CN107846360B - SDN-based energy router and electric energy transmission method - Google Patents
SDN-based energy router and electric energy transmission method Download PDFInfo
- Publication number
- CN107846360B CN107846360B CN201710976677.2A CN201710976677A CN107846360B CN 107846360 B CN107846360 B CN 107846360B CN 201710976677 A CN201710976677 A CN 201710976677A CN 107846360 B CN107846360 B CN 107846360B
- Authority
- CN
- China
- Prior art keywords
- control strategy
- energy
- packet
- transmitted
- control
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Routing of multiclass traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/74—Address processing for routing
- H04L45/745—Address table lookup; Address filtering
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
Description
技术领域technical field
本发明属于网络通信技术领域,更具体地,涉及一种基于SDN的能量路由器和电能传输方法。The invention belongs to the technical field of network communication, and more particularly, relates to an SDN-based energy router and a power transmission method.
背景技术Background technique
能量路由器作为能源互联网的广域或局域互连设备,以及能源微网的出口网关控制设备,具有类似传统电力设备的接入、传输、转换和路由等功能,同时还具有对其所管辖的能源微网进行运营和管理的功能。能量路由器是能源互联网中重要的能源基础设施,是实现能源互联网信息物理融合技术的基础设备,为能源互联网中能源和信息的对等、分享、开放和互联提供基本保证。As the wide-area or local-area interconnection device of the energy Internet, and the export gateway control device of the energy micro-grid, the energy router has the functions of access, transmission, conversion and routing similar to traditional power equipment, and also has the functions under its jurisdiction. The energy microgrid operates and manages functions. The energy router is an important energy infrastructure in the energy Internet, and it is the basic equipment for realizing the information-physical fusion technology of the energy Internet, and provides a basic guarantee for the equivalence, sharing, opening and interconnection of energy and information in the energy Internet.
现有技术中,能量路由器需要完成能量传输、转换和管理等多种功能,涉及到不同类型的电力设备端口的连接和不同的电能质量要求,给能量路由器的管理和控制带来困难和挑战。目前,当有新的设备接入时,需要手动根据新设备的传输格式要求对传输的电能属性进行设置;对不同类型的电力设备和储能设备需要经过复杂计算,进行手动调节以满足需求。此外,在能源互联网中,电流设备、储能设备的数量众多且规格不一,且处于动态变化中,如果不停进行手动设置和调节以满足需求,需要耗费大量的时间和精力。In the prior art, the energy router needs to complete various functions such as energy transmission, conversion and management, which involves the connection of different types of power equipment ports and different power quality requirements, which brings difficulties and challenges to the management and control of the energy router. At present, when a new device is connected, it is necessary to manually set the transmitted power attributes according to the transmission format requirements of the new device; complex calculations are required for different types of power devices and energy storage devices to be manually adjusted to meet the needs. In addition, in the energy Internet, there are many current devices and energy storage devices with different specifications, and they are in dynamic changes. It takes a lot of time and energy to continuously manually set and adjust to meet the needs.
综上所述,现有技术中通过手动对能量路由器进行管理和控制以满足不同设备的需求,需要耗费大量时间和精力。To sum up, in the prior art, it takes a lot of time and energy to manually manage and control the energy router to meet the requirements of different devices.
发明内容SUMMARY OF THE INVENTION
为克服上述现有技术中通过手动对能量路由器进行管理和控制以满足不同设备的需求耗时耗力的问题或者至少部分地解决上述问题,本发明提供了一种基于SDN的能量路由器和电能传输方法。In order to overcome the time-consuming and labor-intensive problem of manually managing and controlling an energy router to meet the needs of different devices in the prior art, or at least partially solve the above problem, the present invention provides an SDN-based energy router and power transmission. method.
根据本发明的第一方面,提供一种基于SDN的能量路由器,包括:According to a first aspect of the present invention, an SDN-based energy router is provided, comprising:
SDN控制器和各功能模块;SDN controller and various functional modules;
其中,所述SDN控制器用于根据待传输能量包预设的控制要求生成控制策略,将所述控制策略发送给相应的所述功能模块;Wherein, the SDN controller is configured to generate a control strategy according to a preset control requirement of the energy packet to be transmitted, and send the control strategy to the corresponding functional module;
所述功能模块用于接收所述SDN控制器发送的控制策略,在所述功能模块内获取与所述待传输能量包的包头信息相匹配的控制策略,根据与所述包头信息相匹配的控制策略和所述包头信息对所述待传输能量包进行传输。The function module is configured to receive the control strategy sent by the SDN controller, obtain the control strategy matching the header information of the energy packet to be transmitted in the function module, and obtain the control strategy matching the packet header information according to the control strategy matching the packet header information. The policy and the packet header information transmit the energy packet to be transmitted.
具体地,所述功能模块具体用于:Specifically, the functional modules are specifically used for:
对所述待传输能量包的包头进行解析,获取所述待传输能量包传输的目的地址和控制策略要求;Analyze the packet header of the energy packet to be transmitted, and obtain the destination address and control strategy requirements of the energy packet to be transmitted;
根据解析的所述控制策略要求在所述功能模块内的控制策略的流表项中进行查询;According to the parsed control policy requirement, query in the flow table entry of the control policy in the functional module;
在查询到与所述控制策略要求相匹配的控制策略时,根据所述待传输能量包传输的目的地址获取所述待传输能量包在所述能量路由器中的输出端口;When a control strategy matching the control strategy requirement is queried, obtain the output port of the energy packet to be transmitted in the energy router according to the destination address of the energy packet to be transmitted;
根据所述输出端口和所述控制策略,对所述待传输能量包进行传输。The energy packet to be transmitted is transmitted according to the output port and the control strategy.
具体地,所述功能模块还用于:Specifically, the functional module is also used for:
在所述功能模块内的流表项中没有查询到与所述控制策略要求相匹配的控制策略时,将所述控制策略要求发送给所述SDN控制器;When no control policy matching the control policy requirement is found in the flow entry in the function module, sending the control policy requirement to the SDN controller;
相应地,所述SDN控制器还用于:Correspondingly, the SDN controller is also used for:
接收所述功能模块发送的控制策略要求;receiving the control strategy requirement sent by the functional module;
根据所述控制策略要求生成控制策略,将所述控制策略以流表项的形式发送给相应的所述功能模块。A control strategy is generated according to the requirements of the control strategy, and the control strategy is sent to the corresponding functional module in the form of a flow entry.
具体地,所述功能模块还用于:Specifically, the functional module is also used for:
在通过对所述待传输能量包的包头进行解析,获取到所述包头信息中的控制策略要求后,对所述控制策略要求进行修改。After the control strategy requirement in the packet header information is obtained by parsing the header of the energy packet to be transmitted, the control strategy requirement is modified.
具体地,所述SDN控制器还用于:对所述功能模块中控制策略的流表项进行更新和删除。Specifically, the SDN controller is further configured to: update and delete the flow entry of the control policy in the function module.
具体地,所述SDN控制器生成的控制策略包括即插即用策略、传统能源生产设备调度策略、新能源生产设备控制策略、储能设备调度策略、网络整体调度策略、能量传输策略、负荷管理策略和故障处理策略中的一种或多种。Specifically, the control strategies generated by the SDN controller include plug-and-play strategies, traditional energy production equipment scheduling strategies, new energy production equipment control strategies, energy storage equipment scheduling strategies, overall network scheduling strategies, energy transmission strategies, and load management strategies. One or more of a policy and a troubleshooting policy.
根据本发明的第二方面,提供一种基于如上所述的能量路由器的电能传输方法,包括:According to a second aspect of the present invention, there is provided a power transmission method based on the above-mentioned energy router, comprising:
S11,根据待传输能量包预设的控制策略要求生成控制策略,将所述控制策略发送给相应的功能模块,以供所述功能模块在所述功能模块内获取与待传输能量包的包头信息相匹配的控制策略,根据与所述包头信息相匹配的控制策略和所述包头信息对所述待传输能量包进行传输。S11: Generate a control strategy according to a preset control strategy requirement of the energy packet to be transmitted, and send the control strategy to a corresponding function module, so that the function module can obtain the packet header information of the energy packet to be transmitted in the function module The matching control strategy, the energy packet to be transmitted is transmitted according to the control strategy matched with the packet header information and the packet header information.
具体地,所述步骤S11中还包括:Specifically, the step S11 further includes:
接收能量路由器的功能模块在所述功能模块内没有查询到控制策略要求相匹配的控制策略时发送的控制策略要求,根据所述控制策略要求生成控制策略;其中,所述控制策略要求为所述功能模块通过解析所述待传输能量包的包头获取。The function module of the energy router receives a control strategy requirement sent when the function module does not find a control strategy matching the control strategy requirement, and generates a control strategy according to the control strategy requirement; wherein, the control strategy requirement is the The function module is obtained by parsing the packet header of the energy packet to be transmitted.
根据本发明的第三方面,提供一种基于如上所述的能量路由器的电能传输方法,包括:According to a third aspect of the present invention, there is provided a power transmission method based on the above-mentioned energy router, comprising:
S21,接收能量路由器的SDN控制器发送的控制策略;S21, receiving the control policy sent by the SDN controller of the energy router;
S22,对所述待传输能量包的包头进行解析,获取所述待传输能量包传输的目的地址和控制策略要求;S22, parse the packet header of the energy packet to be transmitted, and obtain the destination address and control strategy requirements for transmission of the energy packet to be transmitted;
S23,根据解析的所述控制策略要求在所述能量路由器的功能模块内的流表项中进行查询;S23, query the flow entry in the functional module of the energy router according to the parsed control policy requirement;
S24,当在所述流表项中查询到与所述控制策略要求相匹配的控制策略时,根据所述待传输能量包传输的目的地址获取所述待传输能量包在所述能量路由器中的输出端口;S24, when a control strategy matching the control strategy requirement is queried in the flow table entry, obtain the information of the energy packet to be transmitted in the energy router according to the destination address of the energy packet to be transmitted. output port;
S25,根据所述输出端口和所述控制策略,对所述待传输能量包进行传输。S25, according to the output port and the control strategy, transmit the energy packet to be transmitted.
具体地,所述步骤S24还包括:Specifically, the step S24 further includes:
当在所述流表项中没有查询到与所述控制策略要求相匹配的控制策略时,将所述控制策略要求发送给所述SDN控制器,以供所述SDN控制器根据所述控制策略要求生成控制策略。When no control policy matching the control policy requirement is found in the flow entry, the control policy requirement is sent to the SDN controller for the SDN controller to use the control policy according to the control policy A control strategy is required to be generated.
本发明提供一种基于SDN的能量路由器和电能传输方法,本发明通过SDN控制器在控制策略制定和执行过程中引入软件定义相关概念、技术和架构,实现对能量路由器内各功能模块进行统一控制和管理,提高了能量路由器运行的灵活性和鲁棒性,简化了能量路由器的控制,同时提高了能量路由器的自适应性,实现了能量路由器的自动化管理。The present invention provides an SDN-based energy router and a power transmission method. The present invention introduces software-defined related concepts, technologies and architectures through the SDN controller in the control strategy formulation and execution process, so as to realize unified control of each functional module in the energy router. It improves the flexibility and robustness of the energy router operation, simplifies the control of the energy router, improves the adaptability of the energy router, and realizes the automatic management of the energy router.
附图说明Description of drawings
图1为本发明实施例提供的基于SDN的能量路由器装置结构示意图;FIG. 1 is a schematic structural diagram of an SDN-based energy router device provided by an embodiment of the present invention;
图2为本发明实施例提供的电能传输方法流程示意图。FIG. 2 is a schematic flowchart of a power transmission method according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific embodiments of the present invention will be described in further detail below with reference to the accompanying drawings and embodiments. The following examples are intended to illustrate the present invention, but not to limit the scope of the present invention.
在本发明的一个实施例中提供一种基于SDN的能量路由器,图1为本发明实施例提供的基于SDN的能量路由器结构示意图,该装置包括:SDN控制器和各功能模块;其中,所述SDN控制器用于根据待传输能量包预设的控制要求生成控制策略,将所述控制策略发送给相应的所述功能模块;所述功能模块用于接收所述SDN控制器发送的控制策略,在所述功能模块内获取与所述待传输能量包的包头信息相匹配的控制策略,根据与所述包头信息相匹配的控制策略和所述包头信息对所述待传输能量包进行传输。An embodiment of the present invention provides an SDN-based energy router. FIG. 1 is a schematic structural diagram of the SDN-based energy router provided by an embodiment of the present invention. The device includes: an SDN controller and various functional modules; wherein the The SDN controller is configured to generate a control strategy according to the preset control requirements of the energy packet to be transmitted, and send the control strategy to the corresponding functional module; the functional module is configured to receive the control strategy sent by the SDN controller, and then send the control strategy to the corresponding functional module. The function module acquires a control strategy matching the header information of the energy packet to be transmitted, and transmits the energy packet to be transmitted according to the control strategy matching the packet header information and the packet header information.
具体地,基于SDN的能量路由器的功能架构分为两层,上层为SDN控制器,下层为实现各种具体功能的软硬件功能模块,所述功能模块主要负责能量的接入、传输和管理,如图1中的功能模块1、功能模块2和功能模块3,本实施例不限于这三个功能模块。所述SDN控制器为基于SDN(Software Defined Network,软件定义网络)思想,类似电脑操作系统的能量路由器控制系统,实现对能量路由器内各功能模块进行统一控制和管理,从而简单、高效、智能地实现能量生产、传输、路由和转换等功能的能量路由器整体架构,对能量路由器的各项功能进行灵活控制、操作和运行。通过所述SDN控制器实现了能源互联网中简洁、高效和可扩展的能量路由器功能。不同于传统的SDN技术应用场景,本实施例并未将SDN技术应用于整个能源互联网的设计,而仅在能量路由器内部利用SDN技术实现对能量路由器的管理和控制,相当于在能量路由器内部建立一个小型的SDN操作系统。Specifically, the functional architecture of the SDN-based energy router is divided into two layers, the upper layer is the SDN controller, and the lower layer is the software and hardware functional modules that implement various specific functions, and the functional modules are mainly responsible for energy access, transmission and management, Function module 1, function module 2, and function module 3 in FIG. 1, this embodiment is not limited to these three function modules. The SDN controller is an energy router control system based on the idea of SDN (Software Defined Network, software defined network), similar to a computer operating system, and realizes unified control and management of each functional module in the energy router, so as to be simple, efficient and intelligent. The overall architecture of the energy router that realizes the functions of energy production, transmission, routing and conversion, and flexibly controls, operates and operates the various functions of the energy router. The simple, efficient and scalable energy router function in the energy internet is realized through the SDN controller. Different from the traditional SDN technology application scenario, this embodiment does not apply the SDN technology to the design of the entire energy Internet, but only uses the SDN technology inside the energy router to realize the management and control of the energy router, which is equivalent to establishing an energy router inside the energy router. A small SDN operating system.
所述SDN控制器根据以前的运行经验和实际运行要求,在所述能量路由器内部生成或建立控制策略。所述SDN控制器可采用人工智能、增强学习等学习和优化技术建立所述控制策略。所述SDN控制器根据下层各功能模块的实际运行要求,主动或被动的将所述控制策略下发给相应的所述功能模块。所述SDN控制器可以针对最常用或最可能使用的预设的控制策略要求对应的控制策略以流表项的形式发送给相应的所述功能模块。例如,当新设备接入时,所述SDN控制器根据所述新设备的种类和型号,获取与所述种类和型号对应的预先设定的控制策略要求,根据所述测量要求生成控制策略。所述功能模块在所述功能模块内获取与待传输能量包的包头信息相匹配的控制策略,根据与所述包头信息相匹配的控制策略和所述包头信息对所述待传输能量包进行传输。所述SDN控制器可以针对最常用或最可能使用的策略流表项,对能量路由器相关功能模块主动下发控制策略。The SDN controller generates or establishes a control strategy inside the energy router according to previous operating experience and actual operating requirements. The SDN controller may establish the control strategy using learning and optimization techniques such as artificial intelligence and reinforcement learning. The SDN controller actively or passively delivers the control strategy to the corresponding functional modules according to the actual operation requirements of the lower-layer functional modules. The SDN controller may request the corresponding control policy to be sent to the corresponding functional module in the form of a flow entry according to the preset control policy that is most commonly used or most likely to be used. For example, when a new device is connected, the SDN controller acquires a preset control strategy requirement corresponding to the type and model of the new device according to the type and model of the new device, and generates a control strategy according to the measurement requirement. The function module acquires a control strategy matching the header information of the energy packet to be transmitted in the function module, and transmits the energy packet to be transmitted according to the control strategy matching the packet header information and the packet header information . The SDN controller can actively deliver control policies to the energy router related functional modules for the most commonly used or most likely used policy flow entries.
所述功能模块接收所述SDN控制器发送的控制策略,在所述功能模块内获取与待传输能量包的包头信息相匹配的控制策略,根据与所述包头信息相匹配的控制策略和所述包头信息对所述待传输能量包进行传输。在网络设计中,SDN网络架构将控制功能集中到控制器统一实现,而底层通信设备仅需根据控制器的命令,基于流表项建立、查询、更新的方式,实现简单的传输功能。通过这种控制方式,SDN网络具有控制简单、操作灵活、维护方便和易于扩展等特点,既避免了传统网络路由设备功能臃肿的弊端,又能简化和节省人力操作成本。The function module receives the control strategy sent by the SDN controller, acquires the control strategy matching the header information of the energy packet to be transmitted in the function module, and obtains the control strategy matching the packet header information according to the control strategy matching the packet header information and the The packet header information transmits the energy packet to be transmitted. In the network design, the SDN network architecture centralizes the control function to the controller for unified implementation, and the underlying communication device only needs to establish, query, and update flow entries according to the controller's commands to achieve simple transmission functions. Through this control method, the SDN network has the characteristics of simple control, flexible operation, convenient maintenance, and easy expansion, which not only avoids the drawbacks of bloated functions of traditional network routing equipment, but also simplifies and saves labor operation costs.
本实施例通过SDN控制器在控制策略制定和执行过程中引入软件定义相关概念、技术和架构,实现对能量路由器内各功能模块进行统一控制和管理,提高了能量路由器运行的灵活性和鲁棒性,简化了能量路由器的控制,同时提高了能量路由器的自适应性,实现了能量路由器的自动化管理。This embodiment implements unified control and management of each functional module in the energy router through the introduction of software-defined concepts, technologies and architectures in the process of formulating and executing the control strategy by the SDN controller, thereby improving the flexibility and robustness of the operation of the energy router. It simplifies the control of the energy router, improves the adaptability of the energy router, and realizes the automatic management of the energy router.
本实施例中对于一般的控制策略要求,所述SDN控制器根据设备的信息对应的控制策略要求,生成控制策略,主动将所述控制策略下方给相应的功能模块,从而提高所述能量路由器的智能化。For the general control strategy requirements in this embodiment, the SDN controller generates a control strategy according to the control strategy requirements corresponding to the device information, and actively assigns the control strategy to the corresponding functional module, thereby improving the energy router's performance. Intelligent.
在上述实施例的基础上,本实施例中所述功能模块具体用于:对所述待传输能量包的包头进行解析,获取所述待传输能量包传输的目的地址和控制策略要求;根据解析的所述控制策略要求在所述功能模块内的控制策略的流表项中进行查询;在查询到与所述控制策略要求相匹配的控制策略时,根据所述待传输能量包传输的目的地址获取所述待传输能量包在所述能量路由器中的输出端口;根据所述输出端口和所述控制策略,对所述待传输能量包进行传输。On the basis of the above-mentioned embodiment, the functional module in this embodiment is specifically used to: analyze the packet header of the energy packet to be transmitted, and obtain the destination address and control strategy requirements of the transmission of the energy packet to be transmitted; The control strategy requires querying in the flow table entry of the control strategy in the functional module; when the control strategy matching the control strategy requirement is queried, the destination address of the energy packet to be transmitted is transmitted according to the Obtain the output port of the energy packet to be transmitted in the energy router; and transmit the energy packet to be transmitted according to the output port and the control policy.
具体地,输入所述能量路由器的电能以能量包的形式传送,每个能量包的前面部分包含一个包头,所述包头里面包含能量包传输的目的地址和控制策略要求等信息。所述控制策略要求为能量包传输过程中的控制和处理要求。所述包头中的信息能够被能量路由器有效的提取、阅读和修改。所述功能模块对所述待传输能量包的包头进行解析,获取所述待传输能量包传输的目的地址和控制策略要求。由于所述SDN控制器将所述控制策略以流表项的形式发送给相应的所述功能模块,所述功能模块根据解析的所述包头信息中的控制策略要求在所述功能模块内的流表项中进行查询,获取与所述控制策略要求相匹配的控制策略。当查询到与所述控制策略要求相匹配的控制策略时,根据所述待传输能量包传输的目的地址获取所述待传输能量包在所述能量路由器中的输出端口。根据所述控制策略调用相应的功能模块执行所述控制策略,进行能量包传输过程的控制和管理,将所述待传输的能力包传送到所述输出端口。Specifically, the electrical energy input to the energy router is transmitted in the form of energy packets, the front part of each energy packet includes a packet header, and the packet header contains information such as the destination address of the energy packet transmission and the control strategy requirements. The control strategy requirements are control and processing requirements in the energy packet transmission process. The information in the packet header can be effectively extracted, read and modified by the energy router. The function module parses the packet header of the energy packet to be transmitted, and obtains the destination address and control strategy requirements of the transmission of the energy packet to be transmitted. Since the SDN controller sends the control policy to the corresponding functional module in the form of a flow entry, the functional module requires the flow in the functional module according to the control policy in the parsed header information. A query is performed in the table entry to obtain a control strategy that matches the control strategy requirement. When a control strategy matching the requirements of the control strategy is found, the output port of the energy packet to be transmitted in the energy router is acquired according to the destination address of the energy packet to be transmitted. According to the control strategy, a corresponding function module is invoked to execute the control strategy, control and manage the energy packet transmission process, and transmit the capability packet to be transmitted to the output port.
在上述实施例的基础上,本实施例中所述功能模块还用于:在所述功能模块内的流表项中没有查询到与所述控制策略要求相匹配的控制策略时,将所述控制策略要求发送给所述SDN控制器;相应地,所述SDN控制器具体用于:接收所述功能模块发送的控制策略要求;根据所述控制策略要求生成控制策略,将所述控制策略以流表项的形式发送给相应的所述功能模块。On the basis of the above-mentioned embodiment, the function module in this embodiment is further configured to: when no control strategy matching the control strategy requirement is found in the flow entry in the function module, Sending the control policy request to the SDN controller; correspondingly, the SDN controller is specifically configured to: receive the control policy request sent by the functional module; generate a control policy according to the control policy request, and convert the control policy into a The form of flow entry is sent to the corresponding functional module.
具体地,当新的能量包进入所述能量路由器的某个功能模块时,若在所述功能模块内的流表项中没有查询到与所述控制策略要求相匹配的控制策略,则将所述控制策略要求或包含所述控制策略要求的包头发送给所述SDN控制器。所述SDN控制器根据整个能源互联网的状态信息对所述控制策略要求进行分析和处理,将建立的控制策略以流表项的形式下发给所述能量路由器相应的功能模块。Specifically, when a new energy packet enters a certain function module of the energy router, if no control strategy matching the control strategy requirement is found in the flow entry in the function module, the The control strategy requirement or the packet header containing the control strategy requirement is sent to the SDN controller. The SDN controller analyzes and processes the control strategy requirements according to the state information of the entire energy Internet, and delivers the established control strategy to the corresponding functional module of the energy router in the form of a flow entry.
在上述实施例的基础上,本实施例中所述功能模块还用于:在通过对所述待传输能量包的包头进行解析,获取到所述包头信息中的控制策略要求后,对所述控制策略要求进行修改。On the basis of the above-mentioned embodiment, the functional module in this embodiment is further configured to: after the control strategy requirement in the packet header information is obtained by parsing the packet header of the energy packet to be transmitted, the The control strategy requires modification.
具体地,在获取到所述能量包传输的控制策略要求后,可以根据实际的能源互联网状态,对所述包头中控制策略要求进行修改,从而实现在能量包传输过程中对所述控制策略要求进行修改,避免了只能在传输前修改能量包的包头中的信息,节约了大量时间。Specifically, after obtaining the control strategy requirements for the energy packet transmission, the control strategy requirements in the packet header can be modified according to the actual energy Internet state, so as to realize the control strategy requirements during the energy packet transmission process. The modification avoids that the information in the packet header of the energy packet can only be modified before transmission, which saves a lot of time.
在上述实施例的基础上,本实施例中所述SDN控制器还用于:对所述功能模块中控制策略的流表项进行更新和删除。On the basis of the foregoing embodiment, the SDN controller in this embodiment is further configured to: update and delete the flow entry of the control policy in the functional module.
具体地,所述SDN控制器还用于对所述功能模块内的控制策略的流表项进行更新和删除。如果能源互联网的运行状态或网络管理者的控制目标发生了变化,所述SDN控制器通过下发更新的流表项,以实现对所述功能模块内的控制策略的流表项进行更新和删除。Specifically, the SDN controller is further configured to update and delete the flow entry of the control policy in the functional module. If the running state of the energy Internet or the control objective of the network manager changes, the SDN controller can update and delete the flow entry of the control strategy in the functional module by delivering the updated flow entry. .
在上述任一实施例的基础上,本实施例中所述SDN控制器生成的控制策略包括即插即用策略、传统能源生产设备调度策略、新能源生产设备控制策略、储能设备调度策略、网络整体调度策略、能量传输策略、负荷管理策略和故障处理策略中的一种或多种。Based on any of the above embodiments, the control strategy generated by the SDN controller in this embodiment includes a plug-and-play strategy, a traditional energy production equipment scheduling strategy, a new energy production equipment control strategy, an energy storage equipment scheduling strategy, One or more of the overall network scheduling strategy, energy transmission strategy, load management strategy and fault handling strategy.
具体地,在所述即插即用策略中,当设备即插即用时,所述SDN控制器根据所连接设备的种类和型号,选择合适的驱动和控制程序。当旧设备退出即插即用,而有新设备接入时,所述能量路由器通过对所需电能传输格式要求的自动感知,在所述能量路由器内部实现自适应的策略转换。电能传输格式要求包括电流、电压、频率、有功、无功等。Specifically, in the plug-and-play strategy, when the device is plug-and-play, the SDN controller selects an appropriate driver and control program according to the type and model of the connected device. When the old device exits the plug and play, and a new device is connected, the energy router realizes adaptive policy conversion within the energy router through automatic sensing of the required power transmission format requirements. The power transmission format requirements include current, voltage, frequency, active power, reactive power, etc.
在所述传统能源生产设备调度策略中,根据能源互联网内的供需平衡现状,如轻、中或重负载,控制发电机的转速和和起停,在保证供电曲线连续和平稳的同时,实现与用电需求的匹配,减少能源生产成本。In the traditional energy production equipment scheduling strategy, according to the current supply and demand balance in the energy Internet, such as light, medium or heavy loads, the speed and start and stop of the generator are controlled, so as to ensure the continuous and stable power supply curve, and realize the Matching electricity demand and reducing energy production costs.
在所述新能源生产设备控制策略中,根据最大光伏发电功率原则,即最大点跟踪准则,确定光伏发电设备的电压和电流。并通过机械控制,改变阳光的照射角度,以提高发电量,降低发电成本。根据风力发电机的类型,如直驱风力发电或双馈风力发电设备,选择合适的发电控制程序和工作模式,如恒压模式、最大功率发电模式或限度发电模式,保证风机的正常、鲁棒工作。In the new energy production equipment control strategy, the voltage and current of the photovoltaic power generation equipment are determined according to the principle of maximum photovoltaic power generation power, that is, the maximum point tracking criterion. And through mechanical control, the angle of sunlight is changed to increase power generation and reduce power generation costs. According to the type of wind turbine, such as direct-drive wind power generation or double-fed wind power generation equipment, select the appropriate power generation control program and working mode, such as constant voltage mode, maximum power generation mode or limit power generation mode, to ensure the normal and robust operation of the wind turbine. Work.
在储能设备调度策略中,根据能源互联网的整体供需平衡情况或出现的短时异常波动,智能控制储能系统的充放电过程。通过充放电平抑系统内部的各种波动,维持系统的整体、高效供需平衡,保证系统的平稳、经济运行。储能设备调度策略包括指定功率充放电、最大功率充放电、最小功率充放电、恒压充放电模式和断开储能设备。In the scheduling strategy of energy storage equipment, the charging and discharging process of the energy storage system is intelligently controlled according to the overall supply and demand balance of the energy Internet or short-term abnormal fluctuations. Through charging and discharging, various fluctuations within the system are suppressed, the overall and efficient supply and demand balance of the system is maintained, and the stable and economical operation of the system is ensured. The energy storage equipment scheduling strategy includes specified power charge and discharge, maximum power charge and discharge, minimum power charge and discharge, constant voltage charge and discharge mode, and disconnection of energy storage equipment.
在网络整体调度策略中,根据网络运行整体情况和对能源互联网系统未来的运行趋势预测,对各类型能源生产设备进行联合调度和控制,结合用户侧的需求响应,控制相关能源设备的工作模式,如发电设备可以运行在按需供能模式或最大发电量模式。结合储能,在保证供需平衡、系统安全稳定运行的基础上,最小化电力能源生产成本,提高能源生产效率。In the overall network scheduling strategy, according to the overall situation of the network operation and the forecast of the future operation trend of the energy Internet system, joint scheduling and control of various types of energy production equipment, combined with user-side demand response, control the working mode of related energy equipment, For example, the power generation equipment can operate in the on-demand energy supply mode or the maximum power generation mode. Combined with energy storage, on the basis of ensuring the balance of supply and demand and the safe and stable operation of the system, the cost of electric energy production is minimized and the energy production efficiency is improved.
在能量传输策略中,根据系统内部以及相邻外部系统的能源供需情况,采用相关的能量传输策略。所述能量传输策略包括系统能量向外部相邻电网输出、系统能量从外部电能系统输入和调用系统内部储能系统进行充放电控制。在保证系统整体能量供需平衡的同时,最大化能量使用效率。In the energy transmission strategy, relevant energy transmission strategies are adopted according to the energy supply and demand of the internal system and adjacent external systems. The energy transmission strategy includes the output of system energy to an external adjacent power grid, the input of system energy from an external electrical energy system, and the invocation of the internal energy storage system of the system for charge and discharge control. While ensuring the overall energy supply and demand balance of the system, maximize energy efficiency.
在负荷管理策略中,当能源互联网系统内部的能源短缺无法避免时,能量路由器可以主动断开与某些不重要用电设备的电能连接,保证重要设备的正常运行。In the load management strategy, when the energy shortage in the energy Internet system is unavoidable, the energy router can actively disconnect the power connection with some unimportant electrical equipment to ensure the normal operation of the important equipment.
在故障处理策略中,能量路由器根据获得的网络设备或线路故障信息,可以根据相关拓扑,断开故障区域,并对故障下游区域设备接入备用电源,以降低故障损失。In the fault handling strategy, according to the obtained network equipment or line fault information, the energy router can disconnect the fault area according to the relevant topology, and connect the backup power supply to the equipment in the downstream area of the fault to reduce the fault loss.
本实施例中SDN架构本身具有易于扩展、易于控制、易于管理等特点,在中小规模的通信网络中具有比传统通信架构更明显的性能优势,将该架构应用于能量路由器设计中将大幅度提高能量路由器的运行性能。基于SDN的能量路由器具有能量转换、传输、管理等多项功能,控制策略需要随着网络状态的变化而不断调整和优化。因此,灵活、高效的控制架构将为能量路由器的性能带来明显提升。考虑到SDN架构的优越管理性能,其应用于能量路由器管理控制系统将对系统的优化运行带来支持和保证。In this embodiment, the SDN architecture itself has the characteristics of easy expansion, easy control, and easy management. It has more obvious performance advantages than the traditional communication architecture in small and medium-sized communication networks. The application of this architecture to the design of energy routers will greatly improve the performance. Operational performance of energy routers. SDN-based energy routers have multiple functions such as energy conversion, transmission, and management. The control strategy needs to be continuously adjusted and optimized with the change of network status. Therefore, a flexible and efficient control architecture will bring significant improvements to the performance of energy routers. Considering the superior management performance of the SDN architecture, its application in the energy router management and control system will support and guarantee the optimal operation of the system.
本实施例提供一种基于如上所述的能量路由器的电能传输方法,包括:S11,根据待传输能量包预设的控制策略要求生成控制策略,将所述控制策略发送给相应的功能模块,以供所述功能模块在所述功能模块内获取与待传输能量包的包头信息相匹配的控制策略,根据与所述包头信息相匹配的控制策略和所述包头信息对所述待传输能量包进行传输。This embodiment provides a power transmission method based on an energy router as described above, including: S11, generating a control strategy according to a preset control strategy requirement of an energy packet to be transmitted, and sending the control strategy to a corresponding function module to For the functional module to obtain a control strategy matching the header information of the energy packet to be transmitted in the functional module, and to perform a control strategy on the energy packet to be transmitted according to the control strategy matching the packet header information and the packet header information. transmission.
具体地,基于SDN的能量路由器的功能架构分为两层,上次为SDN控制器,下层为实现各种具体功能的软硬件功能模块,所述功能模块主要负责能量的接入、传输和管理。所述SDN控制器为基于SDN(Software Defined Network,软件定义网络)思想,类似电脑操作系统的能量路由器控制系统,实现对能量路由器内各功能模块进行统一控制和管理。所述SDN控制器根据以前的运行经验和实际运行要求,在所述能量路由器内部生成或建立控制策略。所述SDN控制器可采用人工智能、增强学习等学习和优化技术建立所述控制策略。所述SDN控制器根据下层各功能模块的实际运行要求,主动或被动的将所述控制策略下发给相应的所述功能模块。所述SDN控制器可以针对最常用或最可能使用的预设的控制策略要求对应的控制策略以流表项的形式发送给相应的所述功能模块。例如,当新设备接入时,所述SDN控制器根据所述新设备的种类和型号,获取与所述种类和型号对应的预先设定的控制策略要求,根据所述测量要求生成控制策略。所述功能模块在所述功能模块内获取与待传输能量包的包头信息相匹配的控制策略,根据与所述包头信息相匹配的控制策略和所述包头信息对所述待传输能量包进行传输。所述SDN控制器可以针对最常用或最可能使用的策略流表项项,对能量路由器相关功能模块主动下发控制策略。Specifically, the functional architecture of the SDN-based energy router is divided into two layers. The last layer is the SDN controller, and the lower layer is the software and hardware function modules that implement various specific functions. The function modules are mainly responsible for energy access, transmission and management. . The SDN controller is an energy router control system based on the idea of SDN (Software Defined Network, software defined network), similar to a computer operating system, and realizes unified control and management of each functional module in the energy router. The SDN controller generates or establishes a control strategy inside the energy router according to previous operating experience and actual operating requirements. The SDN controller may establish the control strategy using learning and optimization techniques such as artificial intelligence and reinforcement learning. The SDN controller actively or passively delivers the control strategy to the corresponding functional modules according to the actual operation requirements of the lower-layer functional modules. The SDN controller may request the corresponding control policy to be sent to the corresponding functional module in the form of a flow entry according to the preset control policy that is most commonly used or most likely to be used. For example, when a new device is connected, the SDN controller acquires a preset control strategy requirement corresponding to the type and model of the new device according to the type and model of the new device, and generates a control strategy according to the measurement requirement. The function module acquires a control strategy matching the header information of the energy packet to be transmitted in the function module, and transmits the energy packet to be transmitted according to the control strategy matching the packet header information and the packet header information . The SDN controller can actively deliver control policies to the energy router related function modules for the most commonly used or most likely used policy flow entries.
本实施例通过SDN控制器在控制策略制定和执行过程中引入软件定义相关概念、技术和架构,实现对能量路由器内各功能模块进行统一控制和管理,提高了能量路由器运行的灵活性和鲁棒性,简化了能量路由器的控制,同时提高了能量路由器的自适应性,实现了能量路由器的自动化管理。This embodiment implements unified control and management of each functional module in the energy router through the introduction of software-defined concepts, technologies and architectures in the process of formulating and executing the control strategy by the SDN controller, thereby improving the flexibility and robustness of the operation of the energy router. It simplifies the control of the energy router, improves the adaptability of the energy router, and realizes the automatic management of the energy router.
在上述实施例的基础上,本实施例中所述步骤S11还包括:接收能量路由器的功能模块在所述功能模块内没有查询到控制策略要求相匹配的控制策略时发送的控制策略要求,根据所述控制策略要求生成控制策略;其中,所述控制策略要求为所述功能模块通过解析所述待传输能量包的包头获取。On the basis of the above embodiment, the step S11 in this embodiment further includes: receiving the control strategy requirement sent by the functional module of the energy router when the functional module does not find a control strategy matching the control strategy requirement, according to The control strategy requires generating a control strategy; wherein, the control strategy requires that the function module obtains by parsing the packet header of the energy packet to be transmitted.
具体地,所述SDN控制器接收能量路由器的功能模块在所述功能模块内没有查询到控制策略要求相匹配的控制策略时发送的控制策略要求,根据整个能源互联网的状态信息对所述控制策略要求进行分析和处理,将建立的控制策略以流表项的形式下发给所述能量路由器相应的功能模块,以供所述功能模块根据所述流表项对所述能量包进行传输。Specifically, the SDN controller receives the control strategy requirement sent by the function module of the energy router when the function module does not find a control strategy matching the control strategy requirement, and analyzes the control strategy according to the state information of the entire energy Internet. Analysis and processing are required, and the established control policy is delivered to the corresponding functional module of the energy router in the form of a flow entry, so that the functional module can transmit the energy packet according to the flow entry.
本实施例提供一种基于如上所述的能量路由器的电能传输方法,如图2所示,所述方法包括:S21,接收能量路由器的SDN控制器发送的控制策略;S22,对所述待传输能量包的包头进行解析,获取所述待传输能量包传输的目的地址和控制策略要求;S23,根据解析的所述控制策略要求在所述能量路由器的功能模块内的流表项中进行查询;S24,当在所述流表项中查询到与所述控制策略要求相匹配的控制策略时,根据所述待传输能量包传输的目的地址获取所述待传输能量包在所述能量路由器中的输出端口;S25,根据所述输出端口和所述控制策略,对所述待传输能量包进行传输。This embodiment provides a power transmission method based on the energy router as described above. As shown in FIG. 2 , the method includes: S21 , receiving a control policy sent by the SDN controller of the energy router; S22 , for the to-be-transmitted power The packet header of the energy packet is parsed to obtain the destination address of the energy packet to be transmitted and the control strategy requirement; S23, according to the parsed control strategy requirement, query in the flow table entry in the functional module of the energy router; S24, when a control strategy matching the control strategy requirement is queried in the flow table entry, obtain the information of the energy packet to be transmitted in the energy router according to the destination address of the energy packet to be transmitted. output port; S25, transmit the energy packet to be transmitted according to the output port and the control strategy.
具体地,输入所述能量路由器的电能以能量包的形式传送,每个能量包的前面部分包含一个包头,所述包头里面包含能量包传输的目的地址和控制策略要求等信息。所述控制策略要求为能量包传输过程中的控制和处理要求。所述包头中的信息能够被能量路由器有效的提取、阅读和修改。所述功能模块对所述待传输能量包的包头进行解析,获取所述待传输能量包传输的目的地址和控制策略要求。由于所述SDN控制器将所述控制策略以流表项的形式发送给相应的所述功能模块,所述功能模块根据解析的所述包头信息中的控制策略要求在所述功能模块内的流表项中进行查询,获取与所述控制策略要求相匹配的控制策略。当查询到与所述控制策略要求相匹配的控制策略时,根据所述待传输能量包传输的目的地址获取所述待传输能量包在所述能量路由器中的输出端口。根据所述控制策略调用相应的功能模块执行所述控制策略,进行能量包传输过程的控制和管理,将所述待传输的能力包传送到所述输出端口。Specifically, the electrical energy input to the energy router is transmitted in the form of energy packets, the front part of each energy packet includes a packet header, and the packet header contains information such as the destination address of the energy packet transmission and the control strategy requirements. The control strategy requirements are control and processing requirements in the energy packet transmission process. The information in the packet header can be effectively extracted, read and modified by the energy router. The function module parses the packet header of the energy packet to be transmitted, and obtains the destination address and control strategy requirements of the transmission of the energy packet to be transmitted. Since the SDN controller sends the control policy to the corresponding functional module in the form of a flow entry, the functional module requires the flow in the functional module according to the control policy in the parsed header information. A query is performed in the table entry to obtain a control strategy that matches the control strategy requirement. When a control strategy matching the requirements of the control strategy is found, the output port of the energy packet to be transmitted in the energy router is acquired according to the destination address of the energy packet to be transmitted. According to the control strategy, a corresponding function module is invoked to execute the control strategy, control and manage the energy packet transmission process, and transmit the capability packet to be transmitted to the output port.
在上述实施例的基础上,本实施例中所述步骤S24还包括:当在所述流表项中没有查询到与所述控制策略要求相匹配的控制策略时,将所述控制策略要求发送给所述SDN控制器,以供所述SDN控制器根据所述控制策略要求生成控制策略。On the basis of the above embodiment, the step S24 in this embodiment further includes: when no control policy matching the control policy requirement is found in the flow entry, sending the control policy requirement to the SDN controller, so that the SDN controller can generate a control policy according to the control policy requirement.
具体地,当新的能量包进入所述能量路由器的某个功能模块时,若在所述功能模块内的流表项中没有查询到与所述控制策略要求相匹配的控制策略,则将所述控制策略要求或包含所述控制策略要求的包头发送给所述SDN控制器,以供所述SDN控制器根据整个能源互联网的状态信息对所述控制策略要求进行分析和处理,将建立的控制策略以流表项的形式下发给所述能量路由器相应的功能模块。Specifically, when a new energy packet enters a certain function module of the energy router, if no control strategy matching the control strategy requirement is found in the flow entry in the function module, the The control strategy requirement or the packet header containing the control strategy requirement is sent to the SDN controller, so that the SDN controller can analyze and process the control strategy requirement according to the state information of the entire energy Internet, and the established control The policy is delivered to the corresponding functional module of the energy router in the form of a flow entry.
最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。Finally, the method of the present application is only a preferred embodiment, and is not intended to limit the protection scope of the present invention. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710976677.2A CN107846360B (en) | 2017-10-19 | 2017-10-19 | SDN-based energy router and electric energy transmission method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710976677.2A CN107846360B (en) | 2017-10-19 | 2017-10-19 | SDN-based energy router and electric energy transmission method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107846360A CN107846360A (en) | 2018-03-27 |
CN107846360B true CN107846360B (en) | 2020-08-11 |
Family
ID=61661467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710976677.2A Active CN107846360B (en) | 2017-10-19 | 2017-10-19 | SDN-based energy router and electric energy transmission method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107846360B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104993988A (en) * | 2015-07-03 | 2015-10-21 | 清华大学 | Method for scheduling and controlling energy Internet |
CN106059918A (en) * | 2016-06-27 | 2016-10-26 | 北京邮电大学 | Energy internet control layered architecture based on SDN (Software Defined Networking) and scheduling method |
CN106301570A (en) * | 2015-06-09 | 2017-01-04 | 河北工程大学 | A kind of NC centralized Control method in software definition FiWi network |
CN106412880A (en) * | 2015-07-29 | 2017-02-15 | 中国科学院沈阳自动化研究所 | Wireless mesh safety hierarchical transmission method based on SDN |
CN106888459A (en) * | 2017-02-22 | 2017-06-23 | 重庆邮电大学 | Reduce the information terminal and its communication means of D2D signaling consumptions and frequency spectrum resource interference |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9639144B2 (en) * | 2011-03-02 | 2017-05-02 | Tso Logic Inc. | Power state adjustment |
-
2017
- 2017-10-19 CN CN201710976677.2A patent/CN107846360B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106301570A (en) * | 2015-06-09 | 2017-01-04 | 河北工程大学 | A kind of NC centralized Control method in software definition FiWi network |
CN104993988A (en) * | 2015-07-03 | 2015-10-21 | 清华大学 | Method for scheduling and controlling energy Internet |
CN106412880A (en) * | 2015-07-29 | 2017-02-15 | 中国科学院沈阳自动化研究所 | Wireless mesh safety hierarchical transmission method based on SDN |
CN106059918A (en) * | 2016-06-27 | 2016-10-26 | 北京邮电大学 | Energy internet control layered architecture based on SDN (Software Defined Networking) and scheduling method |
CN106888459A (en) * | 2017-02-22 | 2017-06-23 | 重庆邮电大学 | Reduce the information terminal and its communication means of D2D signaling consumptions and frequency spectrum resource interference |
Non-Patent Citations (2)
Title |
---|
"能源互联网与能源路由器";曹军威 等;《中国科学:信息科学》;20140620;第44卷(第6期);全文 * |
"软件定义的能源互联网信息通信技术研究";曹军威 等;《中国电机工程学报》;20150720;第35卷(第14期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107846360A (en) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104092303B (en) | Scene distributed power generation independent micro-grid energy management coordinated control system and method | |
CN107800155B (en) | Active power distribution network multi-period island operation method considering intelligent soft switch | |
Marzal et al. | An embedded internet of energy communication platform for the future smart microgrids management | |
US9720433B2 (en) | Cellular power supply network, intelligent gateway and power supply control method thereof | |
TW201316641A (en) | Networked DC power system | |
CN114465358B (en) | Distributed photovoltaic inverter control system and method | |
CN107644118B (en) | Intelligent power distribution soft switch time sequence optimization method integrating energy storage | |
CN104505865B (en) | The many Proxy Methods of active distribution network active power balance and system | |
CN104270413A (en) | A communication system and method for distributed microgrid dispatching | |
CN105470960A (en) | SDN-based electric energy router dispatching method | |
Nguyen et al. | Environmental-aware virtual data center network | |
CN105610615B (en) | A kind of power distribution network dispatching method and system based on software defined network | |
CN116722576B (en) | A kind of offshore wind power DC transmission topology circuit and system based on hybrid converter valve | |
CN112491034B (en) | Electric power information physical system modeling method based on alternating current power flow model | |
CN112103997B (en) | Active power distribution network operation flexibility improving method considering data center adjustment potential | |
CN106059918A (en) | Energy internet control layered architecture based on SDN (Software Defined Networking) and scheduling method | |
CN218482665U (en) | A redundant coordination control device for large-capacity energy storage system | |
CN102931688B (en) | Combined regenerative energy power supply device | |
CN105305493B (en) | A kind of light for interconnected operation stores up independent micro-capacitance sensor topology | |
CN107846360B (en) | SDN-based energy router and electric energy transmission method | |
CN207731116U (en) | A kind of family electric energy collection device | |
CN108768867B (en) | Software-defined routing architecture method for energy internet | |
CN103607051B (en) | A kind of transformer station's enlargement method and system | |
CN116016522A (en) | Cloud edge end collaborative new energy terminal monitoring architecture | |
CN116031911A (en) | An energy management method for energy interconnection networking of an off-grid optical storage system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |