CN107832737B - 基于人工智能的心电图干扰识别方法 - Google Patents
基于人工智能的心电图干扰识别方法 Download PDFInfo
- Publication number
- CN107832737B CN107832737B CN201711203069.4A CN201711203069A CN107832737B CN 107832737 B CN107832737 B CN 107832737B CN 201711203069 A CN201711203069 A CN 201711203069A CN 107832737 B CN107832737 B CN 107832737B
- Authority
- CN
- China
- Prior art keywords
- data
- sampling
- interference
- heartbeat
- heart beat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 21
- 238000005070 sampling Methods 0.000 claims abstract description 52
- 230000002159 abnormal effect Effects 0.000 claims abstract description 8
- 230000005856 abnormality Effects 0.000 claims abstract description 7
- 238000012549 training Methods 0.000 claims description 24
- 230000000747 cardiac effect Effects 0.000 claims description 7
- 238000013145 classification model Methods 0.000 claims description 6
- 238000002679 ablation Methods 0.000 claims description 3
- 238000000718 qrs complex Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000012634 fragment Substances 0.000 abstract 2
- 238000013135 deep learning Methods 0.000 description 10
- 238000013527 convolutional neural network Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000013136 deep learning model Methods 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011176 pooling Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000006793 arrhythmia Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002565 electrocardiography Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000001121 heart beat frequency Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
- G06F2218/16—Classification; Matching by matching signal segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
- A61B5/307—Input circuits therefor specially adapted for particular uses
- A61B5/308—Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/366—Detecting abnormal QRS complex, e.g. widening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7221—Determining signal validity, reliability or quality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Cardiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Physiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
干扰 | 正常 | |
敏感率(Sensitivity) | 99.14% | 99.32% |
阳性预测率(Positive Predicitivity) | 96.44% | 99.84% |
Claims (8)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711203069.4A CN107832737B (zh) | 2017-11-27 | 2017-11-27 | 基于人工智能的心电图干扰识别方法 |
JP2020519166A JP6986724B2 (ja) | 2017-11-27 | 2018-01-12 | 人工知能に基づく心電図干渉識別方法 |
EP18880831.5A EP3614301A4 (en) | 2017-11-27 | 2018-01-12 | ARTIFICIAL INTELLIGENCE BASED INTERFERENCE DETECTION PROCESS FOR AN ELECTROCARDIOGRAM |
PCT/CN2018/072349 WO2019100561A1 (zh) | 2017-11-27 | 2018-01-12 | 基于人工智能的心电图干扰识别方法 |
US16/615,690 US11324455B2 (en) | 2017-11-27 | 2018-01-12 | Artificial intelligence-based interference recognition method for electrocardiogram |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711203069.4A CN107832737B (zh) | 2017-11-27 | 2017-11-27 | 基于人工智能的心电图干扰识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107832737A CN107832737A (zh) | 2018-03-23 |
CN107832737B true CN107832737B (zh) | 2021-02-05 |
Family
ID=61645913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711203069.4A Active CN107832737B (zh) | 2017-11-27 | 2017-11-27 | 基于人工智能的心电图干扰识别方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11324455B2 (zh) |
EP (1) | EP3614301A4 (zh) |
JP (1) | JP6986724B2 (zh) |
CN (1) | CN107832737B (zh) |
WO (1) | WO2019100561A1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108564167B (zh) * | 2018-04-09 | 2020-07-31 | 杭州乾圆科技有限公司 | 一种数据集之中异常数据的识别方法 |
CN109009074A (zh) * | 2018-07-19 | 2018-12-18 | 上海工程技术大学 | 一种基于深度学习的心脏性猝死辅助预警装置 |
CN109893121B (zh) * | 2019-03-26 | 2021-11-05 | 深圳理邦智慧健康发展有限公司 | 心电信号的采集方法、装置、终端和计算机可读存储介质 |
CN110495872B (zh) * | 2019-08-27 | 2022-03-15 | 中科麦迪人工智能研究院(苏州)有限公司 | 基于图片及心搏信息的心电分析方法、装置、设备及介质 |
CN110693483A (zh) * | 2019-09-02 | 2020-01-17 | 乐普智芯(天津)医疗器械有限公司 | 一种动态心电图自动分析的方法 |
CN110840443B (zh) * | 2019-11-29 | 2022-06-10 | 京东方科技集团股份有限公司 | 心电信号处理方法、心电信号处理装置和电子设备 |
KR102386896B1 (ko) * | 2019-12-26 | 2022-04-15 | 강원대학교산학협력단 | 인공지능 기반 심전도 자동 분석 장치 및 방법 |
CN111310572B (zh) * | 2020-01-17 | 2023-05-05 | 上海乐普云智科技股份有限公司 | 利用心搏时间序列生成心搏标签序列的处理方法和装置 |
CN113712566B (zh) * | 2020-05-12 | 2024-02-06 | 深圳市科瑞康实业有限公司 | 一种生成心搏间期差值数据序列的方法和装置 |
CN111680785B (zh) * | 2020-05-29 | 2021-09-24 | 山东省人工智能研究院 | 基于稀疏特性与对抗神经网络相结合的ecg信号处理方法 |
CN114533082B (zh) * | 2020-11-26 | 2023-07-14 | 深圳市科瑞康实业有限公司 | 一种基于心搏间期数据对qrs波类型进行标记的方法 |
CN112883803B (zh) * | 2021-01-20 | 2023-09-01 | 武汉中旗生物医疗电子有限公司 | 一种基于深度学习的心电信号分类方法、装置及存储介质 |
KR20220120922A (ko) * | 2021-02-24 | 2022-08-31 | 주식회사 바디프랜드 | 딥러닝 알고리즘을 기반으로 하는 심전도 생성 시스템 및 그 방법 |
CN113080996B (zh) * | 2021-04-08 | 2022-11-18 | 大同千烯科技有限公司 | 一种基于目标检测的心电图分析方法及装置 |
CN113647908A (zh) * | 2021-08-06 | 2021-11-16 | 东软集团股份有限公司 | 波形识别模型的训练、心电波形识别方法、装置及设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102028459A (zh) * | 2010-12-02 | 2011-04-27 | 广东宝莱特医用科技股份有限公司 | 一种心电图机通道起搏信号检测方法 |
CN102551701A (zh) * | 2010-12-28 | 2012-07-11 | 财团法人工业技术研究院 | 通过周期性信号分析检测实体物件异常运作的系统及方法 |
CN105380620A (zh) * | 2014-08-22 | 2016-03-09 | 精工爱普生株式会社 | 生物体信息检测装置以及生物体信息检测方法 |
CN106214123A (zh) * | 2016-07-20 | 2016-12-14 | 杨平 | 一种基于深度学习算法的心电图综合分类方法 |
CN107203782A (zh) * | 2017-05-23 | 2017-09-26 | 哈尔滨工业大学 | 基于卷积神经网络的大动态信噪比下通信干扰信号识别方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7783354B2 (en) * | 2002-04-29 | 2010-08-24 | Medtronic, Inc. | Method and apparatus for identifying cardiac and non-cardiac oversensing using intracardiac electrograms |
CN201912077U (zh) * | 2010-12-10 | 2011-08-03 | 中国人民解放军广州军区武汉总医院 | 高性能窦房结电图检测仪 |
US9724008B2 (en) * | 2014-07-07 | 2017-08-08 | Zoll Medical Corporation | System and method for distinguishing a cardiac event from noise in an electrocardiogram (ECG) signal |
CN104127194B (zh) * | 2014-07-14 | 2016-05-04 | 华南理工大学 | 一种基于心率变异性分析方法的抑郁症的评估系统 |
KR102450536B1 (ko) * | 2014-10-31 | 2022-10-04 | 아이리듬 테크놀로지스, 아이엔씨 | 무선 생리학적 모니터링 기기 및 시스템 |
US10610162B2 (en) * | 2016-05-31 | 2020-04-07 | Stmicroelectronics S.R.L. | Method for the detecting electrocardiogram anomalies and corresponding system |
CN107358196B (zh) * | 2017-07-12 | 2020-11-10 | 北京卫嘉高科信息技术有限公司 | 一种心搏类型的分类方法、装置及心电仪 |
-
2017
- 2017-11-27 CN CN201711203069.4A patent/CN107832737B/zh active Active
-
2018
- 2018-01-12 JP JP2020519166A patent/JP6986724B2/ja active Active
- 2018-01-12 EP EP18880831.5A patent/EP3614301A4/en not_active Withdrawn
- 2018-01-12 US US16/615,690 patent/US11324455B2/en active Active
- 2018-01-12 WO PCT/CN2018/072349 patent/WO2019100561A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102028459A (zh) * | 2010-12-02 | 2011-04-27 | 广东宝莱特医用科技股份有限公司 | 一种心电图机通道起搏信号检测方法 |
CN102551701A (zh) * | 2010-12-28 | 2012-07-11 | 财团法人工业技术研究院 | 通过周期性信号分析检测实体物件异常运作的系统及方法 |
CN105380620A (zh) * | 2014-08-22 | 2016-03-09 | 精工爱普生株式会社 | 生物体信息检测装置以及生物体信息检测方法 |
CN106214123A (zh) * | 2016-07-20 | 2016-12-14 | 杨平 | 一种基于深度学习算法的心电图综合分类方法 |
CN107203782A (zh) * | 2017-05-23 | 2017-09-26 | 哈尔滨工业大学 | 基于卷积神经网络的大动态信噪比下通信干扰信号识别方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200121255A1 (en) | 2020-04-23 |
CN107832737A (zh) | 2018-03-23 |
EP3614301A1 (en) | 2020-02-26 |
JP2020524065A (ja) | 2020-08-13 |
WO2019100561A1 (zh) | 2019-05-31 |
JP6986724B2 (ja) | 2021-12-22 |
US11324455B2 (en) | 2022-05-10 |
EP3614301A4 (en) | 2021-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107832737B (zh) | 基于人工智能的心电图干扰识别方法 | |
CN107837082B (zh) | 基于人工智能自学习的心电图自动分析方法和装置 | |
EP3692901B1 (en) | Automatic recognition and classification method for electrocardiogram heartbeat based on artificial intelligence | |
CN107714023B (zh) | 基于人工智能自学习的静态心电图分析方法和装置 | |
Houssein et al. | An automatic arrhythmia classification model based on improved marine predators algorithm and convolutions neural networks | |
CN107951485B (zh) | 基于人工智能自学习的动态心电图分析方法和装置 | |
US20200337580A1 (en) | Time series data learning and analysis method using artificial intelligence | |
Luo et al. | Multi-classification of arrhythmias using a HCRNet on imbalanced ECG datasets | |
CN113095302B (zh) | 用于心律失常分类的深度模型、利用该模型的方法及装置 | |
CN110974214A (zh) | 一种基于深度学习的自动心电图分类方法、系统及设备 | |
CN109431492B (zh) | 基于神经网络算法的心电图导联数据模拟重建方法 | |
CN110638430B (zh) | 级联神经网络ecg信号心律失常分类模型的搭建方法 | |
Zhao et al. | An explainable attention-based TCN heartbeats classification model for arrhythmia detection | |
CN111513702A (zh) | 心电数据的检测方法及存储介质 | |
Janbhasha et al. | Recurrent Ascendancy Feature Subset Training Model using Deep CNN Model for ECG based Arrhythmia Classification | |
Yu | Research on Arrhythmia Classification and Detection Based on Multiple Machine Learning Algorithms | |
Camm | A neural network identifying patterns in electrocardiogram (ECG) data to diagnose heart conditions | |
Harikrishna et al. | Classification of Cardiac Arrhythmias using Recurrent Neural Network and selected features | |
Jain et al. | Design of an Integrated Arrhythmia Detection Model using Connectivity Features and Multivariate Time Series Classification | |
Alimbayeva et al. | APPLICATION OF NEURAL NETWORKS FOR PROCESSING AND CARDIO SIGNAL ANALYSIS | |
Dsouza et al. | Atrial Fibrillation Classification: A Hybrid Approach Integrating Support Vector Machines and Feature Selection for Reduced Computational Complexity | |
Mary et al. | An effective hybrid optimal deep learning approach using BI-LSTM and restricted Boltzmann machines whale optimization to detect arrhythmia | |
Kurniawan et al. | Classification of Arrhythmias 12-Lead ECG Signals Based on 1 Dimensional Convolutional Neural Networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190110 Address after: 518108 North of 9 buildings and 4 floors of Baiwangxin Industrial Zone, Songbai Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province Applicant after: Kai Woer Electronics Co., Ltd. of Shenzhen Address before: 102200 Building No. 37 Qianqian Road, Changping Science and Technology Park, Changping District, Beijing Applicant before: Lepu (Beijing) Medical Equipment Co.,Ltd. |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20190614 Address after: 102200 Building No. 37 Qianqian Road, Changping Science and Technology Park, Changping District, Beijing Applicant after: Lepu (Beijing) Medical Equipment Co.,Ltd. Address before: 518108 North of 9 buildings and 4 floors of Baiwangxin Industrial Zone, Songbai Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province Applicant before: Kai Woer Electronics Co., Ltd. of Shenzhen |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200511 Address after: 16th Floor, Block A, 668 Shenzhuan Highway, Songjiang District, Shanghai, 20112 Applicant after: YOCALY INFORMATION SCIENCE & TECHNOLOGY Co.,Ltd. Address before: 102200, Beijing Changping Changping District science and Technology Park, super Road, No. 3, building 37 Applicant before: Lepu Medical Technology (Beijing) Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 201612 16 / F, block a, no.668, Xinzhuan Road, Songjiang District, Shanghai Patentee after: Shanghai Lepu Yunzhi Technology Co.,Ltd. Address before: 201612 16 / F, block a, no.668, Xinzhuan Road, Songjiang District, Shanghai Patentee before: YOCALY INFORMATION SCIENCE & TECHNOLOGY Co.,Ltd. |