CN107846023A - A kind of improved network loss duty value direct current optimal power flow computational methods - Google Patents

A kind of improved network loss duty value direct current optimal power flow computational methods Download PDF

Info

Publication number
CN107846023A
CN107846023A CN201711265455.6A CN201711265455A CN107846023A CN 107846023 A CN107846023 A CN 107846023A CN 201711265455 A CN201711265455 A CN 201711265455A CN 107846023 A CN107846023 A CN 107846023A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
loss
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711265455.6A
Other languages
Chinese (zh)
Other versions
CN107846023B (en
Inventor
赵静波
刘建坤
卫志农
孙国强
周前
张清松
朱鑫要
王大江
解兵
徐珂
朱梓荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201711265455.6A priority Critical patent/CN107846023B/en
Publication of CN107846023A publication Critical patent/CN107846023A/en
Application granted granted Critical
Publication of CN107846023B publication Critical patent/CN107846023B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/04Circuit arrangements for AC mains or AC distribution networks for connecting networks of the same frequency but supplied from different sources
    • H02J3/06Controlling transfer of power between connected networks; Controlling sharing of load between connected networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Public Health (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种改进的网损等值负荷直流最优潮流计算方法,包括以下步骤:(1)在最优潮流直流模型的线路两端引入等效线损对地电阻,形成网损等值负荷模型,并推导对地电阻的电阻值;(2)从交流最优潮流模型出发,推导线路的有功损耗公式;(3)对有功损耗公式中的三角函数项进行多项式拟合,并利用系统特性消去公式中的电压幅值项;(4)将线路的有功损耗等效分配给线路两端的等效对地电阻,形成改进的网损等值负荷直流最优潮流模型。在测试中验证本发明模型的精确性和高效性,本发明提供的方法有效提高了网损等值负荷模型的计算精度,也保证了模型的计算效率,提高了网损等值负荷模型的实用价值。

The invention discloses an improved DC optimal power flow calculation method for network loss equivalent load, which includes the following steps: (1) introducing equivalent line loss resistance to ground at both ends of the line of the optimal power flow DC model to form network loss, etc. (2) Starting from the AC optimal power flow model, deduce the active power loss formula of the line; (3) Carry out polynomial fitting on the trigonometric function term in the active power loss formula, and use System characteristics Eliminate the voltage amplitude term in the formula; (4) Equivalently distribute the active power loss of the line to the equivalent resistance to ground at both ends of the line to form an improved DC optimal power flow model for equivalent loads of network losses. The accuracy and high efficiency of the model of the present invention are verified in the test. The method provided by the present invention effectively improves the calculation accuracy of the network loss equivalent load model, also ensures the calculation efficiency of the model, and improves the practicality of the network loss equivalent load model. value.

Description

一种改进的网损等值负荷直流最优潮流计算方法An Improved Calculation Method for DC Optimal Power Flow of Network Loss Equivalent Load

技术领域technical field

本发明涉及一种电力系统线性化最优潮流计算方法,尤其涉及一种改进的网损等值负荷直流最优潮流计算方法。The invention relates to a linearized optimal power flow calculation method of a power system, in particular to an improved DC optimal power flow calculation method for net loss equivalent load.

背景技术Background technique

最优潮流计算(optimal power flow,OPF)于20世纪60年代由法国学者Carpentier首次提出,是保证电力系统安全经济运行的重要手段。交流最优潮流模型(alternating current optimal power flow,ACOPF)具有很强的非线性特征,且其变量间的耦合十分紧密,这导致该模型的计算效率较低,无法满足大规模系统的在线实时计算需求。因此,寻找合适的线性化最优潮流计算模型显得尤为重要。Optimal power flow calculation (optimal power flow, OPF) was first proposed by the French scholar Carpentier in the 1960s, and it is an important means to ensure the safe and economical operation of the power system. The AC optimal power flow model (alternating current optimal power flow, ACOPF) has strong nonlinear characteristics, and the coupling between its variables is very tight, which leads to low calculation efficiency of the model and cannot meet the online real-time calculation of large-scale systems. need. Therefore, it is particularly important to find a suitable linearized optimal power flow calculation model.

直流最优潮流(direct current optimal power flow,DCOPF)是目前求解速度最快的线性化最优潮流计算模型。但由于该模型忽略了网损因素的影响,无法有效表征系统的潮流特性,使得系统发电量与负荷的差额全部有平衡节点承担,这将导致系统的功率分布不合理,从而导致模型的计算误差较大,无法投入实际应用。Direct current optimal power flow (DCOPF) is currently the fastest linearized optimal power flow calculation model. However, because the model ignores the influence of network loss factors, it cannot effectively characterize the power flow characteristics of the system, so that the balance node will bear all the difference between the system's power generation and load, which will lead to unreasonable power distribution of the system, resulting in calculation errors of the model too large to be put into practical application.

研究考虑网损的直流模型有利于在保证模型求解效率的同时提高计算精度。目前较为完善的直流模型为网损等值负荷直流模型,该模型通过引入等效电阻的方式模拟网损对系统的影响。但现存模型多用系统有功功率和视在功率的关系近似描述线路损耗,该方法在等效过程中涉及到线路视在功率幅值与有功功率幅值比例因子的计算。由于该参数在迭代过程中是一个不断变化的量,现存模型常将其设为定值,存在一定不足,因此会影响网损等值负荷模型的计算精度。The study of the DC model considering the network loss is beneficial to improve the calculation accuracy while ensuring the efficiency of the model solution. At present, the relatively complete DC model is the network loss equivalent load DC model, which simulates the influence of network loss on the system by introducing equivalent resistance. However, the existing models mostly use the relationship between the system active power and apparent power to describe the line loss approximately. This method involves the calculation of the proportional factor of the line apparent power amplitude and active power amplitude in the equivalent process. Since this parameter is a constantly changing quantity in the iterative process, the existing models often set it as a fixed value, which has certain shortcomings, which will affect the calculation accuracy of the network loss equivalent load model.

发明内容Contents of the invention

发明目的:针对以上问题,本发明提出一种改进的网损等值负荷直流最优潮流计算方法。Purpose of the invention: Aiming at the above problems, the present invention proposes an improved DC optimal power flow calculation method for network loss equivalent load.

技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种改进的网损等值负荷直流最优潮流计算方法,包括步骤:Technical solution: In order to achieve the purpose of the present invention, the technical solution adopted in the present invention is: an improved DC optimal power flow calculation method for network loss equivalent load, including steps:

(1)在最优潮流直流模型的线路两端引入等效线损对地电阻,形成网损等值负荷模型,并推导对地电阻的电阻值;(1) Introduce the equivalent line loss resistance to ground at both ends of the line of the optimal power flow DC model to form a network loss equivalent load model, and deduce the resistance value of the ground resistance;

(2)从交流最优潮流模型出发,推导线路的有功损耗公式;(2) Starting from the AC optimal power flow model, deduce the active power loss formula of the line;

(3)对有功损耗公式中的三角函数项进行多项式拟合,并利用系统特性消去公式中的电压幅值项;(3) Carry out polynomial fitting to the trigonometric function term in the active loss formula, and use the system characteristic to eliminate the voltage amplitude term in the formula;

(4)将线路的有功损耗等效分配给线路两端的等效对地电阻,形成改进的网损等值负荷直流最优潮流模型。(4) The active power loss of the line is equivalently distributed to the equivalent resistance to ground at both ends of the line to form an improved DC optimal power flow model for equivalent loads of network losses.

所述步骤(1)中,直流最优潮流模型中等效对地电阻的有功损耗为:In the step (1), the active power loss of the equivalent ground resistance in the DC optimal power flow model is:

式中,Pequ,i、Pequ,j为节点i、j上等效对地电阻的有功损耗,Ui、Uj为节点i、j的电压幅值,requ,ij为支路两端的等效对地电阻;Ploss,ij为支路有功损耗;In the formula, P equ,i and P equ,j are the active power losses of the equivalent ground resistance on nodes i and j, U i and U j are the voltage amplitudes of nodes i and j, r equ,ij are the two The equivalent resistance to ground at the terminal; P loss,ij is the active power loss of the branch;

取Ui=Uj=1,得:Take U i =U j =1, get:

requ,ij=2/Ploss,ij (2)。r equ,ij =2/P loss,ij (2).

所述步骤(2)中,交流最优潮流模型中有功功率表达式为:In the step (2), the active power expression in the AC optimal power flow model is:

式中,i、j为线路两端的节点编号,θij=θij为节点i和节点j的电压相角差,θi为节点i的电压相角,θj为节点j的电压相角,gij、bij分别为线路的电导和电纳,Pij为节点i流向j的有功功率;In the formula, i and j are the node numbers at both ends of the line, θ ij = θ i - θ j is the voltage phase angle difference between node i and node j, θ i is the voltage phase angle of node i, θ j is the voltage of node j Phase angle, g ij and b ij are the conductance and susceptance of the line respectively, and P ij is the active power flowing from node i to j;

交流最优潮流模型的线路有功损耗为:The line active power loss of the AC optimal power flow model is:

所述步骤(3)中,对有功损耗公式中的三角函数项进行多项式拟合得:In described step (3), polynomial fitting is carried out to the trigonometric function item in active loss formula:

将式(5)代入式(4)中得:Substitute formula (5) into formula (4):

式中,Uij=Ui-Uj为线路两端的电压幅值差;In the formula, U ij =U i -U j is the voltage amplitude difference at both ends of the line;

因Uij<<θij,忽略式(6)中的Uij项得:Because U ij << θ ij , ignoring the U ij item in formula (6):

所述步骤(4)中,直流最优潮流模型中功率平衡方程为:In the step (4), the power balance equation in the DC optimal power flow model is:

式中,ΔPi为节点i的有功功率不平衡量,PGi为第i台发电机有功出力,PDi为节点i的有功负荷,为以支路电抗的倒数建立的节点导纳矩阵元素,θj为节点j的电压相角;In the formula, ΔP i is the active power imbalance of node i, P Gi is the active output of generator i, P Di is the active load of node i, is the node admittance matrix element established by the reciprocal of branch reactance, θ j is the voltage phase angle of node j;

结合式(1),式(2)和式(7)可得节点i的网损等值负荷Pequ,i为:Combining formula (1), formula (2) and formula (7), the network loss equivalent load P equ,i of node i can be obtained as:

减去各节点的网损等值负荷,改进的网损等值负荷模型中功率平衡方程为:Subtracting the network loss equivalent load of each node, the power balance equation in the improved network loss equivalent load model is:

式中,f(x)为最优潮流的目标函数,nb为节点个数,ng为发电机个数,a2i、a1i和a0i为第i台发电机耗费特性参数;θi为节点i的电压相角;θ i为为节点i的电压相角的下限值和上限值;PGi为第i台发电机有功出力;P Gi为第i台发电机有功出力的下限值和上限值。In the formula, f(x) is the objective function of the optimal power flow, n b is the number of nodes, n g is the number of generators, a 2i , a 1i and a 0i are the consumption characteristic parameters of the i-th generator; θ i is the voltage phase angle of node i; θ i , is the lower limit and upper limit of the voltage phase angle of node i; P Gi is the active output of the i-th generator; P Gi , It is the lower limit and upper limit of the active output of the i generator.

有益效果:本发明改进的网损等值负荷直流最优潮流模型,从ACOPF模型出发对有功损耗公式进行重新推导,利用系统运行特性消去有功损耗公式中的电压幅值项,使其适用于DCOPF模型,消除了现存网损等值负荷模型对于视在功率与有功功率比例因子取值准确度的依赖性,有效提高了模型的计算精度,也保证了模型的计算效率,有效提高了网损等值负荷模型的适用范围。Beneficial effects: The improved network loss equivalent load DC optimal power flow model of the present invention re-deduces the active power loss formula from the ACOPF model, and uses the system operating characteristics to eliminate the voltage amplitude item in the active power loss formula, making it suitable for DCOPF The model eliminates the dependence of the existing network loss equivalent load model on the accuracy of the scale factor of apparent power and active power, effectively improves the calculation accuracy of the model, ensures the calculation efficiency of the model, and effectively improves the network loss, etc. The range of applicability of the value loading model.

附图说明Description of drawings

图1是网损等值负荷模型示意图。Figure 1 is a schematic diagram of a network loss equivalent load model.

具体实施方式Detailed ways

下面结合附图和实施例对本发明的技术方案作进一步的说明。The technical solutions of the present invention will be further described below in conjunction with the accompanying drawings and embodiments.

如图1所示是网损等值负荷模型,对直流最优潮流进行改进,以提高直流最优潮流计算精度。网损等值负荷模型的主要思想是在直流最优潮流模型的基础上,考虑线路损耗因素,将线路损耗平均分配为线路两端等效对地电阻的损耗。图1中,requ,ij为接入支路两端的等效对地电阻;Ploss,ij为支路有功损耗。As shown in Figure 1, it is the network loss equivalent load model, which improves the DC optimal power flow to improve the calculation accuracy of the DC optimal power flow. The main idea of the network loss equivalent load model is to consider the line loss factor on the basis of the DC optimal power flow model, and evenly distribute the line loss as the loss of the equivalent resistance to ground at both ends of the line. In Figure 1, r equ,ij is the equivalent resistance to ground at both ends of the access branch; P loss,ij is the active loss of the branch.

在网损等值负荷直流最优潮流模型中,取Ui≈Uj≈1,Ui、Uj分别为各节点的电压幅值。因此当requ,ij=2/Ploss,ij时,每个等效对地电阻消耗的有功功率均为(1/2)Ploss,ij,此时,满足Pij=Pji+Ploss,ij,Pij为节点i流向j的有功功率,符合线路的实际潮流情况,因此只要寻找合理的线损表达式就能有效提高直流最优潮流模型的计算精度。In the DC optimal power flow model of network loss equivalent load, U i ≈ U j ≈ 1, where U i and U j are the voltage amplitudes of each node respectively. Therefore, when r equ,ij =2/P loss,ij , the active power consumed by each equivalent ground resistance is (1/2)P loss,ij , and at this time, satisfy P ij =P ji +P loss ,ij , P ij is the active power flowing from node i to j, which is in line with the actual power flow of the line. Therefore, as long as a reasonable line loss expression is found, the calculation accuracy of the DC optimal power flow model can be effectively improved.

现存方法多利用线路的有功功率和视在功率的关系近似描述线路损耗,该方法在等效过程中涉及到线路视在功率幅值与有功功率幅值比例因子的计算。由于该参数在迭代过程中是一个不断变化的量,而现存方法多将其设为定值,存在一定不足,因此会影响网损等值负荷模型的计算精度。The existing methods mostly use the relationship between the active power and apparent power of the line to describe the line loss approximately. This method involves the calculation of the proportional factor between the apparent power amplitude and the active power amplitude of the line in the equivalent process. Since this parameter is a constantly changing quantity in the iterative process, and the existing methods mostly set it as a fixed value, there are certain deficiencies, which will affect the calculation accuracy of the network loss equivalent load model.

本发明从交流最优潮流模型出发重新推导线路的有功损耗公式,对交流最优潮流模型中的三角函数项采用多项式拟合的方式有效等值,并利用系统运行特性消去有功损耗公式中的电压幅值项,使其适用于直流最优潮流模型。将上述推导所得有功损耗计算公式应用于网损等值负荷直流最优潮流模型中,从而消除现存网损等值负荷模型对于视在功率与有功功率比例因子取值准确度的依赖性,有效提高了模型的计算精度。The present invention re-deduces the active power loss formula of the line starting from the AC optimal power flow model, adopts polynomial fitting for the trigonometric function items in the AC optimal power flow model to effectively equivalence, and uses the operating characteristics of the system to eliminate the voltage in the active power loss formula The magnitude term makes it suitable for the DC optimal power flow model. Apply the calculation formula of active power loss derived above to the DC optimal power flow model of network loss equivalent load, thereby eliminating the dependence of the existing network loss equivalent load model on the accuracy of the scale factor of apparent power and active power, effectively improving The calculation accuracy of the model is improved.

本发明提出的改进的网损等值负荷直流最优潮流计算方法,具体包括步骤:The improved DC optimal power flow calculation method for network loss equivalent load proposed by the present invention specifically includes steps:

(1)推导直流最优潮流模型,并在直流模型的线路两端引入等效线损对地电阻,形成网损等值负荷模型,并推导对地电阻requ,ij的取值;(1) Deduce the DC optimal power flow model, and introduce the equivalent line loss resistance to the ground at both ends of the line of the DC model to form the equivalent load model of the network loss, and deduce the value of the ground resistance r equ,ij ;

如图1,等效对地电阻的有功损耗可以写为:As shown in Figure 1, the active power loss of the equivalent resistance to ground can be written as:

式中,Pequ,i、Pequ,j分别为节点i、j上等效对地电阻的有功损耗,Ui、Uj分别为各节点的电压幅值,requ,ij为接入支路两端的等效对地电阻;Ploss,ij为支路有功损耗。In the formula, P equ,i and P equ,j are the active power losses of the equivalent ground resistance on nodes i and j respectively, U i and U j are the voltage amplitudes of each node respectively, r equ,ij is the access branch The equivalent resistance to ground at both ends of the circuit; P loss,ij is the active power loss of the branch circuit.

在DCOPF中,取Ui≈Uj≈1,因此有1/requ,ij=0.5Ploss,ij,故:In DCOPF, U i ≈U j ≈1, so there is 1/r equ,ij =0.5P loss,ij , so:

requ,ij=2/Ploss,ij (2)r equ,ij =2/P loss,ij (2)

(2)从交流最优潮流模型出发,推导线路的有功损耗公式;(2) Starting from the AC optimal power flow model, deduce the active power loss formula of the line;

在ACOPF模型中,忽略线路对地阻抗,则其有功功率可表述为:In the ACOPF model, ignoring the line-to-ground impedance, its active power can be expressed as:

式中,i、j为线路两端的节点编号,θij=θij为节点i和节点j的电压相角差,θi为节点i的电压相角,θj为节点j的电压相角,gij、bij分别为线路的电导和电纳,Pij为节点i流向j的有功功率。In the formula, i and j are the node numbers at both ends of the line, θ ij = θ i - θ j is the voltage phase angle difference between node i and node j, θ i is the voltage phase angle of node i, θ j is the voltage of node j Phase angle, g ij and b ij are the conductance and susceptance of the line respectively, and P ij is the active power flowing from node i to j.

根据线路损耗的定义可得,交流模型中线路ij的有功损耗为:According to the definition of line loss, the active loss of line ij in the AC model is:

(3)对损耗公式中的三角函数项进行多项式拟合,并利用系统特性消去公式中的电压幅值项;(3) Carry out polynomial fitting to the trigonometric function term in the loss formula, and use the system characteristic to eliminate the voltage amplitude term in the formula;

式(4)中含有部分三角函数项,使得电压幅值和相角的耦合十分紧密,不便于方程的简化。因此,本发明根据系统线路两端的相角差通常在-π/6到π/6之间的特性,利用MATLAB拟合工具箱对其进行拟合。Equation (4) contains some trigonometric function terms, which makes the coupling of voltage amplitude and phase angle very tight, which is not convenient for simplification of the equation. Therefore, according to the characteristic that the phase angle difference at both ends of the system line is usually between -π/6 and π/6, the present invention uses the MATLAB fitting toolbox to fit it.

具体拟合过程为,在-π/6到π/6之间等间距采样100个点,将其值存于矩阵X中,并求各点值的余弦,将其存于矩阵Y中,将矩阵X和Y导入MATLAB拟合工具箱,从而可得到以下等效关系:The specific fitting process is to sample 100 points at equal intervals between -π/6 and π/6, store their values in matrix X, and find the cosine of each point value, store them in matrix Y, and The matrices X and Y are imported into the MATLAB fitting toolbox, so that the following equivalent relationship can be obtained:

为方便后续表述,令0.49=C。将式(5)代入式(4)中可得:For the convenience of subsequent expression, let 0.49=C. Substituting formula (5) into formula (4) can get:

式中,Uij=Ui-Uj为线路两端的电压幅值差。In the formula, U ij =U i -U j is the voltage amplitude difference at both ends of the line.

由于电力系统在运行过程中节点电压一般都保持在1.0pu左右,因此线路首末端电压幅值差的数值较小。经过大量的算例验证,可得Uij<<θij,因此可忽略式(6)中的Uij项,此时,式(6)可写为:Since the node voltage of the power system is generally maintained at about 1.0pu during operation, the value of the voltage amplitude difference between the beginning and the end of the line is relatively small. After a large number of calculation examples, it can be obtained that U ij << θ ij , so the U ij term in formula (6) can be ignored. At this time, formula (6) can be written as:

(4)将线路损耗等效分配给线路两端的等效对地电阻,形成改进网损等值负荷直流最优潮流模型;(4) Equivalently allocate the line loss to the equivalent ground resistance at both ends of the line to form an improved network loss equivalent load DC optimal power flow model;

在直流最优潮流模型中,功率平衡约束可以写为:In the DC optimal power flow model, the power balance constraint can be written as:

式中,ΔPi为节点i的有功功率不平衡量,PGi为第i台发电机有功出力,PDi为节点i的有功负荷,为以支路电抗的倒数建立的节点导纳矩阵元素,θj为节点j的电压相角。In the formula, ΔP i is the active power imbalance of node i, P Gi is the active output of generator i, P Di is the active load of node i, is the node admittance matrix element established by the reciprocal of branch reactance, θ j is the voltage phase angle of node j.

由图1可知,网损等值负荷模型相当于在直流模型的基础上,在各节点上引入网损等值负荷,因此,网损等值负荷模型中的功率平衡方程还需减去各节点的网损等值负荷。It can be seen from Figure 1 that the network loss equivalent load model is equivalent to introducing the network loss equivalent load on each node on the basis of the DC model. Therefore, the power balance equation in the network loss equivalent load model needs to subtract the The network loss equivalent load.

结合式(1),式(2)和式(7)可得节点i的网损等值负荷Pequ,i为:Combining formula (1), formula (2) and formula (7), the network loss equivalent load P equ,i of node i can be obtained as:

经过上述推导,改进的网损等值负荷直流最优潮流模型可以表述成以下形式:After the above derivation, the improved network loss equivalent load DC optimal power flow model can be expressed in the following form:

式中,f(x)为最优潮流的目标函数,nb为节点个数,ng为发电机个数,a2i、a1i和a0i为第i台发电机耗费特性参数;θi为节点i的电压相角;θ i为为节点i的电压相角的下限值和上限值;PGi为第i台发电机有功出力;P Gi为第i台发电机有功出力的下限值和上限值。In the formula, f(x) is the objective function of the optimal power flow, n b is the number of nodes, n g is the number of generators, a 2i , a 1i and a 0i are the consumption characteristic parameters of the i-th generator; θ i is the voltage phase angle of node i; θ i , is the lower limit and upper limit of the voltage phase angle of node i; P Gi is the active output of the i-th generator; P Gi , It is the lower limit and upper limit of the active output of the i generator.

(5)在测试集中验证模型的精确性和高效性。(5) Verify the accuracy and efficiency of the model in the test set.

为验证本发明相较现有技术的优势,对本发明所述模型的计算精度进行验证,同时以对比文件1(何天雨,卫志农,孙国强等.基于网损等值负荷模型的改进直流最优潮流算法[J].电力系统自动化,2016,40(6):58-64)所述模型以及DCOPF模型作为对比。为方便叙述,定义ACOPF模型为AC,DCOPF为DC,对比文件1所述模型定义为M_1,本发明所述模型定义为M_2。In order to verify the advantages of the present invention compared with the prior art, the calculation accuracy of the model of the present invention is verified, and at the same time, the improved DC optimal load model based on the network loss equivalent load model is compared with the comparative document 1 (He Tianyu, Wei Zhinong, Sun Guoqiang, etc. Power flow algorithm [J]. Power System Automation, 2016, 40(6): 58-64) and the DCOPF model for comparison. For the convenience of description, the ACOPF model is defined as AC, the DCOPF model is defined as DC, the model described in Comparative Document 1 is defined as M_1, and the model described in the present invention is defined as M_2.

本发明采用原对偶内点法对各模型进行求解,在MATLAB 2014a平台上实现算法编程。对IEEE 300节点系统、Polish 2383节点系统、Polish 2736节点系统和一个8304节点大系统进行算例测试。The present invention uses the primal dual interior point method to solve each model, and implements algorithm programming on the MATLAB 2014a platform. Carry out numerical example tests on IEEE 300-node system, Polish 2383-node system, Polish 2736-node system and a large 8304-node system.

表1Table 1

表1给出AC,DC,M_1和M_2的计算结果,其中相对误差指的是该模型与AC模型之间的相对误差。由表1可知,M_1和M_2可有效提高DC模型的计算精度。同时,由于M_2更精确地表述了线路损耗的近似公式,该模型有效提高了网损等值负荷模型的计算精度,成功将计算误差控制在了千分之五以内,而对于IEEE 300节点系统和Polish 2736节点系统,M_2甚至将误差控制在了万分之五左右。Table 1 gives the calculation results of AC, DC, M_1 and M_2, where the relative error refers to the relative error between the model and the AC model. It can be seen from Table 1 that M_1 and M_2 can effectively improve the calculation accuracy of the DC model. At the same time, because M_2 expresses the approximate formula of the line loss more accurately, the model effectively improves the calculation accuracy of the network loss equivalent load model, and successfully controls the calculation error within five thousandths. For the IEEE 300 node system and Polish 2736 node system, M_2 even controls the error to about 5/10,000.

表2Table 2

表2给出不同模型求解不同系统OPF问题所需计算时间,以验证本发明所述线路有功损耗计算方法对计算模型求解效率的影响。从结果可以看出,得益于MATLAB强大的计算能力,AC模型在求解大多数系统的OPF问题时,均能在50次迭代、7s内有效收敛。但对于本发明测试的8304节点大系统,AC模型需迭代796次,收敛用时约165s,远远超出了在线应用对于计算效率的要求,因此本发明对DCOPF模型的探究具有重要的现实意义。在几种模型中,由于DC模型对系统功率平衡方程做了大量简化,因此其迭代次数最少,计算效率最高,且对节点数较少的小系统该模型对效率的提升也十分明显。M_1和M_2的迭代次数和计算时间基本一致,这说明本发明所述方法并不会影响网损等值负荷模型的求解效率。由于这两个模型中都残留有非线性部分,因此其迭代次数和计算时间都略多于DC模型。但即便如此,其对OPF计算效率的提升仍然十分显著,即使是8304节点大系统,仍将计算时间控制在了2s以内,相对AC模型减少了99%。Table 2 shows the calculation time required for different models to solve the OPF problems of different systems, so as to verify the influence of the line active loss calculation method of the present invention on the calculation model solution efficiency. It can be seen from the results that thanks to the powerful computing power of MATLAB, the AC model can effectively converge within 50 iterations and 7s when solving the OPF problems of most systems. However, for the 8304-node large system tested by the present invention, the AC model needs to be iterated 796 times, and the convergence time is about 165s, which is far beyond the requirements of online applications for computational efficiency. Therefore, the present invention has important practical significance for the exploration of the DCOPF model. Among several models, since the DC model greatly simplifies the system power balance equation, it has the least number of iterations and the highest calculation efficiency, and the efficiency of the model is also significantly improved for small systems with a small number of nodes. The number of iterations and calculation time of M_1 and M_2 are basically the same, which shows that the method of the present invention will not affect the solution efficiency of the network loss equivalent load model. Since there are residual nonlinear parts in both models, the number of iterations and calculation time are slightly longer than those of the DC model. But even so, its improvement of OPF calculation efficiency is still very significant. Even for a large system with 8304 nodes, the calculation time is still controlled within 2s, which is 99% lower than that of the AC model.

综上所述,M_2有效改善了网损等值负荷模型的计算精度,且并未因此影响其求解速度,故较M_1具有更高的实际应用价值。In summary, M_2 effectively improves the calculation accuracy of the network loss equivalent load model, and does not affect its solution speed, so it has higher practical application value than M_1.

Claims (5)

1.一种改进的网损等值负荷直流最优潮流计算方法,其特征在于:包括步骤:1. An improved network loss equivalent load DC optimal power flow calculation method, characterized in that: comprising the steps: (1)在最优潮流直流模型的线路两端引入等效线损对地电阻,形成网损等值负荷模型,并推导对地电阻的电阻值;(1) Introduce the equivalent line loss resistance to ground at both ends of the line of the optimal power flow DC model to form a network loss equivalent load model, and deduce the resistance value of the ground resistance; (2)从交流最优潮流模型出发,推导线路的有功损耗公式;(2) Starting from the AC optimal power flow model, deduce the active power loss formula of the line; (3)对有功损耗公式中的三角函数项进行多项式拟合,并利用系统特性消去公式中的电压幅值项;(3) Carry out polynomial fitting to the trigonometric function term in the active loss formula, and use the system characteristic to eliminate the voltage amplitude term in the formula; (4)将线路的有功损耗等效分配给线路两端的等效对地电阻,形成改进的网损等值负荷直流最优潮流模型。(4) The active power loss of the line is equivalently distributed to the equivalent resistance to ground at both ends of the line to form an improved DC optimal power flow model for equivalent loads of network losses. 2.根据权利要求1所述的改进的网损等值负荷直流最优潮流计算方法,其特征在于:所述步骤(1)中,直流最优潮流模型中等效对地电阻的有功损耗为:2. The improved network loss equivalent load DC optimal power flow calculation method according to claim 1, characterized in that: in the step (1), the active loss of the equivalent ground resistance in the DC optimal power flow model is: <mrow> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msubsup> <mi>U</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>r</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mfrac> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msubsup> <mi>U</mi> <mi>j</mi> <mn>2</mn> </msubsup> <msub> <mi>r</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mfrac> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>q</mi><mi>u</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><mfrac><msubsup><mi>U</mi><mi>i</mi><mn>2</mn></msubsup><msub><mi>r</mi><mrow><mi>e</mi><mi>q</mi><mi>u</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub></mfrac><mo>=</mo><msub><mi>P</mi><mrow><mi>e</mi><mi>q</mi><mi>u</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>=</mo><mfrac><msubsup><mi>U</mi><mi>j</mi><mn>2</mn></msubsup><msub><mi>r</mi><mrow><mi>e</mi><mi>q</mi><mi>u</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub></mfrac><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msub><mi>P</mi><mrow><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow> 式中,Pequ,i、Pequ,j为节点i、j上等效对地电阻的有功损耗,Ui、Uj为节点i、j的电压幅值,requ,ij为支路两端的等效对地电阻;Ploss,ij为支路有功损耗;In the formula, P equ,i and P equ,j are the active power losses of the equivalent ground resistance on nodes i and j, U i and U j are the voltage amplitudes of nodes i and j, r equ,ij are the two The equivalent resistance to ground at the terminal; P loss,ij is the active power loss of the branch; 取Ui=Uj=1,得:Take U i =U j =1, get: requ,ij=2/Ploss,ij (2)。r equ,ij =2/P loss,ij (2). 3.根据权利要求1所述的改进的网损等值负荷直流最优潮流计算方法,其特征在于:所述步骤(2)中,交流最优潮流模型中有功功率表达式为:3. The improved network loss equivalent load DC optimal power flow calculation method according to claim 1, characterized in that: in the step (2), the active power expression in the AC optimal power flow model is: <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>U</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>U</mi> <mi>j</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>U</mi> <mi>j</mi> </msub> <msub> <mi>sin&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>P</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>g</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msubsup><mi>U</mi><mi>i</mi><mn>2</mn></msubsup><mo>-</mo><msub><mi>g</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>U</mi><mi>i</mi></msub><msub><mi>U</mi><mi>j</mi></msub><msub><mi>cos&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>-</mo><msub><mi>b</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>U</mi><mi>i</mi></msub><msub><mi>U</mi><mi>j</mi></msub><msub><mi>sin&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 式中,i、j为线路两端的节点编号,θij=θij为节点i和节点j的电压相角差,θi为节点i的电压相角,θj为节点j的电压相角,gij、bij分别为线路的电导和电纳,Pij为节点i流向j的有功功率;In the formula, i and j are the node numbers at both ends of the line, θ ij = θ i - θ j is the voltage phase angle difference between node i and node j, θ i is the voltage phase angle of node i, θ j is the voltage of node j Phase angle, g ij and b ij are the conductance and susceptance of the line respectively, and P ij is the active power flowing from node i to j; 交流最优潮流模型的线路有功损耗为:The line active power loss of the AC optimal power flow model is: <mrow> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>j</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>U</mi> <mi>j</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>U</mi> <mi>i</mi> </msub> <msub> <mi>U</mi> <mi>j</mi> </msub> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> <mrow><msub><mi>P</mi><mrow><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>P</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>+</mo><msub><mi>P</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><mo>=</mo><msub><mi>g</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mrow><mo>(</mo><msubsup><mi>U</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>U</mi><mi>j</mi><mn>2</mn></msubsup><mo>)</mo></mrow><mo>-</mo><mn>2</mn><msub><mi>g</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msub><mi>U</mi><mi>i</mi></msub><msub><mi>U</mi><mi>j</mi></msub><msub><mi>cos&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow><mo>.</mo></mrow> 4.根据权利要求1所述的改进的网损等值负荷直流最优潮流计算方法,其特征在于:所述步骤(3)中,对有功损耗公式中的三角函数项进行多项式拟合得:4. the improved network loss equivalent load direct current optimal power flow calculation method according to claim 1, is characterized in that: in described step (3), polynomial fitting is carried out to the trigonometric function term in active loss formula: <mrow> <msub> <mi>cos&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>-</mo> <msubsup> <mi>C&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>cos&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>-</mo><msubsup><mi>C&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 将式(5)代入式(4)中得:Substitute formula (5) into formula (4): <mrow> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>U</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <mn>2</mn> <msub> <mi>Cg</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>P</mi><mrow><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><msub><mi>g</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msubsup><mi>U</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>+</mo><mn>2</mn><msub><mi>Cg</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msubsup><mi>&amp;theta;</mi><mrow><mi>i</mi>mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow> 式中,Uij=Ui-Uj为线路两端的电压幅值差;In the formula, U ij =U i -U j is the voltage amplitude difference at both ends of the line; 因Uij<<θij,忽略式(6)中的Uij项得:Because U ij << θ ij , ignoring the U ij item in formula (6): <mrow> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>Cg</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> <mrow><msub><mi>P</mi><mrow><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>2</mn><msub><mi>Cg</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msubsup><mi>&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow><mo>.</mo></mrow> 5.根据权利要求1所述的改进的网损等值负荷直流最优潮流计算方法,其特征在于:所述步骤(4)中,直流最优潮流模型中功率平衡方程为:5. The improved network loss equivalent load DC optimal power flow calculation method according to claim 1, characterized in that: in the step (4), the power balance equation in the DC optimal power flow model is: <mrow> <msub> <mi>&amp;Delta;P</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>D</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>b</mi> </msub> </munderover> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;Delta;P</mi><mi>i</mi></msub><mo>=</mo><msub><mi>P</mi><mrow><mi>G</mi><mi>i</mi></mrow></msub><mo>-</mo><msub><mi>P</mi><mrow><mi>D</mi><mi>i</mi></mrow></msub><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>n</mi><mi>b</mi></msub></mrow>munderover><msubsup><mi>B</mi><mrow><mi>i</mi><mi>j</mi></mrow><mo>*</mo></msubsup><msub><mi>&amp;theta;</mi><mi>j</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow> 式中,ΔPi为节点i的有功功率不平衡量,PGi为第i台发电机有功出力,PDi为节点i的有功负荷,为以支路电抗的倒数建立的节点导纳矩阵元素,θj为节点j的电压相角;In the formula, ΔP i is the active power imbalance of node i, P Gi is the active output of generator i, P Di is the active load of node i, is the node admittance matrix element established by the reciprocal of branch reactance, θ j is the voltage phase angle of node j; 结合式(1),式(2)和式(7)可得节点i的网损等值负荷Pequ,i为:Combining formula (1), formula (2) and formula (7), the network loss equivalent load P equ,i of node i can be obtained as: <mrow> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>s</mi> <mi>s</mi> <mo>,</mo> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>i</mi> </mrow> </munder> <mrow> <mo>(</mo> <msub> <mi>Cg</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msubsup> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>P</mi><mrow><mi>e</mi><mi>q</mi><mi>u</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>=</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>&amp;NotEqual;</mo><mi>i</mi></mrow></munder><mrow><mo>(</mo><msub><mi>P</mi><mrow><mi>l</mi><mi>o</mi><mi>s</mi><mi>s</mi><mo>,</mo><mi>i</mi><mi>j</mi></mrow></msub><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><munder><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>&amp;Element;</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo>&amp;NotEqual;</mo><mi>i</mi></mrow></munder><mrow><mo>(</mo><msub><mi>Cg</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><msubsup><mi>&amp;theta;</mi><mrow><mi>i</mi><mi>j</mi></mrow><mn>2</mn></msubsup><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>9</mn><mo>)</mo></mrow></mrow> 减去各节点的网损等值负荷,改进的网损等值负荷模型中功率平衡方程为:Subtracting the network loss equivalent load of each node, the power balance equation in the improved network loss equivalent load model is: <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>o</mi> <mi>b</mi> <mi>j</mi> </mrow> </mtd> <mtd> <mrow> <mi>min</mi> <mi> </mi> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>g</mi> </msub> </munderover> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mrow> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>a</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>o</mi><mi>b</mi><mi>j</mi></mrow></mtd><mtd><mrow><mi>min</mi><mi></mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>n</mi><mi>g</mi></msub></munderover><mrow><mo>(</mo><msub><mi>a</mi><mrow><mn>2</mn><mi>i</mi></mrow></msub><msubsup><mi>P</mi><mrow><mi>G</mi><mi>i</mi></mrow><mn>2</mn></msubsup><mo>+</mo><msub><mi>a</mi><mrow><mn>1</mn><mi>i</mi></mrow></msub><msub><mi>P</mi><mrow><mi>G</mi><mi>i</mi></mrow></msub><mo>+</mo><msub><mi>a</mi><mrow><mn>0</mn><mi>i</mi></mrow></msub><mo>)</mo></mrow></mrow></mtd></mtr></mtable></mn>mfenced> <mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;P</mi> <mi>i</mi> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>D</mi> <mi>i</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>b</mi> </msub> </munderover> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mi>&amp;theta;</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>e</mi> <mi>q</mi> <mi>u</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2...</mn> <msub> <mi>n</mi> <mi>b</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <munder> <mi>P</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2...</mn> <msub> <mi>n</mi> <mi>g</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <munder> <mi>&amp;theta;</mi> <mo>&amp;OverBar;</mo> </munder> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2...</mn> <msub> <mi>n</mi> <mi>b</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo></mrow></mtd><mtd><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>&amp;Delta;P</mi><mi>i</mi></msub><mo>=</mo><msub><mi>P</mi><mrow><mi>G</mi><mi>i</mi></mrow></msub><mo>-</mo><msub><mi>P</mi><mrow><mi>D</mi><mi>i</mi></mrow></msub><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><msub><mi>n</mi><mi>b</mi></msub></munderover><msubsup><mi>B</mi><mrow><mi>i</mi><mi>j</mi></mrow><mo>*</mo></msubsup><msub><mi>&amp;theta;</mi><mi>j</mi></msub><mo>-</mo><msub><mi>P</mi><mrow><mi>e</mi><mi>q</mi><mi>u</mi><mo>,</mo><mi>i</mi></mrow></msub><mo>,</mo></mrow></mtd><mtd><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2...</mn><msub><mi>n</mi><mi>b</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><munder><mi>P</mi><mo>&amp;OverBar;</mo></munder><mrow><mi>G</mi><mi>i</mi></mrow></msub><mo>&amp;le;</mo><msub><mi>P</mi><mrow><mi>G</mi><mi>i</mi></mrow></msub><mo>&amp;le;</mo><msub><mover><mi>P</mi><mo>&amp;OverBar;</mo></mover><mrow><mi>G</mi><mi>i</mi></mrow></msub><mo>,</mo></mrow></mtd><mtd><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2...</mn><msub><mi>n</mi><mi>g</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><munder><mi>&amp;theta;</mi><mo>&amp;OverBar;</mo></munder><mi>i</mi></msub><mo>&amp;le;</mo><msub><mi>&amp;theta;</mi><mi>i</mi></msub><mo>&amp;le;</mo><msub><mover><mi>&amp;theta;</mi><mo>&amp;OverBar;</mo></mover><mi>i</mi></msub><mo>,</mo></mrow></mtd><mtd><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2...</mn><msub><mi>n</mi><mi>b</mi></msub></mrow></mtd></mtr></mtable></mfenced></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow> 式中,f(x)为最优潮流的目标函数,nb为节点个数,ng为发电机个数,a2i、a1i和a0i为第i台发电机耗费特性参数;θi为节点i的电压相角;θ i为为节点i的电压相角的下限值和上限值;PGi为第i台发电机有功出力;P Gi为第i台发电机有功出力的下限值和上限值。In the formula, f(x) is the objective function of the optimal power flow, n b is the number of nodes, n g is the number of generators, a 2i , a 1i and a 0i are the consumption characteristic parameters of the i-th generator; θ i is the voltage phase angle of node i; θ i , is the lower limit and upper limit of the voltage phase angle of node i; P Gi is the active output of the i-th generator; P Gi , It is the lower limit and upper limit of the active output of the i generator.
CN201711265455.6A 2017-12-05 2017-12-05 An Improved Calculation Method of DC Optimal Power Flow for Equivalent Loads of Network Losses Active CN107846023B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711265455.6A CN107846023B (en) 2017-12-05 2017-12-05 An Improved Calculation Method of DC Optimal Power Flow for Equivalent Loads of Network Losses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711265455.6A CN107846023B (en) 2017-12-05 2017-12-05 An Improved Calculation Method of DC Optimal Power Flow for Equivalent Loads of Network Losses

Publications (2)

Publication Number Publication Date
CN107846023A true CN107846023A (en) 2018-03-27
CN107846023B CN107846023B (en) 2020-12-22

Family

ID=61664258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711265455.6A Active CN107846023B (en) 2017-12-05 2017-12-05 An Improved Calculation Method of DC Optimal Power Flow for Equivalent Loads of Network Losses

Country Status (1)

Country Link
CN (1) CN107846023B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110867861A (en) * 2019-12-04 2020-03-06 广西大学 An Accurate Defining Method of Theoretical Line Loss in Distribution Networks
CN112531718A (en) * 2020-12-21 2021-03-19 陕西航空电气有限责任公司 Load flow calculation method suitable for multi-electric-plane power system
CN113496439A (en) * 2021-06-16 2021-10-12 广东电网有限责任公司 Direct current power flow model optimization method and system considering network loss
CN114221555A (en) * 2021-11-05 2022-03-22 国网浙江省电力有限公司嘉兴供电公司 A multi-terminal flexible soft switch with power flow controller
CN115249974A (en) * 2022-08-25 2022-10-28 东南大学溧阳研究院 Direct current-based converter station active loss calculation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046840A1 (en) * 2015-09-14 2017-03-23 株式会社日立製作所 Voltage reliability evaluation/management system and voltage reliability evaluation/management method
CN107069741A (en) * 2017-04-20 2017-08-18 河海大学 A kind of novel linear tidal current computing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017046840A1 (en) * 2015-09-14 2017-03-23 株式会社日立製作所 Voltage reliability evaluation/management system and voltage reliability evaluation/management method
CN107069741A (en) * 2017-04-20 2017-08-18 河海大学 A kind of novel linear tidal current computing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何天雨: "基于网损等值负荷模型的改进直流最优潮流算法", 《电力系统自动化》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110867861A (en) * 2019-12-04 2020-03-06 广西大学 An Accurate Defining Method of Theoretical Line Loss in Distribution Networks
CN112531718A (en) * 2020-12-21 2021-03-19 陕西航空电气有限责任公司 Load flow calculation method suitable for multi-electric-plane power system
CN112531718B (en) * 2020-12-21 2024-03-15 陕西航空电气有限责任公司 Tidal current calculation method suitable for multi-electric aircraft power system
CN113496439A (en) * 2021-06-16 2021-10-12 广东电网有限责任公司 Direct current power flow model optimization method and system considering network loss
CN114221555A (en) * 2021-11-05 2022-03-22 国网浙江省电力有限公司嘉兴供电公司 A multi-terminal flexible soft switch with power flow controller
CN114221555B (en) * 2021-11-05 2023-10-10 国网浙江省电力有限公司嘉兴供电公司 A multi-terminal flexible soft switch with power flow controller
CN115249974A (en) * 2022-08-25 2022-10-28 东南大学溧阳研究院 Direct current-based converter station active loss calculation method
CN115249974B (en) * 2022-08-25 2023-05-30 东南大学溧阳研究院 DC-based active loss calculation method for converter station

Also Published As

Publication number Publication date
CN107846023B (en) 2020-12-22

Similar Documents

Publication Publication Date Title
CN107846023A (en) A kind of improved network loss duty value direct current optimal power flow computational methods
CN106549384B (en) A kind of general tidal current computing method of the electric system containing UPFC
CN104393592A (en) Temperature influence-considering optimal power flow algorithm of power system
CN105512502B (en) One kind is based on the normalized weight function the least square estimation method of residual error
CN103904643B (en) A kind of DC power flow computational methods considering network loss
CN102185308B (en) Power system state estimating method for taking zero injection measurement equality constraint into consideration
CN104037763B (en) A kind of algorithm quicksort tidal current computing method be applicable to containing small impedance branches system
CN108075480B (en) A state estimation method and system for an AC/DC system
CN111541246B (en) A pure embedded computing method for AC and DC power flow in power system
CN106295160B (en) AC-DC interconnecting power network Thevenin&#39;s equivalence parameter on-line calculation method
CN107069733A (en) The method of the harmonic flow calculation of energy internet
CN102545252B (en) Voltage source commutation-high voltage direct current (VSC-HVDC) power flow computing method based on three-stage convergence Newton method
CN104600697A (en) Quasi-direct current optimal power flow method considering temperature influence
CN104636829A (en) Decoupling algorithm for increasing temperature optimal power flow (OPF) calculation efficiency of electric power system
CN104022507B (en) A kind of rectangular coordinate Newton load flow calculation method
CN107994567A (en) A kind of broad sense Fast decoupled state estimation method
CN103793755A (en) Method for obtaining optimal power flow of mixed direct-current transmission system based on prime-dual interior point method
CN107039981A (en) One kind intends direct current linearisation probability optimal load flow computational methods
CN104899396A (en) Fast decoupled flow calculation method of modified coefficient matrix
CN105046588A (en) Improved DC (Direct Current) dynamic optimal power flow calculating method based on network loss iteration
CN108183484B (en) Decoupling semi-linear optimal power flow model based on hot start environment
CN104934973B (en) Power line loss calculation method considering temperature
CN105914789B (en) Inverter type distributed generation resource simplifies modeling method
CN102427227A (en) Method for estimating state of corrected rapid decoupling power system by considering zero injection constraint
CN105140914A (en) Method for accessing unified power flow controller (UPFC) into system and three-node power injection model

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant