CN107844627A - It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method - Google Patents

It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method Download PDF

Info

Publication number
CN107844627A
CN107844627A CN201710875350.6A CN201710875350A CN107844627A CN 107844627 A CN107844627 A CN 107844627A CN 201710875350 A CN201710875350 A CN 201710875350A CN 107844627 A CN107844627 A CN 107844627A
Authority
CN
China
Prior art keywords
mrow
msub
msup
mfrac
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710875350.6A
Other languages
Chinese (zh)
Inventor
周思达
孙浩然
刘莉
康杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201710875350.6A priority Critical patent/CN107844627A/en
Publication of CN107844627A publication Critical patent/CN107844627A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Software Systems (AREA)
  • Computer Hardware Design (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Geometry (AREA)
  • Algebra (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Evolutionary Computation (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Evolutionary Biology (AREA)

Abstract

A kind of only output Time variable structure modal parameter Bayesian Estimation method disclosed by the invention, belongs to Structural Dynamics technical field.AR factor projections into the function space represented by basic function sequence, are drawn functional sequence multi -components time correlation autoregression model FS VTAR by the present invention;FS VTAR parameter is estimated using bayes method, obtains the Posterior distrbutionp of the prior distribution of the response at all moment, parameter matrix and covariance matrix, likelihood function and priori probability density distribution function, calculating parameter matrix and covariance matrix;The model order and functional space exponent number of functional sequence multi -components time correlation autoregression model are determined according to BIC;Time variable structure modal parameter is asked using time-frozen method, the credibility interval of Time variable structure modal parameter is obtained using Monte Carlo simulation, the uncertainty of unknown parameter is estimated in the identification of linear time-varying modal parameters, the robustness to crossing estimation can be improved, reduce to model structure change sensitivity, more accurately handle shorter response data.

Description

It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method
Technical field
Time variable structure modal parameter Bayesian Estimation method is only exported the present invention relates to a kind of, more particularly to it is a kind of based on more The Bayesian Estimation method for being used for only output linearity Time variable structure Modal Parameter Identification of component time correlation autoregression model, category In Structural Dynamics technical field.
Background technology
In daily life and industrial production, because the change of condition of work, the aging of structure, normal wear etc. are different former Cause, the modal parameter of many engineering structures can all change with the time, show time varying characteristic.Such as under driving vehicle excitation Vehicle-bridge system, the fuel mass carrier rocket, the aircraft in flight course under Additional pneumatic effect that change over time, Yi Jike Variable space flight mechanism of geometry of expansion etc. shows time-varying characteristics.Needs and scientific and technical development with life production, Gradually require to be designed time-varying engineering structure, malfunction monitoring, vibration control etc., this just needs to have clearly Time variable structure Understanding, grasps its changing rule, develops the analysis method to Time variable structure.
Therefore, the important method and approach as Time variable structure dynamical property analysis, Time variable structure Modal Parameter Identification Study one of emphasis as following Structural Dynamics research.Time variable structure Modal Parameter Identification can recognize Time variable structure Modal frequency, Mode Shape and modal damping, these parameters have important physical significance, can be that the structure of Time variable structure is set The application of meter, monitoring structural health conditions, structure failure diagnosis, structural vibration control etc. provides strong support.
According to the difference of analysis domain, two classes are broadly divided into currently for the Modal Parameters Identification of Time variable structure:
The first kind is time domain approach, is broadly divided into two classes:Method based on state-space model and based on arma modeling Method.
In the method based on state-space model, Liu by it is a series of by output response and additional input data group Into Hankel matrixes carry out singular value decomposition, obtain the modal parameter of linear time varying system.Liu and Deng reduces state sky Between method to the susceptibility of noise, and apply the method in the experiment of mobile cantilever beam.
In the method based on arma modeling, Petsounis and Fassois propose a kind of arma modeling of time-varying, are used in combination In the modeling of non-stationary random vibration.Poulimenos and Fassois investigations and comparative studies is a variety of based on TARMA models The modeling method of non-stationary random vibration, including unstructured Parameters Evolution, random parameter develop and deterministic parameter develops. Spiridonakos and Fassois proposes a kind of adaptive sequence of function TARMA methods, and TARMA is solved using B-spline function The coefficient of model, and in the modeling of nonstationary vibration.Yang etc. proposes a kind of vector based on mobile Kriging type functions TARMA models, it can preferably handle mutation problems.
Second class is time-frequency domain method, is broadly divided into two classes:Imparametrization method and parametric method.
Imparametrization method directly uses time-domain analysis, for example, wavelet transformation, smoothed pseudo wigner ville disstribution, Hilbert-Huang conversion etc., the parameterized model independent of any system.Ghanem and Francesco proposes that one kind is based on The discrimination method of small echo, modal parameter is picked out by solving wavelet expansion equation.Roshan-Ghias etc. uses Smoothing Pseudo Wigner-Ville distribution method, the natural frequency and damped coefficient of identification system.Xu proposes that one kind is based on response signal Gabor The Modal Parameters Identification of expansion.
Parametric method characterizes system using the parameterized model in system time frequency domain and picks out the parameter of parameterized model, Such as time-varying centimetre case mold.Zhou etc. proposes that a kind of frequency of two-step least squares estimation method identification Time variable structure and mode are shaken Type.Zhou etc. is based further on the modal parameter of time-frequency domain maximal possibility estimation identification Time variable structure, and this method is to model order It is insensitive, and frequency bandwidth can be selected.Louarroudi etc. is based on noise inputs output supervision and proposed for Periodic Time-Varying Systems A kind of Modal Parameters Identification.Ertveldt introduces time-varying system state simulation of frequency region discrimination method the analysis of aeroelastic flutter In prediction.
In Time variable structure Modal Parameters Identification is parameterized, the model parameter of parameterized model is at present mostly using most A young waiter in a wineshop or an inn multiplies and maximum likelihood method for parameter estimation.Least-squares parameter estimation method assumes that modeling error meets Gaussian Profile, and The problem of can only handling under Gaussian Profile is assumed.Maximum likelihood method for parameter estimation can contemplate different error distribution forms, The result and the result of least square obtained under Gaussian Profile hypothesis is consistent.Least square and maximum likelihood parameter Estimation Method belongs to the category of Frequency school, by researcher and business software extensive use.Least square method exists with maximum likelihood method Poor robustness during treated estimation, and the change to model structure is very sensitive.In addition, existed with least square method and maximum likelihood method Poor effect when handling shorter response data.There is no a kind of simple and easy method, user is very complicated in application.
In recent years, bayes method has obtained extensive concern due to the characteristics of its is more efficient and more practical.In shellfish In this method of leaf, generally believe that probability is subjective and can be modified according to effective information.By the unknown ginseng of parameter model Number regards stochastic variable as, and after in view of other useful informations and data, it is with these parameters that unknown parameter is inferred accordingly Posterior probability distribution based on.After initial priori is provided, posteriority is may infer that, is carried out more between priori and posteriority Newly, final Posterior probability distribution is obtained.
The content of the invention
Have for above-mentioned technical problem and bayes method existing for least square method and maximum likelihood method above-mentioned excellent Gesture, a kind of only output Time variable structure modal parameter Bayesian Estimation method technical problems to be solved disclosed by the invention are to realize For only output linearity Time variable structure Modal Parameter Identification, and can obtain linear time-varying modal parameters identification in estimate it is unknown The uncertainty of parameter;Tool has the advantage that:The robustness for crossing estimation can be improved;Reduce to the quick of model structure change Sensitivity, the shorter response data of more accurate processing.In addition, the present invention is in the case of professional knowledge background is lacked It can be operated, the modal identification of linear time-varying structure can be widely used in Structural Dynamics engineer applied.
The purpose of the present invention is achieved through the following technical solutions.
A kind of only output Time variable structure modal parameter Bayesian Estimation method disclosed by the invention, first, uses time discrete Form represent multi -components time correlation autoregression model VTAR, by time-varying AR factor projections to by a series of given basic function sequences Arrange in the function space represented, draw functional sequence multi -components time correlation autoregression model FS-VTAR expression-form.Its It is secondary, the model parameter of FS-VTAR models is estimated using bayes method, obtains the response Y at all moment, i.e. joint probability density Function, the prior distribution of parameter matrix and covariance matrix is obtained, obtain likelihood function and prior probability in bayes method Density fonction, the Posterior distrbutionp of parameter matrix and covariance matrix is calculated.Again, it is true according to bayesian information criterion Determine the model order and functional space exponent number of functional sequence multi -components time correlation autoregression model, i.e. naAnd pa.Frozen using the time Knot method seeks Time variable structure modal parameter, obtains the credibility interval of Time variable structure modal parameter using Monte Carlo simulation, produces The uncertainty of unknown parameter is estimated in being recognized to linear time-varying modal parameters, and then has and has the advantage that:It can improve Robustness for crossing estimation;Reduce the susceptibility to model structure change, the shorter response data of more accurate processing.
Also include instructing the structural analysis in Structural Dynamics field with setting using the modal parameters of above step identification Meter.
According to a kind of described structural modal ginseng for only exporting Time variable structure modal parameter Bayesian Estimation method, obtaining Number, the vibration frequency range of engineering structure can be obtained, detect whether to meet the requirement such as engineering structure standard and vibration isolation, can instruct The design of engineering structure.In addition, obtained modal parameters can also be Time variable structure health monitoring, structure failure diagnosis, The application of structural vibration control etc. provides strong support, is with a wide range of applications and benefit.
A kind of only output Time variable structure modal parameter Bayesian Estimation method disclosed by the invention, comprises the following steps:
Step 1:Linear time-varying structure system is represented using functional sequence multi -components time correlation autoregression model FS-VTAR System.
Step 1 concrete methods of realizing, comprises the following steps:
Step 1.1:Represented with the form of time discrete shown in multi -components time correlation autoregression model VTAR such as formulas (1):
In formula,It is NoThe response vector signal of output channel, e [k] are as caused by measurement and model approximation Unobservable non-stationary residual error, e [k] average is zero, and time-varying covariance matrix isnaFor VTAR model orders Number, Ai[k] is the i-th rank time-varying AR coefficient matrixes, and k represents k-th of discrete time point.
Step 1.2:By time-varying AR factor projections into a series of function space represented by given basic function sequences.
Shown in given function space such as formula (2):
In formula, p be function space dimension, fjFor jth rank basis function vector.
By Ai[k] deploys, that is, obtains function spaceThe functional sequence of vectors time-varying autoregressive (FS- of expression VTAR), as shown in formula (3):
Shown in x [k] component form such as formula (4):
In formula, aij,lmFor matrix AijElement, l represent l-th of output channel.
Step 1.3:Draw functional sequence multi -components time correlation autoregression model FS-VTAR expression-form such as formula (5) It is shown:
Y=Φ θ+ε (5)
In formula,
Wherein, symbol " T " represents transposition computing.
So far, complete to represent linear time-varying structure using functional sequence multi -components time correlation autoregression model FS-VTAR System.
Step 2:Using the model parameter θ and covariance matrix ∑ of FS-VTAR models in bayes method estimating step 1 Posterior distrbutionp.
Step 2 concrete methods of realizing comprises the following steps:
Step 2.1:Obtain the response Y at all moment, i.e. formula (5) left end item joint probability density function.
Covariance matrix ∑ (k) in formula (1) is definite value, i.e. ∑ (t)=∑.In the viewpoint of Frequency school, unknown ginseng Number θ and ∑ are definite value, and bayes method thinks that unknown parameter θ and ∑ are stochastic variable.Therefore, responding Y distribution is Using parameter θ and ∑ as the probability distribution of condition, its probability density function is represented by a multivariate normal distributions, as shown in formula (9):
Step 2.2:Obtain the prior distribution of parameter matrix θ and covariance matrix ∑.
Parameter matrix θ and covariance matrix ∑ be it is unknowable, it is theoretical based on linear model standard conjugate gradient descent method, When e [k] in formula (1) is given as normal distribution, under ∑ known case, shown in θ condition prior distribution such as formula (10):
In formula,It is parameter matrix θ expected matrix,It is covariance matrix,Expression average is a, covariance matrix is b'sTie up normal distribution,Represent Kronecker product.It is right In positive definite matrix ∑, prior distribution is taken as inverse Wishart distribution, as shown in formula (11):
In formula,Represent that it is b to obey the free degree0, Scale Matrixes Ψ0The N of distributionoRank positive definite real matrix.
Step 2.3:Obtain the likelihood function and priori probability density distribution function in bayes method.
From formula (9), in the case where θ and ∑ are given, all time of day response Y probability density function, i.e., seemingly Right function, as shown in formula (12):
In formula, the mark of tr () representing matrix, exp () represents natural Exponents, and p (x | y) represents the bar of x when known to y Part probability density function, | | represent determinant.From formula (10) and multivariate normal distributions equation, in the case where ∑ is given θ priori probability density function p (θ | ∑) is expressed as:
Based on formula (11), the priori probability density function p (∑) of ∑ is expressed as:
Then from formula (13) and formula (14), the joint priori probability density function p (θ, ∑) of θ and ∑ is:
Step 2.4:The parameter matrix θ and the Posterior distrbutionp of covariance matrix ∑ that calculating bayes method obtains.
Because response Y is unrelated with θ and ∑, p (Y | θ, ∑) marginal likelihood is constant, in the case of Y determinations, θ and ∑ Posterior probability density function be expressed as:
In formula,
Contrast (16) and formula (15), obtains θ Posterior distrbutionp:
With the Posterior distrbutionp of ∑:
In formula, parameter b and Ψ are respectively
Step 3:The model order of functional sequence multi -components time correlation autoregression model is determined according to bayesian information criterion Number and functional space exponent number, i.e. n in formula (4)aAnd pa
Step 3 concrete methods of realizing is as follows:
According to bayesian information criterion BIC, as model order naWith functional space exponent number paWhen being optimal, BIC value takes Minimum value.In practical operation, the response signal once obtained is taken, when building the complete functional sequence of vectors as shown in formula (6) Become autoregression model, and take different naValue and paValue is modeled, to each group of naValue and paValue calculate BIC value, and by its It is plotted on same figure, chooses BIC and reach corresponding n during minimum valueaValue and paValue, it is selected exponent number.
Step 4:Time variable structure modal parameter and credibility interval are asked using time freezing method.
Step 4.1:The calculating time freezes Time variable structure modal parameter.
Moment point k is freezed using the method for " time freezes ", by VTAR coefficients Ai[k] obtains modal parameter.Using adjoint Matrix obtains system pole by generalized eigenvalue problem:
(D[k]-λr[k]I)Vr[k]=0 (21)
In formula, λr[k] andBe respectively k moment D [k] r-th of characteristic value and feature to Amount, D [k] is obtained by AR coefficient matrixes:
" time freezes " the modal frequency f of system is calculatedr[t] and dampingratioζr[t]:
Realize the Modal Parameter Identification for only output linearity Time variable structure.
Step 4.2:The credibility interval of Time variable structure modal parameter is obtained using Monte Carlo method, obtains linear time-varying structure The uncertainty of unknown parameter is estimated in Modal Parameter Identification, tool has the advantage that:The robustness for crossing estimation can be improved; Reduce the susceptibility to model structure change, the shorter response data of more accurate processing.
FromSampling, carry out Monte Carlo simulation.Divide for convenience of from probability ClothSampling, random matrix is constructed by formula (24)Or
In formula, matrix Z each element is satisfied by unit normal distribution, CMAnd CIt is the cholesky point of M and ∑ respectively Solution.
∑ is obtained so as to build W by the expectation E (∑) of covariance matrix ∑, according to inverse Wishart distribution, i.e. formula (25):
By formula (24) and (25), fromObtain the sample that there is same distribution with parameter matrix θ W, even θ=W.Obtained parameter matrix θ is sampled every time, time frozen structure modal parameter can be obtained according to formula (23), this Process is designated as single Monte Carlo simulation.Single Monte Carlo simulation step is repeated, carries out Time variable structure modal parameter Bayes The multiple Monte Carlo simulation of method of estimation, obtain estimating the credibility interval of modal parameter using the method for point estimation afterwards, obtain The uncertainty of unknown parameter is estimated in being recognized to linear time-varying modal parameters, and then has and has the advantage that:It can improve Robustness for crossing estimation;Reduce the susceptibility to model structure change, the shorter response data of more accurate processing.When The average value of varying structure modal parameter is the average value of multiple Monte Carlo simulation result, and variance is multiple Monte Carlo mould Intend the variance of result.
Also include step 5:The modal parameter that applying step 1 obtains to step 4 identification instructs the knot in Structural Dynamics field Structure is analyzed and design.
The modal parameter obtained according to step 1 to step 4 identification, the vibration frequency range of engineering structure, detection can be obtained Whether meet the requirement such as engineering structure standard and vibration isolation, the design of engineering structure can be instructed.In addition, obtained structural modal ginseng Number can also provide strong branch for the application of the health monitoring, structure failure diagnosis, structural vibration control of Time variable structure etc. Hold, be with a wide range of applications and benefit.
Beneficial effect:
1st, compared to existing least square method, a kind of only output Time variable structure modal parameter Bayes disclosed by the invention Method of estimation, bayes method is applied to pick out modal parameter in only output linearity Time variable structure Modal Parameter Identification, adopted The credibility interval of Time variable structure modal parameter is obtained with Monte Carlo method, obtains estimating in the identification of linear time-varying modal parameters The uncertainty of unknown parameter can provide the uncertainty of Modal Parameter Identification, and then have and have the advantage that:It can improve pair In the robustness for crossing estimation;Reduce the susceptibility to model structure change, the shorter response data of more accurate processing.
2nd, a kind of only output Time variable structure modal parameter Bayesian Estimation method disclosed by the invention, can obtain engineering structure Vibration frequency range, detect whether to meet the requirement such as engineering structure standard and vibration isolation, the design of engineering structure can be instructed.Separately Outside, the modal parameters obtained can also be the health monitoring of Time variable structure, structure failure diagnosis, structural vibration control etc. Application strong support is provided, be with a wide range of applications and benefit.
Brief description of the drawings
Fig. 1 is a kind of flow chart of only output linearity Time variable structure Modal Parameters Identification of the present invention;
Fig. 2 is Three Degree Of Freedom spring-dampers-quality system in embodiment;
Fig. 3 is the response curve of the Three Degree Of Freedom time-varying system in embodiment.Wherein, Fig. 3 (A), Fig. 3 (B), figure 3 (C) represent mass m in Fig. 2 respectively1、m2、m3Response curve;
Fig. 4 is in embodiment under given arbitrary excitation, for Bayesian Estimation method and least-squares estimation Method, using BIC criterion, AR exponent number and the exponent number of basic function.Wherein, Fig. 4 (A), Fig. 4 (B) are estimated using Bayes respectively The exponent number of meter method and the least square estimation method AR exponent number and basic function;
Fig. 5 is for time-varying model, under 100 arbitrary excitations, using shellfish disclosed by the invention in embodiment The system mode frequency that this method of estimation of leaf and the least square estimation method obtain, wherein, Fig. 5 (A), Fig. 5 (B) they are naTake 2, pa 15 are taken using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 8000, is obtained System mode frequency, Fig. 5 (C), Fig. 5 (D) are naTake 2, pa20 are taken to use Bayesian Estimation method disclosed by the invention and use The least square estimation method, data length 8000, obtained system mode frequency, Fig. 5 (E), Fig. 5 (F) are naTake 2, paTake 25 Using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 8000, what is obtained is System modal frequency, Fig. 5 (G), Fig. 5 (H) are naTake 2, pa35 are taken using Bayesian Estimation method disclosed by the invention and using minimum Two multiply method of estimation, and data length 8000, obtained system mode frequency, Fig. 5 (H), Fig. 5 (I) are naTake 2, paTake 60 uses Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 8000, obtained system mould State frequency, Fig. 5 (J), Fig. 5 (K) are naTake 2, pa80 are taken using Bayesian Estimation method disclosed by the invention and using least square Method of estimation, data length 8000, obtained system mode frequency;
Fig. 6 is for time-varying model, under 100 arbitrary excitations, using shellfish disclosed by the invention in embodiment The system mode frequency that this method of estimation of leaf and the least square estimation method obtain, wherein, Fig. 6 (A), Fig. 6 (B) they are naTake 6, pa 15 are taken using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 8000, is obtained System mode frequency, Fig. 6 (C), Fig. 6 (D) are naTake 6, pa25 are taken to use Bayesian Estimation method disclosed by the invention and use The least square estimation method, data length 8000, obtained system mode frequency, Fig. 6 (E), Fig. 6 (F) are naTake 6, paTake 35 Using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 8000, what is obtained is System modal frequency;
Fig. 7 is for time-varying model, under 100 arbitrary excitations, using shellfish disclosed by the invention in embodiment The system mode frequency that this method of estimation of leaf and the least square estimation method obtain, wherein, Fig. 7 (A), Fig. 7 (B) they are naTake 3, pa 25 are taken using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 8000, is obtained System mode frequency, Fig. 7 (C), Fig. 7 (D) are naTake 4, pa25 are taken to use Bayesian Estimation method disclosed by the invention and use The least square estimation method, data length 8000, obtained system mode frequency, Fig. 7 (E), Fig. 7 (F) are naTake 5, paTake 25 Using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 8000, what is obtained is System modal frequency;
Fig. 8 is for time-varying model, under 100 arbitrary excitations, using shellfish disclosed by the invention in embodiment The system mode frequency that this method of estimation of leaf and the least square estimation method obtain, wherein, Fig. 8 (A), Fig. 8 (B) they are naTake 2, pa 25 are taken using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 1000, is obtained System mode frequency, Fig. 8 (C), Fig. 8 (F) are naTake 4, pa25 are taken to use Bayesian Estimation method disclosed by the invention and use The least square estimation method, data length 1000, obtained system mode frequency, Fig. 8 (E), Fig. 8 (F) are naTake 6, paTake 25 Using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 1000, what is obtained is System modal frequency;
Fig. 9 is for time-varying model, under 100 arbitrary excitations, using shellfish disclosed by the invention in embodiment The system mode frequency that this method of estimation of leaf and the least square estimation method obtain, wherein, Fig. 9 (A), Fig. 9 (B) they are naTake 2, pa 30 are taken using Bayesian Estimation method disclosed by the invention and using the least square estimation method, data length 1000, is obtained System mode frequency, Fig. 9 (C), Fig. 9 (D) are naTake 2, pa25 are taken to use Bayesian Estimation method disclosed by the invention and use The least square estimation method, data length 1000, obtained system mode frequency;
Embodiment
In order to which objects and advantages of the present invention are better described, during below by Three Degree Of Freedom under an arbitrary excitation Structure changes carry out dynamic analysis, and the present invention is made and explained in detail.
Embodiment 1:
Three Degree Of Freedom spring-dampers-the quality system of the present embodiment, as shown in Figure 2.The Three Degree Of Freedom bullet of the present embodiment Spring-damper-quality system includes three mass m1、m2、m3, four damper c1、c2、c3、c4, four spring k1(t)、k2 (t)、k3(t)、k4(t), wherein, three masses and four dampers are permanent, are not changed over time, and four springs Rigidity change over time.
Rigidity k in Three Degree Of Freedom time-varying systemi(t) change over time shown in relation such as formula (26):
Each variable-value of system with 3 degrees of freedom is as shown in table 1.
The Three Degree Of Freedom time-varying system parameter of table 1
The dynamic control equation of system with 3 degrees of freedom shown in Fig. 2 is as shown in formula:
In formula, M, C are respectively mass matrix and damping matrix, and K (t) is the stiffness matrix of time-varying, and x is the response of system, f (t) it is dynamic excitation.M, C, K (t) are as shown in formula (28):
Gauss white-noise excitations are applied to three masses respectively, obtain the response of three masses in system.System is rung Variable step Fourth order Runge-Kutta should be used to solve.Three degree of freedom displacement is used to recognize response signal samples used, will For the solving result of runge kutta method with f=16Hz resamplings, the record time is 500s (t ∈ [0,500]), signal length N= 8000, output channel N0=3, the dynamic respond curve of three degree of freedom is as shown in Figure 3.
As shown in figure 1, a kind of only output Time variable structure modal parameter Bayesian Estimation method disclosed in the present embodiment, including Following steps:
Step 1:Stochastic linear Time variable structure is represented using functional sequence multi -components time correlation autoregression model FS-VTAR System.
To this embodiment, functional sequence multi -components time correlation autoregression model FS-VTAR expression shape is drawn Shown in formula such as formula (29):
Y=Φ θ+ε (29)
In formula,
Step 2:Using the model parameter θ and covariance matrix ∑ of FS-VTAR models in bayes method estimating step 1 Posterior distrbutionp.
Calculate the response Y at all moment, i.e. joint probability density function:
Shown in the condition prior distribution such as formula (34) for calculating θ:
In formula, m0It is parameter matrix θ expected matrix, M0It is covariance matrix,Expression average is a, association side Poor matrix is the 3 of b2napaTie up normal distribution,Represent Kronecker product.For positive definite matrix ∑, prior distribution is taken as inverse Wishart distribution, as shown in formula (35):
∑~IW3×3(b00) (35)
In formula, IW3×3(b00) represent that it is b to obey the free degree0, Scale Matrixes Ψ0The N of distributionoRank positive definite real matrix.
In the case where θ and ∑ are given, all time of day response Y probability density function, i.e. likelihood function are calculated, such as Shown in formula (36):
In formula, the mark of tr () representing matrix, exp () represents natural Exponents, and p (x | y) represents the bar of x when known to y Part probability density function, | | represent determinant.
θ Posterior distrbutionp is calculated:
With the Posterior distrbutionp of ∑:
In formula, parameter b and Ψ are respectively:
Step 3:The model order of functional sequence multi -components time correlation autoregression model is determined according to bayesian information criterion Number and functional space exponent number, i.e. naAnd pa
According to bayesian information criterion BIC, as model order naWith functional space exponent number paWhen being optimal, BIC value takes Minimum value.In practical operation, the response signal once obtained is taken, builds the complete functional sequence of vectors as shown in formula (39.) Time-varying autoregressive, and take different naValue and paValue is modeled, to each group of naValue and paValue calculates BIC value, and will It is plotted on same figure, is chosen BIC and is reached corresponding n during minimum valueaValue and paValue, it is selected exponent number.Fig. 4 is illustrated Under given arbitrary excitation, for Bayesian Estimation and least-squares estimation, responded using different caused by BIC criterion.Functional When sequence multi -components time correlation autoregression model FS-VTAR exponent numbers are optimal, BIC value takes minimum.Therefore, BIC values take Corresponding functional sequence of vectors time-varying autoregressive FS-VTAR exponent numbers are n when minimumaValue.As shown in Figure 4, na=2 be pair In the optimal selection of AR models.Corresponding to na=2, paBetween desirable 20 to 25.
Step 4:Time variable structure modal parameter and its credibility interval are asked using time freezing method.
Step 4.1:The calculating time freezes Time variable structure modal parameter.
System pole is calculated:
(D[k]-λr[k]I)Vr[k]=0 (40)
In formula, λr[k] andBe respectively k moment D [k] r-th of characteristic value and feature to Amount, D [k] can be obtained by AR coefficient matrixes:
" time freezes " the modal frequency f of system is calculatedr[t] and dampingratioζr[t]:
Realize the Modal Parameter Identification for only output linearity Time variable structure.
Step 4.2:The credibility interval of Time variable structure modal parameter is obtained using Monte Carlo method
FromSampling, carry out Monte Carlo simulation.Divide for convenience of from probability ClothSampling, construct random matrixOr
In formula, matrix Z each element is satisfied by unit normal distribution, CMAnd CIt is Cholesky points of M and ∑ respectively Solution.
∑ is obtained so as to build W by the expectation E (∑) of covariance matrix ∑:
Can be fromThe sample W that there is same distribution with parameter matrix θ is obtained, even θ=W. Obtained parameter matrix θ is sampled every time, can obtain time frozen structure modal parameter, and this process is designated as a Monte Carlo mould Intend.This step is repeated, the multiple Monte Carlo simulation of Time variable structure modal parameter Bayesian Estimation method is carried out, afterwards using point The method of estimation can obtain estimating the credibility interval of modal parameter, obtain estimating not in the identification of linear time-varying modal parameters Know the uncertainty of parameter, and then have and have the advantage that:The robustness for crossing estimation can be improved;Reduce and model structure is become The susceptibility of change, the shorter response data of more accurate processing.The average value of Time variable structure modal parameter is repeatedly to cover spy The average value of Carlow analog result, variance are the variance of multiple Monte Carlo simulation result.
Under 100 arbitrary excitations, using Bayesian Estimation method disclosed by the invention and the least square estimation method, na 2,3,4,5,6, p are taken respectivelya15,20,25,35,60,80 are taken respectively, calculate time-varying system modal parameter.As a result such as figure (5) (6) (7) shown in.From scheming (5), when AR models take optimal, i.e. naWhen=2, basic function exponent number takes 15,20,25,35,60,80, most Small square law and bayes method disclosed by the invention can realize good parameter Estimation, when large, disclosed by the invention Bayes method estimated result is accurate, and least square method shows slight crossing and estimated.From scheming (6) (7), when AR rank Number is 6, and basic function exponent number takes 15, when 25,35, the estimated result and n of bayes method disclosed by the inventionaVery phase when=2 Seemingly, only some magnitude frequencies are located at specific limit frequency band.And the identification result of least square method is with naIncrease become Worse and worse, magnitude frequency is distributed among whole frequency band.From scheming (5) (6) (7), bayes method disclosed by the invention It can be good at controlling estimation phenomenon to occur compared to existing least square method, have well in Structural Dynamics field Application prospect.
Data length is changed into 1000 from 8000, exiting form is 100 arbitrary excitations, naAnd paTake different value.As a result exist Scheme to present in (8) and (9).Work as naAnd paWhen taking optimal value, the estimated result obtained using least square method is not so good as using the present invention Disclosed Bayesian Estimation method is preferable, but can still receive.And work as naAnd paWhen becoming big, obtained using least square method Estimated result is very poor.And use the result and obtained when data volume is 8000 that Bayesian Estimation method disclosed by the invention obtains Result it is almost consistent, the results showed that Bayesian Estimation method disclosed by the invention can be more compared to existing least square method Change for the shorter response data of accurately processing and for model structure shows good robustness, in structural dynamic Field has a good application prospect.
A kind of structure for only exporting the identification of Time variable structure modal parameter Bayesian Estimation method according to disclosed in the present embodiment Modal parameter, the vibration frequency range of engineering structure can be obtained, detect whether to meet the requirement such as engineering structure standard and vibration isolation, energy Enough instruct the design of engineering structure.In addition, obtained modal parameters can also be health monitoring, the structure failure of Time variable structure Diagnosis, the application of structural vibration control etc. provide strong support, are with a wide range of applications and benefit.
Above-described specific descriptions, the purpose, technical scheme and beneficial effect of invention are carried out further specifically It is bright, the specific embodiment that the foregoing is only the present invention is should be understood that, for explaining the present invention, is not used to limit this The protection domain of invention, within the spirit and principles of the invention, any modification, equivalent substitution and improvements done etc. all should Within protection scope of the present invention.

Claims (6)

1. a kind of only export Time variable structure modal parameter Bayesian Estimation method, it is characterised in that:Comprise the following steps,
Step 1:Linear time-varying structural system is represented using functional sequence multi -components time correlation autoregression model FS-VTAR;
Step 1 concrete methods of realizing, comprises the following steps:
Step 1.1:Represented with the form of time discrete shown in multi -components time correlation autoregression model VTAR such as formulas (1):
<mrow> <mi>x</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>a</mi> </msub> </munderover> <msub> <mi>A</mi> <mi>i</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mi>x</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>e</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>,</mo> <mi>e</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <mi>N</mi> <mi>I</mi> <mi>D</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula,It is NoThe response vector signal of output channel, e [k] is can not as caused by measurement and model approximation The non-stationary residual error of observation, e [k] average is zero, and time-varying covariance matrix isnaFor VTAR model orders, Ai[k] is the i-th rank time-varying AR coefficient matrixes, and k represents k-th of discrete time point;
Step 1.2:By time-varying AR factor projections into a series of function space represented by given basic function sequences;
Shown in given function space such as formula (2):
In formula, p be function space dimension, fjFor jth rank basis function vector;
By Ai[k] deploys, that is, obtains function spaceThe functional sequence of vectors time-varying autoregressive (FS-VTAR) of expression, such as Shown in formula (3):
<mrow> <mi>x</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>a</mi> </msub> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>p</mi> <mi>a</mi> </msub> </munderover> <msub> <mi>A</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>f</mi> <mi>j</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mi>x</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <mi>e</mi> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Shown in x [k] component form such as formula (4):
<mrow> <msub> <mi>x</mi> <mi>l</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>a</mi> </msub> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>p</mi> <mi>a</mi> </msub> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> </munderover> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>j</mi> <mo>,</mo> <mi>l</mi> <mi>m</mi> </mrow> </msub> <msub> <mi>f</mi> <mi>j</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <msub> <mi>x</mi> <mi>m</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>-</mo> <mi>i</mi> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>e</mi> <mi>l</mi> </msub> <mo>&amp;lsqb;</mo> <mi>k</mi> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula, aij,lmFor matrix AijElement, l represent l-th of output channel;
Step 1.3:Shown in the expression-form such as formula (5) for drawing functional sequence multi -components time correlation autoregression model FS-VTAR:
Y=Φ θ+ε (5)
In formula,
Wherein, symbol " T " represents transposition computing;
So far, complete to represent linear time-varying structural system using functional sequence multi -components time correlation autoregression model FS-VTAR;
Step 2:Using the model parameter θ of FS-VTAR models in bayes method estimating step 1 and the posteriority of covariance matrix ∑ Distribution;
Step 3:According to bayesian information criterion determine functional sequence multi -components time correlation autoregression model model order and N in functional space exponent number, i.e. formula (4)aAnd pa
Step 4:Time variable structure modal parameter and credibility interval are asked using time freezing method.
A kind of 2. only output Time variable structure modal parameter Bayesian Estimation method as claimed in claim 1, it is characterised in that:Also Including step 5,
The modal parameter that applying step 1 obtains to step 4 identification instructs the Structural analysis and design in Structural Dynamics field.
3. a kind of only output Time variable structure modal parameter Bayesian Estimation method as claimed in claim 1 or 2, its feature exist In:Step 5 concrete methods of realizing is,
The modal parameter obtained according to step 1 to step 4 identification, can obtain the vibration frequency range of engineering structure, detect whether Meet the requirement such as engineering structure standard and vibration isolation, the design of engineering structure can be instructed;In addition, obtained modal parameters are also Strong support can be provided for the application of the health monitoring, structure failure diagnosis, structural vibration control of Time variable structure etc., had Have wide practical use and benefit.
A kind of 4. only output Time variable structure modal parameter Bayesian Estimation method as claimed in claim 3, it is characterised in that:Step Rapid 2 concrete methods of realizing comprises the following steps,
Step 2.1:Obtain the response Y at all moment, i.e. formula (5) left end item joint probability density function;
Covariance matrix ∑ (k) in formula (1) is definite value, i.e. ∑ (t)=∑;In the viewpoint of Frequency school, unknown parameter θ and ∑ is definite value, and bayes method thinks that unknown parameter θ and ∑ are stochastic variable;Therefore, the distribution for responding Y is with parameter θ and the probability distribution that ∑ is condition, its probability density function is represented by a multivariate normal distributions, as shown in formula (9):
<mrow> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mrow> <mo>(</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>~</mo> <msub> <mi>N</mi> <mrow> <mo>(</mo> <mi>N</mi> <mo>-</mo> <msub> <mi>n</mi> <mi>a</mi> </msub> <mo>)</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <mrow> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Step 2.2:Obtain the prior distribution of parameter matrix θ and covariance matrix ∑;
Parameter matrix θ and covariance matrix ∑ is unknowable, based on linear model standard conjugate gradient descent method theory, in formula (1) when the e [k] in is given as normal distribution, under ∑ known case, shown in θ condition prior distribution such as formula (10):
<mrow> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>&amp;Sigma;</mi> <mo>~</mo> <msub> <mi>N</mi> <mrow> <msubsup> <mi>N</mi> <mi>o</mi> <mn>2</mn> </msubsup> <msub> <mi>n</mi> <mi>a</mi> </msub> <msub> <mi>p</mi> <mi>a</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>)</mo> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>&amp;CircleTimes;</mo> <msub> <mi>M</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
In formula,It is parameter matrix θ expected matrix,It is covariance matrix,Table Show average be a, covariance matrix be b'sTie up normal distribution,Represent Kronecker product;For positive definite matrix ∑, Prior distribution is taken as inverse Wishart distribution, as shown in formula (11):
<mrow> <mi>&amp;Sigma;</mi> <mo>~</mo> <msub> <mi>IW</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
In formula,Represent that it is b to obey the free degree0, Scale Matrixes Ψ0The N of distributionoRank positive definite real matrix;
Step 2.3:Obtain the likelihood function and priori probability density distribution function in bayes method;
From formula (9), in the case where θ and ∑ are given, all time of day response Y probability density function, i.e. likelihood letter Number, as shown in formula (12):
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>|</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>NN</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mo>|</mo> <mi>&amp;Sigma;</mi> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mi>N</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mi>&amp;Sigma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>-</mo> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>-</mo> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
In formula, the mark of tr () representing matrix, exp () expression natural Exponents, p (x | y) represent that x condition is general when known to y Rate density function, | | represent determinant;From formula (10) and multivariate normal distributions equation, the θ in the case where ∑ is given Priori probability density function p (θ | ∑) it is expressed as:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>|</mo> <mi>&amp;Sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <msub> <mi>N</mi> <mi>o</mi> </msub> <mn>2</mn> </mfrac> </mrow> </msup> <mo>|</mo> <mi>&amp;Sigma;</mi> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mi>&amp;Sigma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Based on formula (11), the priori probability density function p (∑) of ∑ is expressed as:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>&amp;Sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <msup> <mo>|</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </msup> <msub> <mi>&amp;Gamma;</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mi>&amp;Sigma;</mi> <msup> <mo>|</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mi>&amp;Sigma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Then from formula (13) and formula (14), the joint priori probability density function p (θ, ∑) of θ and ∑ is:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mo>&amp;Sigma;</mo> <mo>)</mo> </mrow> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>|</mo> <mo>&amp;Sigma;</mo> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mo>&amp;Sigma;</mo> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <msub> <mi>N</mi> <mi>o</mi> </msub> <mn>2</mn> </mfrac> </mrow> </msup> <mo>|</mo> <mo>&amp;Sigma;</mo> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <msup> <mo>|</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </msup> <msub> <mi>&amp;Gamma;</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>&amp;Sigma;</mo> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Step 2.4:The parameter matrix θ and the Posterior distrbutionp of covariance matrix ∑ that calculating bayes method obtains;
Because response Y is unrelated with θ and ∑, p (Y | θ, ∑) marginal likelihood is constant, in the case of Y determinations, after θ and ∑ Probability density function is tested to be expressed as:
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mo>&amp;Sigma;</mo> <mo>|</mo> <mi>Y</mi> <mo>)</mo> </mrow> <mo>&amp;Proportional;</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>Y</mi> <mo>|</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mo>&amp;Sigma;</mo> <mo>)</mo> </mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>,</mo> <mo>&amp;Sigma;</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>NN</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mo>|</mo> <mo>&amp;Sigma;</mo> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mi>N</mi> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>-</mo> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>-</mo> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <msub> <mi>N</mi> <mi>o</mi> </msub> <mn>2</mn> </mfrac> </mrow> </msup> <mo>|</mo> <mo>&amp;Sigma;</mo> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <msup> <mo>|</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </msup> <msub> <mi>&amp;Gamma;</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>&amp;Sigma;</mo> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>NN</mi> <mi>o</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <msup> <mo>|</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </msup> <msub> <mi>&amp;Gamma;</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>&amp;Sigma;</mo> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>+</mo> <mi>N</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <msub> <mi>m</mi> <mn>0</mn> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>-</mo> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mrow> <mi>Y</mi> <mo>-</mo> <mi>&amp;Phi;</mi> <mi>&amp;theta;</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <msup> <mo>|</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </msup> <msub> <mi>&amp;Gamma;</mi> <mi>p</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msub> <mi>b</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>m</mi> <mn>0</mn> <mi>T</mi> </msubsup> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>+</mo> <msup> <mi>Y</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>m</mi> <mi>T</mi> </msup> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mi>m</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <msup> <mrow> <mo>(</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>NN</mi> <mi>o</mi> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mo>|</mo> <mo>&amp;Sigma;</mo> <msup> <mo>|</mo> <mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>+</mo> <mi>N</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </mfrac> </mrow> </msup> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>t</mi> <mi>r</mi> <mo>(</mo> <mrow> <msup> <mo>&amp;Sigma;</mo> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mrow> <mi>&amp;theta;</mi> <mo>-</mo> <mi>m</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
In formula,
<mrow> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>+</mo> <msup> <mi>&amp;Phi;</mi> <mi>T</mi> </msup> <mi>&amp;Phi;</mi> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mi>M</mi> <mrow> <mo>(</mo> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>+</mo> <msup> <mi>&amp;Phi;</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
Contrast (16) and formula (15), obtains θ Posterior distrbutionp:
<mrow> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>|</mo> <mi>r</mi> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>~</mo> <msub> <mi>N</mi> <mrow> <msubsup> <mi>N</mi> <mi>o</mi> <mn>2</mn> </msubsup> <msub> <mi>n</mi> <mi>a</mi> </msub> <msub> <mi>p</mi> <mi>a</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mi>e</mi> <mi>c</mi> <mo>(</mo> <mi>m</mi> <mo>)</mo> <mo>,</mo> <mi>&amp;Sigma;</mi> <mo>&amp;CircleTimes;</mo> <mi>M</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
With the Posterior distrbutionp of ∑:
<mrow> <mi>&amp;Sigma;</mi> <mo>|</mo> <mi>Y</mi> <mo>,</mo> <mo>~</mo> <msub> <mi>IW</mi> <mrow> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> </mrow> </msub> <mrow> <mo>(</mo> <mi>b</mi> <mo>,</mo> <mi>&amp;Psi;</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
In formula, parameter b and Ψ are respectively
<mrow> <mi>&amp;Psi;</mi> <mo>=</mo> <msub> <mi>&amp;Psi;</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>m</mi> <mn>0</mn> <mi>T</mi> </msubsup> <msubsup> <mi>M</mi> <mn>0</mn> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>m</mi> <mn>0</mn> </msub> <mo>+</mo> <msup> <mi>Y</mi> <mi>T</mi> </msup> <mi>Y</mi> <mo>-</mo> <msup> <mi>m</mi> <mi>T</mi> </msup> <mi>M</mi> <mi>m</mi> <mo>,</mo> <mi>b</mi> <mo>=</mo> <msub> <mi>b</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>N</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
A kind of 5. only output Time variable structure modal parameter Bayesian Estimation method as claimed in claim 4, it is characterised in that:Step Rapid 3 concrete methods of realizing is as follows,
According to bayesian information criterion BIC, as model order naWith functional space exponent number paWhen being optimal, BIC value takes minimum Value;In practical operation, take the response signal once obtained, build complete functional sequence of vectors time-varying as shown in formula (6) from Regression model, and take different naValue and paValue is modeled, to each group of naValue and paValue calculates BIC value, and is drawn On same figure, choose BIC and reach corresponding n during minimum valueaValue and paValue, it is selected exponent number.
A kind of 6. only output Time variable structure modal parameter Bayesian Estimation method as claimed in claim 5, it is characterised in that:Step Rapid 4 concrete methods of realizing comprises the following steps,
Step 4.1:The calculating time freezes Time variable structure modal parameter;
Moment point k is freezed using the method for " time freezes ", by VTAR coefficients Ai[k] obtains modal parameter;Using adjoint matrix by Generalized eigenvalue problem obtains system pole:
(D[k]-λr[k]I)Vr[k]=0 (21)
In formula, λr[k] andIt is r-th of characteristic value and characteristic vector at k moment D [k] respectively, by AR coefficient matrixes obtain D [k]:
" time freezes " the modal frequency f of system is calculatedr[t] and dampingratioζr[t]:
<mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> <mo>|</mo> <msub> <mi>ln&amp;lambda;</mi> <mi>r</mi> </msub> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>&amp;rsqb;</mo> <mo>|</mo> </mrow> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> <mo>,</mo> <msub> <mi>&amp;zeta;</mi> <mi>r</mi> </msub> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>&amp;rsqb;</mo> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <mi>Re</mi> <mrow> <mo>(</mo> <msub> <mi>ln&amp;lambda;</mi> <mi>r</mi> </msub> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>&amp;rsqb;</mo> <mo>)</mo> </mrow> </mrow> <mrow> <mo>|</mo> <msub> <mi>ln&amp;lambda;</mi> <mi>r</mi> </msub> <mo>&amp;lsqb;</mo> <mi>t</mi> <mo>&amp;rsqb;</mo> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
Realize the Modal Parameter Identification for only output linearity Time variable structure;
Step 4.2:The credibility interval of Time variable structure modal parameter is obtained using Monte Carlo method, obtains linear time-varying structural modal The uncertainty of unknown parameter is estimated in parameter identification, tool has the advantage that:The robustness for crossing estimation can be improved;Reduce To the susceptibility of model structure change, the shorter response data of more accurate processing;
FromSampling, carry out Monte Carlo simulation;For convenience from probability distributionSampling, random matrix is constructed by formula (24)Or
<mrow> <mi>W</mi> <mo>=</mo> <mi>m</mi> <mo>+</mo> <msubsup> <mi>C</mi> <mi>M</mi> <mrow> <mo>-</mo> <mi>T</mi> </mrow> </msubsup> <msubsup> <mi>ZC</mi> <mi>&amp;Sigma;</mi> <mi>T</mi> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow>
In formula, matrix Z each element is satisfied by unit normal distribution, CMAnd CIt is the Cholesky decomposition of M and ∑ respectively;
∑ is obtained so as to build W by the expectation E (∑) of covariance matrix ∑, according to inverse Wishart distribution, i.e. formula (25):
<mrow> <mi>E</mi> <mrow> <mo>(</mo> <mi>&amp;Sigma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mi>&amp;Psi;</mi> <mrow> <mi>b</mi> <mo>-</mo> <msub> <mi>N</mi> <mi>o</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>25</mn> <mo>)</mo> </mrow> </mrow>
By formula (24) and (25), fromThe sample W that there is same distribution with parameter matrix θ is obtained, i.e., Make θ=W;Obtained parameter matrix θ is sampled every time, time frozen structure modal parameter, this process can be obtained according to formula (23) It is designated as single Monte Carlo simulation;Single Monte Carlo simulation step is repeated, carries out Time variable structure modal parameter Bayesian Estimation The multiple Monte Carlo simulation of method, obtain estimating the credibility interval of modal parameter using the method for point estimation afterwards, obtain line Property Time variable structure Modal Parameter Identification in estimate unknown parameter uncertainty, and then have have the advantage that:Can improve for Cross the robustness of estimation;Reduce the susceptibility to model structure change, the shorter response data of more accurate processing;Time-varying knot The average value of structure modal parameter is the average value of multiple Monte Carlo simulation result, and variance is multiple Monte Carlo simulation knot The variance of fruit.
CN201710875350.6A 2017-09-25 2017-09-25 It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method Pending CN107844627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710875350.6A CN107844627A (en) 2017-09-25 2017-09-25 It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710875350.6A CN107844627A (en) 2017-09-25 2017-09-25 It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method

Publications (1)

Publication Number Publication Date
CN107844627A true CN107844627A (en) 2018-03-27

Family

ID=61661416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710875350.6A Pending CN107844627A (en) 2017-09-25 2017-09-25 It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method

Country Status (1)

Country Link
CN (1) CN107844627A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109598027A (en) * 2018-11-08 2019-04-09 合肥工业大学 A kind of algorithm based on frequency response function correcting principle model parameter
CN109635389A (en) * 2018-11-29 2019-04-16 中国航空工业集团公司沈阳飞机设计研究所 A kind of electric steering engine stiffness test data processing method
CN110489891A (en) * 2019-08-23 2019-11-22 江南大学 A kind of industrial process time-varying uncertainty method based on more born of the same parents' space filterings
CN111273297A (en) * 2019-03-06 2020-06-12 哈尔滨工程大学 Horizontal array moving target depth estimation method based on AR wave number spectrum
CN111859250A (en) * 2020-06-19 2020-10-30 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Method, system and storage medium for evaluating accuracy of rapid modal parameters under environment and forced excitation
CN111884859A (en) * 2020-07-30 2020-11-03 国网重庆市电力公司电力科学研究院 Network fault diagnosis method and device and readable storage medium
CN112154464A (en) * 2018-06-19 2020-12-29 株式会社岛津制作所 Parameter search method, parameter search device, and program for parameter search
CN112837816A (en) * 2021-02-09 2021-05-25 清华大学 Physiological state prediction method, computer device, and storage medium
CN113822354A (en) * 2021-09-17 2021-12-21 合肥工业大学 Micro-nano probe dynamic characteristic compensation method based on Bayesian inverse calculus modeling
CN114048548A (en) * 2021-11-18 2022-02-15 汉思科特(盐城)减震技术有限公司 Method for estimating dynamic load of air spring of heavy-duty vehicle
WO2022105104A1 (en) * 2020-11-18 2022-05-27 南通大学 Multi-innovation recursive bayesian algorithm-based battery model parameter identification method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112154464B (en) * 2018-06-19 2024-01-02 株式会社岛津制作所 Parameter searching method, parameter searching device, and parameter searching program
CN112154464A (en) * 2018-06-19 2020-12-29 株式会社岛津制作所 Parameter search method, parameter search device, and program for parameter search
CN109598027A (en) * 2018-11-08 2019-04-09 合肥工业大学 A kind of algorithm based on frequency response function correcting principle model parameter
CN109635389A (en) * 2018-11-29 2019-04-16 中国航空工业集团公司沈阳飞机设计研究所 A kind of electric steering engine stiffness test data processing method
CN109635389B (en) * 2018-11-29 2022-12-20 中国航空工业集团公司沈阳飞机设计研究所 Rigidity test data processing method for electric steering engine
CN111273297A (en) * 2019-03-06 2020-06-12 哈尔滨工程大学 Horizontal array moving target depth estimation method based on AR wave number spectrum
CN110489891B (en) * 2019-08-23 2020-11-17 江南大学 Industrial process time-varying parameter estimation method based on multi-cell spatial filtering
CN110489891A (en) * 2019-08-23 2019-11-22 江南大学 A kind of industrial process time-varying uncertainty method based on more born of the same parents' space filterings
CN111859250A (en) * 2020-06-19 2020-10-30 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) Method, system and storage medium for evaluating accuracy of rapid modal parameters under environment and forced excitation
CN111884859A (en) * 2020-07-30 2020-11-03 国网重庆市电力公司电力科学研究院 Network fault diagnosis method and device and readable storage medium
WO2022105104A1 (en) * 2020-11-18 2022-05-27 南通大学 Multi-innovation recursive bayesian algorithm-based battery model parameter identification method
CN112837816A (en) * 2021-02-09 2021-05-25 清华大学 Physiological state prediction method, computer device, and storage medium
CN113822354A (en) * 2021-09-17 2021-12-21 合肥工业大学 Micro-nano probe dynamic characteristic compensation method based on Bayesian inverse calculus modeling
CN113822354B (en) * 2021-09-17 2022-12-06 合肥工业大学 Micro-nano probe dynamic characteristic compensation method based on Bayesian inverse calculus modeling
CN114048548A (en) * 2021-11-18 2022-02-15 汉思科特(盐城)减震技术有限公司 Method for estimating dynamic load of air spring of heavy-duty vehicle

Similar Documents

Publication Publication Date Title
CN107844627A (en) It is a kind of only to export Time variable structure modal parameter Bayesian Estimation method
CN106354695B (en) One kind only exporting linear Time variable structure Modal Parameters Identification
CN107590317B (en) Generator dynamic estimation method considering model parameter uncertainty
CN103900610B (en) MEMS gyro random error Forecasting Methodology based on Lycoperdon polymorphum Vitt wavelet neural network
CN107133195A (en) A kind of Methodology of The Determination of The Order of Model of engineering structure modal idenlification
CN106897717A (en) Bayesian model modification method under multiple test based on environmental excitation data
CN101916241B (en) Method for identifying time-varying structure modal frequency based on time frequency distribution map
CN105142177A (en) Complex neural network channel prediction method
CN103246890B (en) Modal Parameters Identification based on multi-input multi-output signal noise reduction
CN110705041B (en) EASI-based linear structure working modal parameter identification method
CN112086100B (en) Quantization error entropy based urban noise identification method of multilayer random neural network
CN105043384A (en) Modeling method of gyroscopic random noise ARMA model based on robust Kalman wave filtering
CN104463347A (en) Method for electronic product degenerate state trend prediction with singular signals
CN107729845A (en) A kind of frequency respond noise-reduction method decomposed based on sub-space feature value
CN104795063A (en) Acoustic model building method based on nonlinear manifold structure of acoustic space
Cerone et al. Set-membership errors-in-variables identification of MIMO linear systems
CN111274630A (en) Physical mode extraction method for engineering structure flexibility recognition
Mai et al. Surrogate modelling for stochastic dynamical systems by combining NARX models and polynomial chaos expansions
CN109254321B (en) Method for identifying rapid Bayesian modal parameters under seismic excitation
CN113721458A (en) Nonlinear system fault estimation observation method and device with disturbance
Guillaume et al. OMAX–a combined experimental-operational modal analysis approach
CN113884914B (en) Method for estimating charge state of evanescent parallel Kalman filtering power battery
Shaikh et al. Wavelet Decomposition Impacts on Traditional Forecasting Time Series Models.
Seledkova et al. Forecasting characteristics of time series to support managerial decision making process in production-And-economic systems
CN111428342B (en) Random dynamic load identification method based on frequency domain spectrum decomposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180327

WD01 Invention patent application deemed withdrawn after publication