction motor; if the convergence is not satisfied, continue to perform step 2);

步骤2):用u(k),J(k),dJ(k),g(k)的值覆盖上一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k增加1;Step 2): Cover the last iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and increase the number of iterations k by 1;

步骤3):将电机速度控制策略u(k-1)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J(k-1)Step 3): take the motor speed control strategy u (k-1) as a certain point in the vector space, denoted as P 1 , and the corresponding objective function value of P 1 is J (k-1) ;

步骤4):从点P1出发,根据选用的NLP算法和点P1处的目标函数梯度信息dJ(k-1)和约束条件梯度信息g(k-1),构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)Step 4): Starting from point P 1 , according to the selected NLP algorithm and the gradient information dJ (k-1) of the objective function at point P 1 and the gradient information g (k-1) of constraints, construct a search vector space Optimal direction d (k-1) and step size α (k-1) ;

步骤5):通过式u(k)=u(k-1)(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2Step 5): Construct another point P 2 corresponding to u (k) in the vector space through the formula u (k) =u (k-1)(k-1) d (k-1) ;

步骤6):采用寻优校正得到向量空间中对应u(k)的另外一个点P3,使得P3对应的目标函数值J(k)比J(k-1)更优。Step 6): Using optimization correction to obtain another point P 3 corresponding to u (k) in the vector space, so that the objective function value J (k) corresponding to P 3 is better than J (k-1) .

本发明的有益效果主要表现在:基于控制向量参数化方法的桥式集装箱起重机摆动最优控制系统,能够计算出桥式集装箱起重机最优的控制策略。采用四级五阶龙格库塔方法求解灵敏度轨迹方程组,可以得到较为精确的结果。给出了该问题的梯度信息的求解方法,可以加快问题的收敛速度,减少桥式集装箱起重机摆动的最优策略的计算时间。本发明可以实现桥式集装箱起重机集装箱装卸过程摆动能量最小,提港口高集装箱装卸的安全性和效率。The beneficial effects of the present invention are mainly manifested in that the optimal control system for the swing of the bridge container crane based on the control vector parameterization method can calculate the optimal control strategy of the bridge container crane. The fourth-order and fifth-order Runge-Kutta method is used to solve the sensitivity trajectory equations, and more accurate results can be obtained. The solution method of the gradient information of the problem is given, which can speed up the convergence speed of the problem and reduce the calculation time of the optimal strategy for the swing of the bridge container crane. The invention can realize the minimum swing energy in the container loading and unloading process of the bridge type container crane, and improve the safety and efficiency of container loading and unloading at port heights.

附图说明Description of drawings

图1是本发明的功能示意图;Fig. 1 is a functional schematic diagram of the present invention;

图2是本发明的结构示意图;Fig. 2 is a structural representation of the present invention;

图3是本发明DCS内部模块结构图;Fig. 3 is a DCS internal module structure diagram of the present invention;

图4是对实施例1获得的牵引电机速度控制策略图;Fig. 4 is the traction motor speed control strategy figure obtained to embodiment 1;

图5是图4中牵引电机速度控制策略对应的集装箱摆动角度变化图。Fig. 5 is a diagram of container swing angle changes corresponding to the traction motor speed control strategy in Fig. 4 .

具体实施方式Detailed ways

如图1所示,港口集装箱集起重机的装卸过程的模型可以描述为:As shown in Figure 1, the model of the loading and unloading process of the port container set crane can be described as:

其中,t表示时间,u(t)表示由各方向速度分量组成的速度向量;x(t)表示装卸过程的状态信息;F(x(t),u(t),t)是根据起重机的物理学原理建立的微分方程组。从该描述可以看出,集装箱的装卸过程可以用数学上的一组微分方程组来表示。Among them, t represents time, u(t) represents the velocity vector composed of velocity components in various directions; x(t) represents the status information of the loading and unloading process; F(x(t),u(t),t) is according to the A system of differential equations established by the principles of physics. It can be seen from the description that the loading and unloading process of the container can be expressed by a set of differential equations in mathematics.

本系统的控制目标是使集装箱在装卸过程中摆动能量最小,因此目标函数表示为:The control objective of this system is to minimize the swing energy of the container during loading and unloading, so the objective function is expressed as:

其中,t0表示装卸过程的起始时间,tf表示控制室工程师指定的装卸过程终值时间,J表示目标函数,L0(x(t),u(t),t)表示集装箱装卸过程中目标函数中的摆动角函数。Among them, t 0 represents the starting time of the loading and unloading process, t f represents the final value time of the loading and unloading process specified by the engineer in the control room, J represents the objective function, L 0 (x(t),u(t),t) represents the container loading and unloading process The swing angle function in the objective function in .

同时,桥式集装箱起重机受牵引电机性能参数影响和集装箱移动达到位置要求,存在约束条件,其函数表达为:At the same time, the overhead container crane is affected by the performance parameters of the traction motor and the container moves to meet the position requirements, there are constraints, and its function is expressed as:

其中,E(x(t),u(t),t)表示集装箱达到位置约束函数,G(x(t),u(t),t)表示牵引电机性能参数约束函数。因此,桥式集装箱起重机摆动能量最小控制问题可以最终表示为:Among them, E(x(t), u(t), t) represents the container reach position constraint function, and G(x(t), u(t), t) represents the traction motor performance parameter constraint function. Therefore, the minimum swing energy control problem of the bridge container crane can be finally expressed as:

本发明解决其技术问题所采用的技术方案是:在分散控制系统(DCS)中集成了最优控制算法,并以此为基础构建了一种最优控系统。The technical scheme adopted by the present invention to solve the technical problem is: an optimal control algorithm is integrated in a distributed control system (DCS), and an optimal control system is constructed on the basis of this.

所述的控制系统的完整结构如图2所示,包括集装箱位置传感器21、模数转换器22、现场总线网络23、DCS24、控制室显示25、数模转换器26、牵引电机控制器27、牵引电机28。The complete structure of the control system is shown in Figure 2, including container position sensor 21, analog-to-digital converter 22, fieldbus network 23, DCS24, control room display 25, digital-to-analog converter 26, traction motor controller 27, Traction motor 28.

所述的系统的运行过程包括:The operating process of the system includes:

步骤1):控制室工程师指定集装箱需要到达的位置坐标、装卸过程时间限制以及牵引电机的性能参数约束;Step 1): The engineer in the control room specifies the location coordinates that the container needs to reach, the time limit of the loading and unloading process, and the performance parameter constraints of the traction motor;

步骤2):DCS执行内部最优控制算法,获得使集装箱装卸过程摆动能量最小的牵引电机速度控制策略;Step 2): DCS executes the internal optimal control algorithm to obtain the traction motor speed control strategy that minimizes the swing energy during container loading and unloading;

步骤3):DCS将得到的电机速度控制策略转换为牵引电机的控制指令,通过现场总线网络发送给牵引电机控制器前段的数模转换器,使牵引电机控制器根据收到的控制指令控制牵引电机执行相应动作;Step 3): The DCS converts the obtained motor speed control strategy into the control command of the traction motor, and sends it to the digital-to-analog converter in the front section of the traction motor controller through the field bus network, so that the traction motor controller controls the traction motor according to the received control command. The motor performs the corresponding action;

步骤4):集装箱位置传感器实时采集集装箱的位置信息,经过经过模数转换后用现场总线网络回送给DCS,并在主控室内显示,使工程师随时监控装卸过程。Step 4): The container position sensor collects the position information of the container in real time, and sends it back to DCS through the field bus network after analog-to-digital conversion, and displays it in the main control room, so that engineers can monitor the loading and unloading process at any time.

所述的DCS,包括信息采集模块、初始化模块、ODE求解模块、梯度计算模块、NLP问题求解模块、控制指令输出模块。其中信息采集模块包括集装箱起止位置采集、性能指标采集、速度控制约束采集三个子模块,NLP问题求解模块包括寻优方向计算、寻优步长计算、NLP收敛性判断三个子模块。The DCS includes an information collection module, an initialization module, an ODE solution module, a gradient calculation module, an NLP problem solution module, and a control instruction output module. Among them, the information collection module includes three sub-modules of container starting and ending position collection, performance index collection, and speed control constraint collection. The NLP problem solving module includes three sub-modules: optimization direction calculation, optimization step calculation, and NLP convergence judgment.

所述的DCS,包括信息采集模块、初始化模块、ODE快速求解模块、梯度求解模块、非线性规划问题求解模块、控制指令输出模块。其中信息采集模块包括集装箱位置采集、牵引电机性能约束采集、装卸时间设置采集三个子模块,NLP问题求解模块包括寻优方向求解、寻优步长求解、寻优校正、NLP收敛性判断四个子模块。The DCS includes an information collection module, an initialization module, an ODE fast solution module, a gradient solution module, a nonlinear programming problem solution module, and a control command output module. Among them, the information collection module includes three sub-modules: container position collection, traction motor performance constraint collection, loading and unloading time setting collection, and the NLP problem solving module includes four sub-modules: optimization direction solution, optimization step size solution, optimization correction, and NLP convergence judgment .

所述的DCS执行内部最优控制算法得到使集装箱装卸过程摆动角最小的牵引电机速度控制策略,运行步骤如下:The DCS executes an internal optimal control algorithm to obtain a traction motor speed control strategy that minimizes the swing angle of the container loading and unloading process, and the operation steps are as follows:

步骤1):信息采集模块31获取集装箱的初始位置和工程师指定的到达位置、牵引电机性能约束和装卸时间设置;Step 1): the information collection module 31 acquires the initial position of the container and the arrival position specified by the engineer, the performance constraints of the traction motor and the setting of loading and unloading time;

步骤2):初始化模块32开始运行,采用分段常量参数化,设置装卸过程的分段数NE、牵引电机控制量的参数化向量的初始猜测值u(k),设定计算精度tol,将迭代次数k置零;Step 2): The initialization module 32 starts to run, adopts segment constant parameterization, sets the segment number NE of the loading and unloading process, the initial guess value u (k) of the parameterized vector of the traction motor control variable, sets the calculation accuracy tol, and sets The number of iterations k is set to zero;

步骤3):通过ODE快速求解模块33获取本次迭代的状态信息x(k)(t)和目标函数值J(k)Step 3): Obtain the state information x (k) (t) and the objective function value J (k) of this iteration through the ODE fast solution module 33 .

步骤4):通过梯度求解模块34获取本次迭代目标函数梯度信息dJ(k)和约束条件梯度信息g(k);当k=0时跳过步骤5)直接执行步骤7);Step 4): obtain this iterative objective function gradient information dJ (k) and constraint condition gradient information g (k) by gradient solving module 34; Skip step 5) when k=0) and directly execute step 7);

步骤5):NLP问题求解模块35运行,通过NLP收敛性判断模块进行收敛性判断,如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的牵引电机速度控制策略转换为电机的控制指令输出;如果收敛性不满足,则继续执行步骤6);Step 5): The NLP problem solving module 35 runs, and the convergence judgment is performed by the NLP convergence judgment module. If the absolute value of the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration If the value difference is less than the precision tol, it is judged that the convergence is satisfied, and the traction motor speed control strategy of this iteration is converted into the control command output of the motor; if the convergence is not satisfied, then continue to perform step 6);

步骤6):用u(k),J(k),dJ(k),g(k)的值覆盖上一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k加1;Step 6): Cover the last iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and add 1 to the number of iterations k;

步骤7):NLP问题求解模块35利用在步骤3)和4)中获得的目标函数值和梯度信息,求解寻优方向和寻优步长,并进行寻优修正,获得比u(k-1)更优的新的速度控制策略u(k)。该步骤执行完成后再次跳转至步骤3),直至NLP收敛性判断模块满足为止。Step 7): The NLP problem solving module 35 uses the objective function value and gradient information obtained in steps 3) and 4) to solve the optimization direction and the optimization step size, and perform optimization correction to obtain the ratio u (k-1 ) A better new speed control strategy u (k) . After this step is executed, jump to step 3) again until the NLP convergence judgment module is satisfied.

所述的ODE快速求解模块,采用的是四级五阶龙格库塔方法,求解公式为:The described ODE fast solution module adopts the fourth-level fifth-order Runge-Kutta method, and the solution formula is:

其中,t表示时间,ti表示龙格库塔方法选择的积分时刻,h为积分步长,F(·)是描述状态微分方程的函数,K1、K2、K3、K4分别表示龙格库塔法积分过程中的4个节点的函数值,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,Among them, t represents the time, t i represents the integration time selected by the Runge-Kutta method, h is the integration step size, F(·) is the function describing the state differential equation, K 1 , K 2 , K 3 , K 4 represent The function values of the four nodes in the integration process of the Runge-Kutta method, x (k) (t i ) represents the state information of the container at the time t i in the k iteration,

所述的梯度求解模块,采用灵敏度轨迹方程法:The gradient solving module adopts the sensitivity trajectory equation method:

步骤1):定义第k次迭代的灵敏度轨迹方程Γ(k)(t)为:Step 1): Define the sensitivity trajectory equation Γ (k) (t) of the kth iteration as:

Γ(k)(t)的求解公式为:The solution formula of Γ (k) (t) is:

其中,t表示时间,表示第k次迭代中灵敏度轨迹方程对于时间t的导数,F(u(k),x(k)(t),t)是描述状态微分方程的函数,Γ(k)(t0)表示灵敏度轨迹方程在第k次迭代时的初始时刻状态值,x0表示状态微分方程函数的初始时刻状态值。where t represents time, Indicates the derivative of the sensitivity trajectory equation with respect to time t in the kth iteration, F(u (k) ,x (k) (t),t) is a function describing the state differential equation, Γ (k) (t 0 ) represents the sensitivity The initial moment state value of the trajectory equation at the kth iteration, x 0 represents the initial moment state value of the state differential equation function.

步骤2):采用四级五阶龙格库塔方法求解灵敏度轨迹方程Γ(k)(t)在各积分时刻的值,求解公式为:Step 2): Using the fourth-level and fifth-order Runge-Kutta method to solve the value of the sensitivity trajectory equation Γ (k) (t) at each integration time, the solution formula is:

其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,h为积分步长,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,S(·)是描述灵敏度方程的函数,Q1、Q2、Q3、Q4分别表示龙格库塔法积分过程中的4个节点的函数值。Among them, t represents the time, t i represents a certain time point in the control process selected by the Runge-Kutta method, h is the integral step size, x (k) (t i ) represents the container at the time t i in the k iteration The state information of , S(·) is the function describing the sensitivity equation, Q 1 , Q 2 , Q 3 , Q 4 respectively represent the function values of the four nodes in the integration process of the Runge-Kutta method.

步骤3):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解目标函数的梯度信息dJ(k)Step 3): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information dJ (k) of the objective function:

其中,Φ0(u(k),x(k)(t),tf)表示目标函数的终端约束项,L0(u(k),x(k)(t),t)表示目标函数的积分项。Among them, Φ 0 (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the objective function, and L 0 (u (k) ,x (k) (t),t) represents the objective function integral item.

步骤4):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解约束条件的梯度信息g(k)Step 4): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information g (k) of the constraints:

其中,Φj(u(k),x(k)(t),tf)表示第j个约束条件函数的终端约束项,Lj(u(k),x(k)(t),t)表示第j个约束条件函数的积分项,m表示约束条件的个数。Among them, Φ j (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the jth constraint function, L j (u (k) ,x (k) (t),t ) represents the integral term of the jth constraint function, and m represents the number of constraints.

所述的NLP问题求解模块,采用如下步骤实现:Described NLP problem solving module adopts the following steps to realize:

步骤1):如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的速度控制策略转换为牵引电机的控制指令输出;如果收敛性不满足,则继续执行步骤2);Step 1): If the absolute value difference between the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration is less than the accuracy tol, it is judged that the convergence is satisfied, and this iteration The speed control strategy of the traction motor is converted into the control command output of the traction motor; if the convergence is not satisfied, continue to perform step 2);

步骤2):用u(k),J(k),dJ(k),g(k)的值覆盖上一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k增加1;Step 2): Cover the last iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and increase the number of iterations k by 1;

步骤3):将电机速度控制策略u(k-1)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J(k-1)Step 3): take the motor speed control strategy u (k-1) as a certain point in the vector space, denoted as P 1 , and the corresponding objective function value of P 1 is J (k-1) ;

步骤4):从点P1出发,根据选用的NLP算法和点P1处的目标函数梯度信息dJ(k-1)和约束条件梯度信息g(k-1),构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)Step 4): Starting from point P 1 , according to the selected NLP algorithm and the gradient information dJ (k-1) of the objective function at point P 1 and the gradient information g (k-1) of constraints, construct a search vector space Optimal direction d (k-1) and step size α (k-1) ;

步骤5):通过式u(k)=u(k-1)(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2Step 5): Construct another point P 2 corresponding to u (k) in the vector space through the formula u (k) =u (k-1)(k-1) d (k-1) ;

步骤6):采用寻优校正得到向量空间中对应u(k)的另外一个点P3,使得P3对应的目标函数值J(k)比J(k-1)更优。Step 6): Using optimization correction to obtain another point P 3 corresponding to u (k) in the vector space, so that the objective function value J (k) corresponding to P 3 is better than J (k-1) .

实施例1Example 1

用桥式起重机将集装箱在指定的时间范围内从货轮装卸到码头的转运货车上,要求在装卸过程中集装箱的摆动能量最小,结合起重机的性能约束条件得到该问题的数学模型为:Using bridge crane to load and unload the container from the freighter to the transfer truck at the terminal within the specified time range, the swing energy of the container is required to be the minimum during the loading and unloading process. Combined with the performance constraints of the crane, the mathematical model of this problem is obtained as follows:

其中,J表示要最小化的集装箱的摆动能量目标函数,x1(t)表示集装箱的水平位置,x2(t)表示集装箱的垂直位置,x3(t)表示集装箱的摆动角度,x4(t)表示起重机的水平速度,x5(t)是起重机的垂直速度,x6(t)是集装箱的摆动角速度,u1(t)和u2(t)表示起重机水平和垂直方向的速度控制量。实施例1中,控制室工程师要求在10秒内集装箱从位置(0,22)移动到(10,14),为了获得使目标函数最小化的牵引电机速度控制策略,DCS运行最优控制算法,其运行过程如图3所示,执行步骤为:where J represents the swing energy objective function of the container to be minimized, x 1 (t) represents the horizontal position of the container, x 2 (t) represents the vertical position of the container, x 3 (t) represents the swing angle of the container, and x 4 (t) represents the horizontal speed of the crane, x 5 (t) is the vertical speed of the crane, x 6 (t) is the swing angular velocity of the container, u 1 (t) and u 2 (t) represent the speed of the crane in the horizontal and vertical directions Control amount. In Example 1, the engineer in the control room requires the container to move from position (0,22) to (10,14) within 10 seconds. In order to obtain the traction motor speed control strategy that minimizes the objective function, the DCS runs the optimal control algorithm, Its operation process is shown in Figure 3, and the execution steps are as follows:

步骤1):控制室工程师将集装箱的初始位置x(t0)=[0,22,0,0,0,0]、指定到达位置x(tf)=[10,14,0,0,0,0]、装卸时间设置tf=10和牵引电机的性能约束-2.5≤x4(t)≤2.5,-1≤x5(t)≤1,-2.83374≤u1(t)≤2.83374,-0.80865≤u2(t)≤0.71265输入信息采集模块31;Step 1): The engineer in the control room sets the initial position x(t 0 )=[0,22,0,0,0,0] of the container, and the designated arrival position x(t f )=[10,14,0,0, 0,0], loading and unloading time setting t f =10 and traction motor performance constraints -2.5≤x 4 (t)≤2.5, -1≤x 5 (t)≤1, -2.83374≤u 1 (t)≤2.83374 , -0.80865≤u 2 (t)≤0.71265 input information collection module 31;

步骤2):初始化模块32开始运行,采用分段常量参数化,设置装卸过程的分段数为NE=50、牵引电机控制量的参数化向量的初始猜测值u(k)为0.5,设定计算精度tol为10-4,将迭代次数k置零;Step 2): The initialization module 32 starts to run, adopts segment constant parameterization, sets the segment number of the loading and unloading process as NE=50, and the initial guess value u (k) of the parameterization vector of the traction motor control variable is 0.5, sets The calculation accuracy tol is 10 -4 , and the number of iterations k is set to zero;

步骤3):通过ODE快速求解模块33获取本次迭代的状态信息x(k)(t)和目标函数值J(k)Step 3): Obtain the state information x (k) (t) and the objective function value J (k) of this iteration through the ODE fast solution module 33 .

步骤4):通过梯度求解模块34获取本次迭代目标函数梯度信息dJ(k)和约束条件梯度信息g(k);当k=0时跳过步骤5)直接执行步骤7);Step 4): obtain this iterative objective function gradient information dJ (k) and constraint condition gradient information g (k) by gradient solving module 34; Skip step 5) when k=0) and directly execute step 7);

步骤5):NLP问题求解模块35运行,通过NLP收敛性判断模块进行收敛性判断,如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度10-4,则判断收敛性满足,并将本次迭代的牵引电机速度控制策略转换为电机的控制指令输出;如果收敛性不满足,则继续执行步骤6);Step 5): The NLP problem solving module 35 runs, and the convergence judgment is performed by the NLP convergence judgment module. If the absolute value of the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration If the value difference is less than the accuracy of 10 -4 , it is judged that the convergence is satisfied, and the traction motor speed control strategy of this iteration is converted into the motor control command output; if the convergence is not satisfied, continue to step 6);

步骤6):用u(k),J(k),dJ(k),g(k)的值覆盖上一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k加1;Step 6): Cover the last iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and add 1 to the number of iterations k;

步骤7):NLP问题求解模块35利用在步骤3)和4)中获得的目标函数值和梯度信息,求解寻优方向和寻优步长,并进行寻优修正,获得比u(k-1)更优的新的速度控制策略u(k)。该步骤执行完成后再次跳转至步骤3),直至NLP收敛性判断模块满足为止。Step 7): The NLP problem solving module 35 uses the objective function value and gradient information obtained in steps 3) and 4) to solve the optimization direction and the optimization step size, and perform optimization correction to obtain the ratio u (k-1 ) A better new speed control strategy u (k) . After this step is executed, jump to step 3) again until the NLP convergence judgment module is satisfied.

所述的ODE快速求解模块,采用的是四级五阶龙格库塔方法,求解公式为:The described ODE fast solution module adopts the fourth-level fifth-order Runge-Kutta method, and the solution formula is:

其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,F(·)是描述状态微分方程的函数,K1、K2、K3、K4分别表示龙格库塔法积分过程中的4个节点的函数值,积分步长h的确定公式为:Among them, t represents time, t i represents a certain time point in the control process selected by the Runge-Kutta method, x (k) (t i ) represents the state information of the container at the time t i in the k iteration, F( ) is a function describing the state differential equation, K 1 , K 2 , K 3 , and K 4 respectively represent the function values of the four nodes in the integration process of the Runge-Kutta method, and the formula for determining the integration step size h is:

ti+1表示龙格库塔方法选择控制过程中ti的后一时间节点。t i+1 represents the next time node of t i in the selection control process of the Runge-Kutta method.

所述的梯度求解模块,采用灵敏度轨迹方程法:The gradient solving module adopts the sensitivity trajectory equation method:

步骤1):定义第k次迭代的灵敏度轨迹方程Γ(k)(t)为:Step 1): Define the sensitivity trajectory equation Γ (k) (t) of the kth iteration as:

Γ(k)(t)的求解公式为:The solution formula of Γ (k) (t) is:

其中,t表示时间,表示第k次迭代中灵敏度轨迹方程对于时间t的导数,F(u(k),x(k)(t),t)是描述状态微分方程的函数,Γ(k)(t0)表示灵敏度轨迹方程在第k次迭代时的初始时刻状态值,x0表示状态微分方程函数的初始时刻状态值。where t represents time, Indicates the derivative of the sensitivity trajectory equation with respect to time t in the kth iteration, F(u (k) ,x (k) (t),t) is a function describing the state differential equation, Γ (k) (t 0 ) represents the sensitivity The initial moment state value of the trajectory equation at the kth iteration, x 0 represents the initial moment state value of the state differential equation function.

步骤2):采用四级五阶龙格库塔方法求解灵敏度轨迹方程Γ(k)(t)在各积分时刻的值,求解公式为:Step 2): Using the fourth-level and fifth-order Runge-Kutta method to solve the value of the sensitivity trajectory equation Γ (k) (t) at each integration time, the solution formula is:

其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,h为积分步长,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,S(·)是描述灵敏度方程的函数,Q1、Q2、Q3、Q4分别表示龙格库塔法积分过程中的4个节点的函数值。Among them, t represents the time, t i represents a certain time point in the control process selected by the Runge-Kutta method, h is the integral step size, x (k) (t i ) represents the container at the time t i in the k iteration The state information of , S(·) is the function describing the sensitivity equation, Q 1 , Q 2 , Q 3 , Q 4 respectively represent the function values of the four nodes in the integration process of the Runge-Kutta method.

步骤3):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解目标函数的梯度信息dJ(k)Step 3): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information dJ (k) of the objective function:

其中,Φ0(u(k),x(k)(t),tf)表示目标函数的终端约束项,L0(u(k),x(k)(t),t)表示目标函数的积分项。Among them, Φ 0 (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the objective function, and L 0 (u (k) ,x (k) (t),t) represents the objective function integral item.

步骤4):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解约束条件的梯度信息g(k)Step 4): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information g (k) of the constraints:

其中,Φj(u(k),x(k)(t),tf)表示第j个约束条件函数的终端约束项,Lj(u(k),x(k)(t),t)表示第j个约束条件函数的积分项,m表示约束条件的个数。Among them, Φ j (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the jth constraint function, L j (u (k) ,x (k) (t),t ) represents the integral term of the jth constraint function, and m represents the number of constraints.

所述的NLP问题求解模块,采用如下步骤实现:Described NLP problem solving module adopts the following steps to realize:

步骤1):如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的速度控制策略转换为牵引电机的控制指令输出;如果收敛性不满足,则继续执行步骤2);Step 1): If the absolute value difference between the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration is less than the accuracy tol, it is judged that the convergence is satisfied, and this iteration The speed control strategy of the traction motor is converted into the control command output of the traction motor; if the convergence is not satisfied, continue to perform step 2);

步骤2):用u(k),J(k),dJ(k),g(k)的值覆盖上一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k增加1;Step 2): Cover the last iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and increase the number of iterations k by 1;

步骤3):将电机速度控制策略u(k-1)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J(k-1)Step 3): take the motor speed control strategy u (k-1) as a certain point in the vector space, denoted as P 1 , and the corresponding objective function value of P 1 is J (k-1) ;

步骤4):从点P1出发,根据选用的NLP算法和点P1处的目标函数梯度信息dJ(k-1)和约束条件梯度信息g(k-1),构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)Step 4): Starting from point P 1 , according to the selected NLP algorithm and the gradient information dJ (k-1) of the objective function at point P 1 and the gradient information g (k-1) of constraints, construct a search vector space Optimal direction d (k-1) and step size α (k-1) ;

步骤5):通过式u(k)=u(k-1)(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2Step 5): Construct another point P 2 corresponding to u (k) in the vector space through the formula u (k) =u (k-1)(k-1) d (k-1) ;

步骤6):采用寻优校正得到向量空间中对应u(k)的另外一个点P3,使得P3对应的目标函数值J(k)比J(k-1)更优。Step 6): Using optimization correction to obtain another point P 3 corresponding to u (k) in the vector space, so that the objective function value J (k) corresponding to P 3 is better than J (k-1) .

最后,DCS将通过连续快速响应方法获得的速度控制策略转换为电机的控制指令,通过现场总线网络发送给电机控制器,使执行电机执行相应动作,同时用位置传感器实时采集集装箱的位置信息并回送给DCS,使控制室工程师随时掌握装卸过程。Finally, DCS converts the speed control strategy obtained through the continuous rapid response method into motor control instructions, and sends them to the motor controller through the field bus network to make the execution motor perform corresponding actions. To DCS, so that the control room engineer can grasp the loading and unloading process at any time.

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in conjunction with specific preferred embodiments, and it cannot be assumed that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the invention, some simple deduction or replacement can also be made, which should be regarded as belonging to the protection scope of the present invention.

Claims (1)

1.一种桥式集装箱起重机摆动最优控制系统,能自动控制桥式集装箱起重机的装卸,使集装箱在移动过程中摆动能量最小,以提港口高集装箱装卸的安全性和效率。其特征在于:由牵引电机、集装箱位置传感器、模数转换器、数模转换器、现场总线网络、分散控制系统(DCS)、控制室显示、牵引电机控制器构成。所述控制系统的运行过程包括:1. An optimal control system for the swinging of a bridge-type container crane, which can automatically control the loading and unloading of the bridge-type container crane, so as to minimize the swing energy of the container during the moving process, so as to improve the safety and efficiency of container loading and unloading at the port. It is characterized in that it is composed of a traction motor, a container position sensor, an analog-to-digital converter, a digital-to-analog converter, a field bus network, a distributed control system (DCS), a display in a control room, and a traction motor controller. The operating process of the control system includes: 步骤1):控制室工程师指定集装箱需要到达的位置坐标、装卸过程时间限制以及牵引电机的性能参数约束;Step 1): The engineer in the control room specifies the location coordinates that the container needs to reach, the time limit of the loading and unloading process, and the performance parameter constraints of the traction motor; 步骤2):DCS执行内部最优控制算法,获得使集装箱装卸过程摆动角最小的牵引电机速度控制策略;Step 2): DCS executes the internal optimal control algorithm to obtain the traction motor speed control strategy that minimizes the swing angle during container loading and unloading; 步骤3):DCS将得到的电机速度控制策略转换为牵引电机的控制指令,通过现场总线网络发送给牵引电机控制器前段的数模转换器,使牵引电机控制器根据收到的控制指令控制牵引电机执行相应动作;Step 3): The DCS converts the obtained motor speed control strategy into the control command of the traction motor, and sends it to the digital-to-analog converter in the front section of the traction motor controller through the field bus network, so that the traction motor controller controls the traction motor according to the received control command. The motor performs the corresponding action; 步骤4):集装箱位置传感器实时采集集装箱的位置信息,经过经过模数转换后用现场总线网络回送给DCS,并在主控室内显示,使工程师随时监控装卸过程。Step 4): The container position sensor collects the position information of the container in real time, and sends it back to DCS through the field bus network after analog-to-digital conversion, and displays it in the main control room, so that engineers can monitor the loading and unloading process at any time. 所述的DCS,包括信息采集模块、初始化模块、微分代数方程组(Ordinarydifferential equations,简称ODE)快速求解模块、梯度求解模块、非线性规划问题求解模块、控制指令输出模块。其中信息采集模块包括集装箱位置采集、牵引电机性能约束采集、装卸时间设置采集三个子模块,非线性规划(Non-linear Programming,简称NLP)问题求解模块包括寻优方向求解、寻优步长求解、寻优校正、NLP收敛性判断四个子模块。The DCS includes an information collection module, an initialization module, a fast solution module for differential algebraic equations (Ordinarydifferential equations, ODE for short), a gradient solution module, a nonlinear programming problem solution module, and a control command output module. The information acquisition module includes three sub-modules: container position acquisition, traction motor performance constraint acquisition, and loading and unloading time setting acquisition. There are four sub-modules for optimization correction and NLP convergence judgment. 所述的DCS执行内部最优控制算法得到使集装箱装卸过程摆动能量最小的牵引电机速度控制策略,运行步骤如下:The DCS implements an internal optimal control algorithm to obtain a traction motor speed control strategy that minimizes the swing energy in the container loading and unloading process, and the operation steps are as follows: 步骤1):信息采集模块31获取集装箱的初始位置和工程师指定的到达位置、牵引电机性能约束和装卸时间设置;Step 1): the information collection module 31 acquires the initial position of the container and the arrival position specified by the engineer, the performance constraints of the traction motor and the setting of loading and unloading time; 步骤2):初始化模块32开始运行,采用分段常量参数化,设置装卸过程的分段数NE、牵引电机控制量的参数化向量的初始猜测值u(k),设定计算精度tol,将迭代次数k置零;Step 2): The initialization module 32 starts to run, adopts segment constant parameterization, sets the segment number NE of the loading and unloading process, the initial guess value u (k) of the parameterization vector of the traction motor control variable, sets the calculation accuracy tol, and sets The number of iterations k is set to zero; 步骤3):通过ODE快速求解模块33获取本次迭代的状态信息x(k)(t)和目标函数值J(k)Step 3): Obtain the state information x (k) (t) and the objective function value J (k) of this iteration through the ODE fast solution module 33 . 步骤4):通过梯度求解模块34获取本次迭代目标函数梯度信息dJ(k)和约束条件梯度信息g(k);当k=0时跳过步骤5)直接执行步骤7);Step 4): obtain this iterative objective function gradient information dJ (k) and constraint condition gradient information g (k) by gradient solving module 34; Skip step 5) when k=0) and directly execute step 7); 步骤5):NLP问题求解模块35运行,通过NLP收敛性判断模块进行收敛性判断,如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的牵引电机速度控制策略转换为电机的控制指令输出;如果收敛性不满足,则继续执行步骤6);Step 5): The NLP problem solving module 35 runs, and the convergence judgment is performed by the NLP convergence judgment module. If the absolute value of the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration If the value difference is less than the precision tol, it is judged that the convergence is satisfied, and the traction motor speed control strategy of this iteration is converted into the control command output of the motor; if the convergence is not satisfied, then continue to perform step 6); 步骤6):用u(k),J(k),dJ(k),g(k)的值覆盖前一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k加1;Step 6): Overwrite the previous iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and add 1 to the number of iterations k; 步骤7):NLP问题求解模块35利用在步骤3)和4)中获得的目标函数值和梯度信息,求解寻优方向和寻优步长,并进行寻优修正,获得比u(k-1)更优的新的速度控制策略u(k)。该步骤执行完成后再次跳转至步骤3),直至NLP收敛性判断模块满足为止。Step 7): The NLP problem solving module 35 uses the objective function value and gradient information obtained in steps 3) and 4) to solve the optimization direction and the optimization step size, and perform optimization correction to obtain the ratio u (k-1 ) A better new speed control strategy u (k) . After this step is executed, jump to step 3) again until the NLP convergence judgment module is satisfied. 所述的ODE快速求解模块,采用的是四级五阶龙格库塔方法,求解公式为:The described ODE fast solution module adopts the fourth-level fifth-order Runge-Kutta method, and the solution formula is: <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>F</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>F</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>F</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mn>2</mn> </msub> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>K</mi> <mn>4</mn> </msub> <mo>=</mo> <mi>F</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>K</mi> <mn>3</mn> </msub> <mi>h</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>h</mi> <mn>6</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>K</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>K</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>K</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msub><mi>K</mi><mn>1</mn></msub><mo>=</mo><mi>F</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>K</mi><mn>2</mn></msub><mo>=</mo><mi>F</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>K</mi><mn>1</mn></msub><mi>h</mi><mo>/</mo><mn>2</mn><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>/</mo><mn>2</mn><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>K</mi><mn>3</mn></msub><mo>=</mo><mi>F</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>K</mi><mn>2</mn></msub><mi>h</mi><mo>/</mo><mn>2</mn><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>/</mo><mn>2</mn><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>K</mi><mn>4</mn></msub><mo>=</mo><mi>F</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>K</mi><mn>3</mn></msub><mi>h</mi><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mi>h</mi><mn>6</mn></mfrac><mrow><mo>(</mo><msub><mi>K</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>K</mi><mn>2</mn></msub><mo>+</mo><mn>2</mn><msub><mi>K</mi><mn>3</mn></msub><mo>+</mo><msub><mi>K</mi><mn>4</mn></msub><mo>)</mo></mrow></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 其中,t表示时间,ti表示龙格库塔方法选择的积分时刻,h为积分步长,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,F(·)是描述状态微分方程的函数,K1、K2、K3、K4分别表示龙格库塔法积分过程中的4个节点的函数值。Among them, t represents the time, t i represents the integration time selected by the Runge-Kutta method, h is the integration step size, x (k) (t i ) represents the state information of the container at the time t i in the k iteration, F (·) is a function describing the state differential equation, and K 1 , K 2 , K 3 , and K 4 respectively represent the function values of the four nodes in the integration process of the Runge-Kutta method. 所述的梯度求解模块,采用灵敏度轨迹方程法:The gradient solving module adopts the sensitivity trajectory equation method: 步骤1):定义第k次迭代的灵敏度轨迹方程Γ(k)(t)为:Step 1): Define the sensitivity trajectory equation Γ (k) (t) of the kth iteration as: <mrow> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>&amp;part;</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow> Γ(k)(t)的求解公式为:The solution formula of Γ (k) (t) is: <mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mover> <mi>&amp;Gamma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>S</mi> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msup><mover><mi>&amp;Gamma;</mi><mo>&amp;CenterDot;</mo></mover><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>S</mi><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>&amp;part;</mo><mi>F</mi><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mo>&amp;part;</mo><mi>F</mi><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>x</mi><mn>0</mn></mrow>msub></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 其中,t表示时间,表示第k次迭代中灵敏度轨迹方程对于时间t的导数,F(u(k),x(k)(t),t)是描述状态微分方程的函数,Γ(k)(t0)表示灵敏度轨迹方程在第k次迭代时的初始时刻状态值,x0表示状态微分方程函数的初始时刻状态值。where t represents time, Indicates the derivative of the sensitivity trajectory equation with respect to time t in the kth iteration, F(u (k) ,x (k) (t),t) is a function describing the state differential equation, Γ (k) (t 0 ) represents the sensitivity The initial moment state value of the trajectory equation at the kth iteration, x 0 represents the initial moment state value of the state differential equation function. 步骤2):采用四级五阶龙格库塔方法求解灵敏度轨迹方程Γ(k)(t)在各积分时刻的值,求解公式为:Step 2): Using the fourth-level and fifth-order Runge-Kutta method to solve the value of the sensitivity trajectory equation Γ (k) (t) at each integration time, the solution formula is: <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>S</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>S</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mn>3</mn> </msub> <mo>=</mo> <mi>S</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mn>2</mn> </msub> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>/</mo> <mn>2</mn> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Q</mi> <mn>4</mn> </msub> <mo>=</mo> <mi>S</mi> <mo>&amp;lsqb;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>Q</mi> <mn>3</mn> </msub> <mi>h</mi> <mo>,</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>h</mi> <mn>6</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>Q</mi> <mn>2</mn> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>Q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>Q</mi> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msub><mi>Q</mi><mn>1</mn></msub><mo>=</mo><mi>S</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>Q</mi><mn>2</mn></msub><mo>=</mo><mi>S</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>Q</mi><mn>1</mn></msub><mi>h</mi><mo>/</mo><mn>2</mn><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>/</mo><mn>2</mn><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>Q</mi><mn>3</mn></msub><mo>=</mo><mi>S</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>Q</mi><mn>2</mn></msub><mi>h</mi><mo>/</mo><mn>2</mn><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>/</mo><mn>2</mn><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>Q</mi><mn>4</mn></msub><mo>=</mo><mi>S</mi><mo>&amp;lsqb;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>Q</mi><mn>3</mn></msub><mi>h</mi><mo>,</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>&amp;rsqb;</mo></mrow></mtd></mtr><mtr><mtd><mrow><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>+</mo><mi>h</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mi>h</mi><mn>6</mn></mfrac><mrow><mo>(</mo><msub><mi>Q</mi><mn>1</mn></msub><mo>+</mo><mn>2</mn><msub><mi>Q</mi><mn>2</mn></msub><mo>+</mo><mn>2</mn><msub><mi>Q</mi><mn>3</mn></msub><mo>+</mo><msub><mi>Q</mi><mn>4</mn></msub><mo>)</mo></mrow></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow> 其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,h为积分步长,x(k)(ti)表示集装箱在第k次迭代中第ti时刻的状态信息,S(·)是描述灵敏度方程的函数,Q1、Q2、Q3、Q4分别表示龙格库塔法积分过程中的4个节点的函数值。Among them, t represents the time, t i represents a certain time point in the control process selected by the Runge-Kutta method, h is the integral step size, x (k) (t i ) represents the container at the time t i in the k iteration The state information of , S(·) is the function describing the sensitivity equation, Q 1 , Q 2 , Q 3 , Q 4 respectively represent the function values of the four nodes in the integration process of the Runge-Kutta method. 步骤3):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解目标函数的梯度信息dJ(k)Step 3): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information dJ (k) of the objective function: <mrow> <mtable> <mtr> <mtd> <mrow> <msup> <mi>dJ</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msup> <mi>J</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Phi;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Phi;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mi>E</mi> </mrow> </munderover> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </msubsup> <mo>{</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>L</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> <mo>}</mo> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msup><mi>dJ</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>=</mo><mfrac><mrow><mo>&amp;part;</mo><msup><mi>J</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>&amp;Phi;</mi><mn>0</mn></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>&amp;Phi;</mi><mn>0</mn></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mi>E</mi></mrow></munderover><msubsup><mo>&amp;Integral;</mo><msub><mi>t</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></msub><msub><mi>t</mi><mi>i</mi></msub></msubsup><mo>{</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>L</mi><mn>0</mn></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mo>mrow><mrow><mo>&amp;part;</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>L</mi><mn>0</mn></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac><mo>}</mo><mi>d</mi><mi>t</mi></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 其中,Φ0(u(k),x(k)(t),tf)表示目标函数的终端约束项,L0(u(k),x(k)(t),t)表示目标函数的积分项。Among them, Φ 0 (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the objective function, and L 0 (u (k) ,x (k) (t),t) represents the objective function integral item. 步骤4):根据得到的集装箱状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解约束条件的梯度信息g(k)Step 4): According to the obtained container state information x (k) (t) and the sensitivity trajectory equation Γ (k) (t), solve the gradient information g (k) of the constraints: <mrow> <mtable> <mtr> <mtd> <mrow> <msup> <msub> <mi>g</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Phi;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>&amp;Phi;</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mi>E</mi> </mrow> </munderover> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>t</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>t</mi> <mi>i</mi> </msub> </msubsup> <mo>{</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>L</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>L</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>,</mo> <msup> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msup> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> <mo>}</mo> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>g</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msup> <msub> <mi>g</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mrow> <msup> <msub> <mi>g</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>m</mi> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msup><msub><mi>g</mi><mi>j</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>=</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>&amp;Phi;</mi><mi>j</mi></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>&amp;Phi;</mi><mi>j</mi></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)< /mo ></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>N</mi><mi>E</mi></mrow></munderover><msubsup><mo>&amp;Integral;</mo><msub><mi>t</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></msub><msub><mi>t</mi><mi>i</mi></msub></msubsup><mo>{</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>L</mi><mi>j</mi></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></mfrac><msup><mi>&amp;Gamma;</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mrow><mo>(</mo><msub><mi>t</mi><mi>f</mi></msub><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><mo>&amp;part;</mo><msub><mi>L</mi><mi>j</mi></msub><mrow><mo>(</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>,</mo><msup><mi>x</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow><mrow><mo>&amp;part;</mo><msup><mi>u</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mfrac><mo>}</mo><mi>d</mi><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><msup><mi>g</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><msup><msub><mi>g</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mtd><mtd><mn>...</mn></mtd><mtd><mrow><msup><msub><mi>g</mi><mi>j</mi></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></mrow></mtd></mtr></mtable></mfenced><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>...</mn><mo>,</mo><mi>m</mi></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 其中,Φj(u(k),x(k)(t),tf)表示第j个约束条件函数的终端约束项,Lj(u(k),x(k)(t),t)表示第j个约束条件函数的积分项,m表示约束条件的个数。Among them, Φ j (u (k) ,x (k) (t),t f ) represents the terminal constraint term of the jth constraint function, L j (u (k) ,x (k) (t),t ) represents the integral term of the jth constraint function, and m represents the number of constraints. 所述的NLP问题求解模块,采用如下步骤实现:Described NLP problem solving module adopts the following steps to realize: 步骤1):如果本次迭代的目标函数值J(k)与上一次迭代的目标函数值J(k-1)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的速度控制策略转换为牵引电机的控制指令输出;如果收敛性不满足,则继续执行步骤2);Step 1): If the absolute value difference between the objective function value J (k) of this iteration and the objective function value J (k-1) of the previous iteration is less than the accuracy tol, it is judged that the convergence is satisfied, and the current iteration The speed control strategy of the traction motor is converted into the control command output of the traction motor; if the convergence is not satisfied, continue to perform step 2); 步骤2):用u(k),J(k),dJ(k),g(k)的值覆盖前一次迭代u(k-1),J(k-1),dJ(k-1),g(k-1)的值,并将迭代次数k增加1;Step 2): Overwrite the previous iteration u (k-1) , J (k-1) , dJ (k-1) with the values of u (k) , J (k) , dJ (k) , g (k ) , the value of g (k-1) , and increase the number of iterations k by 1; 步骤3):将电机速度控制策略u(k-1)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J(k-1)Step 3): take the motor speed control strategy u (k-1) as a certain point in the vector space, denoted as P 1 , and the corresponding objective function value of P 1 is J (k-1) ; 步骤4):从点P1出发,根据选用的NLP算法和点P1处的目标函数梯度信息dJ(k-1)和约束条件梯度信息g(k-1),构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)Step 4): Starting from point P 1 , according to the selected NLP algorithm and the gradient information dJ (k-1) of the objective function at point P 1 and the gradient information g (k-1) of constraint conditions, construct a search vector space Optimal direction d (k-1) and step size α (k-1) ; 步骤5):通过式u(k)=u(k-1)(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2Step 5): Construct another point P 2 corresponding to u (k) in the vector space through the formula u (k) =u (k-1)(k-1) d (k-1) ; 步骤6):采用寻优校正得到向量空间中对应u(k)的另外一个点P3,使得P3对应的目标函数值J(k)比J(k-1)更优。Step 6): Using optimization correction to obtain another point P 3 corresponding to u (k) in the vector space, so that the objective function value J (k) corresponding to P 3 is better than J (k-1) .
CN201711115228.5A 2017-11-13 2017-11-13 A kind of bridge-type container crane swing optimal control system Expired - Fee Related CN107857196B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711115228.5A CN107857196B (en) 2017-11-13 2017-11-13 A kind of bridge-type container crane swing optimal control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711115228.5A CN107857196B (en) 2017-11-13 2017-11-13 A kind of bridge-type container crane swing optimal control system

Publications (2)

Publication Number Publication Date
CN107857196A true CN107857196A (en) 2018-03-30
CN107857196B CN107857196B (en) 2019-03-01

Family

ID=61700294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711115228.5A Expired - Fee Related CN107857196B (en) 2017-11-13 2017-11-13 A kind of bridge-type container crane swing optimal control system

Country Status (1)

Country Link
CN (1) CN107857196B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258987A (en) * 1997-03-17 1998-09-29 Mitsubishi Heavy Ind Ltd Anti-swinging device for slung load
JPH11255474A (en) * 1998-03-13 1999-09-21 Yaskawa Electric Corp Swing prevention control device for crane
JP2007161393A (en) * 2005-12-13 2007-06-28 Ishikawajima Harima Heavy Ind Co Ltd Crane steady rest control method
EP2927177A1 (en) * 2014-04-02 2015-10-07 Patentic Oy Ab Method and arrangement for controlling a crane
CN106629400A (en) * 2016-11-16 2017-05-10 北华大学 Intelligent electric anti-swinging control system for container crane
CN107150952A (en) * 2017-05-22 2017-09-12 河南卫华机械工程研究院有限公司 A kind of container crane and its stabilization method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10258987A (en) * 1997-03-17 1998-09-29 Mitsubishi Heavy Ind Ltd Anti-swinging device for slung load
JPH11255474A (en) * 1998-03-13 1999-09-21 Yaskawa Electric Corp Swing prevention control device for crane
JP2007161393A (en) * 2005-12-13 2007-06-28 Ishikawajima Harima Heavy Ind Co Ltd Crane steady rest control method
EP2927177A1 (en) * 2014-04-02 2015-10-07 Patentic Oy Ab Method and arrangement for controlling a crane
CN106629400A (en) * 2016-11-16 2017-05-10 北华大学 Intelligent electric anti-swinging control system for container crane
CN107150952A (en) * 2017-05-22 2017-09-12 河南卫华机械工程研究院有限公司 A kind of container crane and its stabilization method

Also Published As

Publication number Publication date
CN107857196B (en) 2019-03-01

Similar Documents

Publication Publication Date Title
CN111153328B (en) Anti-swing control method and system of hoisting system based on L QR
CN105174061B (en) Double pendulum crane length of a game optimal trajectory planning method based on pseudo- spectrometry
CN105329777B (en) Fuzzy Control Method of Liftable Bridge Crane System with Continuous Disturbance
FI129740B (en) Dynamic flex compensation, coordinated hoist control, and anti-sway control for load handling machines
CN107160398A (en) The safe and reliable control method of Rigid Robot Manipulator is limited based on the total state for determining study
CN109911773B (en) Single-parameter adjustment active disturbance rejection control method for whole operation process of under-actuated crane
CN113955637B (en) Anti-swing control method and control system of three-dimensional double-swing bridge crane
CN108549229A (en) A kind of overhead crane neural network adaptive controller and its design method
CN108358062A (en) Drive lacking crane global stability control method
CN106959610A (en) Bridge crane system APD‑SMC controller, bridge crane system and control method
CN113086844B (en) Variable-rope-length bridge crane anti-swing positioning control method based on second-order sliding mode disturbance observer
CN111522236B (en) A tracking control method and system for a two-stage swing type tower crane system
CN106044567A (en) Local Saturation Adaptive Controller, Control System and Control Method for Overhead Crane
CN117720012B (en) Model predictive control method and system for crane system based on extended Kalman filter
Chai et al. Linear active disturbance rejection control for double-pendulum overhead cranes
CN108828959A (en) A kind of novel bridge crane is anti-sway with position control method and device
CN115268260A (en) Unmanned ship preset time trajectory tracking control method and system considering transient performance
CN107857196A (en) A kind of bridge-type container crane swings optimal control system
CN117886226B (en) Nonlinear control method and system for crane system based on flat output
CN114594683A (en) Anti-swing sliding mode control method of moving base bridge crane based on Hurwitz stability
CN109634118A (en) A kind of robust adaptive nerve method for handover control of mechanical arm
CN113184705B (en) A control method and system for an overhead crane with an uncertain load
Xu et al. Anti-swing control of a new container crane with fuzzy uncertainties compensation
CN106239503B (en) A kind of double-wheel self-balancing robot control system based on part known parameters
CN107902555A (en) The shore container crane optimal control system that a kind of grid becomes more meticulous

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190301

Termination date: 20211113

CF01 Termination of patent right due to non-payment of annual fee