CN107820293A - A kind of wireless relay nodes system of selection, system, equipment and computer media - Google Patents

A kind of wireless relay nodes system of selection, system, equipment and computer media Download PDF

Info

Publication number
CN107820293A
CN107820293A CN201711122852.8A CN201711122852A CN107820293A CN 107820293 A CN107820293 A CN 107820293A CN 201711122852 A CN201711122852 A CN 201711122852A CN 107820293 A CN107820293 A CN 107820293A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
msup
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711122852.8A
Other languages
Chinese (zh)
Other versions
CN107820293B (en
Inventor
刘志禹
夏锡刚
李宝岩
杨博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinlin Jlu Communication Design Institute Co Ltd
Original Assignee
Jinlin Jlu Communication Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinlin Jlu Communication Design Institute Co Ltd filed Critical Jinlin Jlu Communication Design Institute Co Ltd
Priority to CN201711122852.8A priority Critical patent/CN107820293B/en
Publication of CN107820293A publication Critical patent/CN107820293A/en
Application granted granted Critical
Publication of CN107820293B publication Critical patent/CN107820293B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/16Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

The invention discloses a kind of wireless relay nodes system of selection, system, equipment and computer media, wherein this method includes:The Signal to Interference plus Noise Ratio of each via node is calculated based on Signal to Interference plus Noise Ratio calculation formula;Determine that the maximum via node of Signal to Interference plus Noise Ratio value is object relay node, to carry out signal transmission based on object relay node.A kind of wireless relay nodes system of selection, system, equipment and computer media disclosed by the invention can allow to carry out the best performance of the object relay node of signal transmission to a certain extent.In summary, a kind of wireless relay nodes system of selection, system, equipment and computer media disclosed by the invention solve the technical problem that suitable via node how is selected in full duplex relaying model to a certain extent.

Description

A kind of wireless relay nodes system of selection, system, equipment and computer media
Technical field
The present invention relates to wireless full-duplex trunking traffic technical field, more specifically to a kind of wireless relay nodes System of selection, system, equipment and computer media.
Background technology
With the raising of traffic demands, usable spectrum resource becomes to be becoming tight day, at the same time, with communication equipment Be continuously increased, the power consumption issues of communication equipment become more and more prominent;How to improve the availability of frequency spectrum and reduce energy Amount consumption problem becomes more and more important.
A kind of existing solution improves the availability of frequency spectrum and the method for reduction power consumption issues:By in full duplex Realize that signal transmits after technology.Typically full duplex relaying model is:Source node sends transmission signal to via node, relaying Node is sent the transmission signal of reception to destination node using the energy of themselves capture.
However, there are multiple via nodes in full duplex relaying model, suitable via node how is selected to carry out transmission signal Become particularly important.
In summary, it is current those skilled in the art that suitable via node how is selected in full duplex relaying model Urgent problem to be solved.
The content of the invention
It is an object of the invention to provide a kind of wireless relay nodes system of selection, its can solve to a certain extent how The technical problem of suitable via node is selected in full duplex relaying model.Present invention also offers a kind of choosing of wireless relay nodes Select system, equipment and computer media.
To achieve these goals, the present invention provides following technical scheme:
A kind of wireless relay nodes system of selection, including:
The Signal to Interference plus Noise Ratio of each via node is calculated based on Signal to Interference plus Noise Ratio calculation formula;
Determine that the maximum via node of Signal to Interference plus Noise Ratio value is object relay node, to be carried out based on the object relay node Signal transmits;
Wherein, the Signal to Interference plus Noise Ratio calculation formula is:
P is the transmission power of source node,Channel fading coefficient for source node to i-th of via node,For i-th Individual via node to destination node channel fading coefficient,For the channel fading system of the self-interference link of i-th of via node Number, α represent that the collection of energy time accounts for the ratio of whole signal transmission time, and η is energy conversion efficiency.
Preferably, the via node for determining that Signal to Interference plus Noise Ratio value is maximum is object relay node, including:
When the object effects factor isWhen, determined based on optimal relay node selection formula in target After node;
When the object effects factor isWhen, target is determined based on maximum useful signal trunk node selection formula Via node;
When the object effects factor isWhen, object relay node is determined based on least interference trunk node selection formula;
Wherein, optimal relay node selection formula for:
The maximum useful signal trunk node selection formula is:
The least interference trunk node selection formula is:
Preferably, after the via node for determining that Signal to Interference plus Noise Ratio value is maximum is object relay node, in addition to:
All kinds of parameters on target relayings are analyzed based on outage probability calculation formula corresponding to each trunk node selection formula The influence of the outage probability of node;
Wherein, optimal outage probability calculation formula corresponding to optimal relay node selection formula for:
Maximum outage probability calculation formula corresponding to the maximum useful signal trunk node selection formula is:
Minimal disruption probability calculation formula is corresponding to the least interference trunk node selection formula:
Wherein, K1() is 1 rank Bessel function, γ0For target Signal to Interference plus Noise Ratio, λ is the parameter of respective channel, and N is relaying The total quantity of node.
Preferably, after the via node for determining that Signal to Interference plus Noise Ratio value is maximum is object relay node, in addition to:
All kinds of parameters on target relayings are analyzed based on outage probability boundary equation corresponding to each trunk node selection formula The influence of the outage probability of node;
Wherein, optimal outage probability boundary equation corresponding to optimal relay node selection formula for:
Maximum outage probability boundary equation corresponding to the maximum useful signal trunk node selection formula is:
Minimal disruption probabilistic margins formula is corresponding to the least interference trunk node selection formula:
Present invention also offers a kind of wireless relay nodes to select system, including:
Signal to Interference plus Noise Ratio computing module, letter for calculating each via node based on Signal to Interference plus Noise Ratio calculation formula is dry to make an uproar Than;
Determining module, for determining that the maximum via node of Signal to Interference plus Noise Ratio value is object relay node, with based on the mesh Mark via node and carry out signal transmission;
Wherein, the Signal to Interference plus Noise Ratio calculation formula is:
P is the transmission power of source node,Channel fading coefficient for source node to i-th of via node,For i-th Individual via node to destination node channel fading coefficient,For the channel fading system of the self-interference link of i-th of via node Number, α represent that the collection of energy time accounts for the ratio of whole signal transmission time, and η is energy conversion efficiency.
Preferably, the determining module includes:
Optimal relay node determining unit, for being when the object effects factorWhen, based on optimal Trunk node selection formula determines object relay node;
Maximum useful signal via node determining unit, for being when the object effects factorWhen, based on most Big useful signal trunk node selection formula determines object relay node;
Least interference via node determining unit, for being when the object effects factorWhen, relayed and saved based on least interference Point selection formula determines object relay node;
Wherein, optimal relay node selection formula for:
The maximum useful signal trunk node selection formula is:
The least interference trunk node selection formula is:
Preferably, in addition to:
First analysis module, for each based on outage probability calculation formula analysis corresponding to each trunk node selection formula The influence of the outage probability of class parameters on target via node;
Wherein, optimal outage probability calculation formula corresponding to optimal relay node selection formula for:
Maximum outage probability calculation formula corresponding to the maximum useful signal trunk node selection formula is:
Minimal disruption probability calculation formula is corresponding to the least interference trunk node selection formula:
Wherein, K1() is 1 rank Bessel function, γ0For target Signal to Interference plus Noise Ratio, λ is the parameter of respective channel, and N is relaying The total quantity of node.
Preferably, in addition to:
Second analysis module, for each based on outage probability boundary equation analysis corresponding to each trunk node selection formula The influence of the outage probability of class parameters on target via node;
Wherein, optimal outage probability boundary equation corresponding to optimal relay node selection formula for:
Maximum outage probability boundary equation corresponding to the maximum useful signal trunk node selection formula is:
Minimal disruption probabilistic margins formula is corresponding to the least interference trunk node selection formula:
Present invention also offers a kind of wireless relay nodes to select equipment, including:
Memory, for storing computer program;
Processor, a kind of as above any wireless relay nodes selecting party is realized during for performing the computer program The step of method.
Present invention also offers a kind of computer media, including:Computer program, institute are stored with the computer media State the step of a kind of as above any wireless relay nodes system of selection is realized when computer program is executed by processor.
A kind of wireless relay nodes system of selection provided by the invention, first calculates each based on Signal to Interference plus Noise Ratio calculation formula The Signal to Interference plus Noise Ratio of via node, the letter that can obtain each via node easily and fast by Signal to Interference plus Noise Ratio calculation formula are done Make an uproar ratio;It is then determined that the via node of Signal to Interference plus Noise Ratio value maximum is object relay node, to carry out letter based on object relay node Number transmission, can so allow to carry out to a certain extent signal transmission object relay node best performance.In summary, A kind of wireless relay nodes system of selection provided by the invention solves how in full duplex relaying model to a certain extent Select the technical problem of suitable via node.A kind of wireless relay nodes selection system, equipment and calculating provided by the invention Machine medium also solves corresponding technical problem.
Brief description of the drawings
In order to illustrate more clearly about the embodiment of the present invention or technical scheme of the prior art, below will be to embodiment or existing There is the required accompanying drawing used in technology description to be briefly described, it should be apparent that, drawings in the following description are only this The embodiment of invention, for those of ordinary skill in the art, on the premise of not paying creative work, can also basis The accompanying drawing of offer obtains other accompanying drawings.
Fig. 1 is the model and structure of time slot figure of full duplex relaying node;
Fig. 2 is a kind of flow chart of wireless relay nodes system of selection provided in an embodiment of the present invention;
Fig. 3 is the outage probability of three kinds of relay node selecting methods with collection of energy time changing curve figure;
Fig. 4 is the handling capacity of three kinds of relay node selecting methods with collection of energy time changing curve figure;
Fig. 5 is the outage probability of three kinds of relay node selecting methods with SNR change curve;
Fig. 6 is the handling capacity of three kinds of relay node selecting methods with SNR change curve;
Fig. 7 is the outage probability of three kinds of relay node selecting methods with the change curve of via node number;
Fig. 8 is the structural representation that a kind of wireless relay nodes provided in an embodiment of the present invention select system;
Fig. 9 is the structural representation that a kind of wireless relay nodes provided in an embodiment of the present invention select equipment.
Embodiment
Below in conjunction with the accompanying drawing in the embodiment of the present invention, the technical scheme in the embodiment of the present invention is carried out clear, complete Site preparation describes, it is clear that described embodiment is only part of the embodiment of the present invention, rather than whole embodiments.It is based on Embodiment in the present invention, those of ordinary skill in the art are obtained every other under the premise of creative work is not made Embodiment, belong to the scope of protection of the invention.
Referring to Fig. 1, Fig. 1 is the model and structure of time slot figure of full duplex relaying node.Wherein source node s is in via node RiAssistance under send information to destination node D, and source node configures an antenna with destination node;Each full duplex relaying Node configures two antennas.Assuming that via node carries out signal and energy acceptance using an antenna, another antenna is utilized To forward the signal received, via node uses the mode of operation of amplification forwarding, i.e. receive information is amplified after processing again Forward.Whole signals transmission is divided into two stages, and first stage is the collection of energy stage, and via node, which receives, to be come It is used to collect energy from the radiofrequency signal of source node;Second stage is transmission phase signal, and via node utilizes what is be collected into The signal received is forwarded to destination node by energy.
For convenience, method corresponding to formula is selected to be referred to as optimal relay node selection optimal relay node here Method, system of selection corresponding to maximum useful signal trunk node selection formula is referred to as maximum useful signal trunk node selection Method, method corresponding to least interference trunk node selection formula is referred to as least interference relay node selecting method.The application Inventor's respective formula for deriving each method process it is as follows:
Assuming that the equal Rayleigh distributed of all channels and independently of each other, therefore, | hj|2(j∈SRi,RiDi,Ri) obey index It is distributed and parameter is λj, and the probability density function for the stochastic variable for being X for obedience exponential distribution, parameter is:
The transmission power for making source node is P, and the collection of energy time is α T, then the information transfer time is (1- α) T.In energy Collection phase, the signal that via node receives are:Wherein, xeFor the energy signal of power P,It is the additive white Gaussian noise at via node.The energy that i-th via node is collected is:
Assuming that via node by the energy of collection all for carrying out signal transmission, then the transmitting work(of i-th of via node Rate is:
Then the transmission signal for making source node is xs(t), its power is P, and the transmission signal of each via node isIts power isThen the reception signal of i-th of via node and destination node is respectively:
Wherein,It is illustrated respectively at corresponding via node and destination node Additive white Gaussian noise,The useful reception signal of via node and destination node is represented respectively,Represent the remaining self-interference that full duplex relaying node introduces.The Signal to Interference plus Noise Ratio of i-th branch road is:
Wherein,It is after simplification:
The action executing main body of each step can be in a kind of relay node selecting method provided in an embodiment of the present invention A kind of trunk node selection system provided in an embodiment of the present invention, and the system can be built in computer, server etc., institute Can also be to calculate with the action executing main body of each step in a kind of relay node selecting method provided in an embodiment of the present invention Machine, server etc..For convenience, here by each step in a kind of relay node selecting method provided in an embodiment of the present invention Rapid action executing main body is set to a kind of trunk node selection system provided in an embodiment of the present invention, referred to as selects system.
Referring to Fig. 2, Fig. 2 is a kind of flow chart of wireless relay nodes system of selection provided in an embodiment of the present invention.
A kind of wireless relay nodes system of selection provided in an embodiment of the present invention, may comprise steps of:
Step S101:The Signal to Interference plus Noise Ratio of each via node is calculated based on Signal to Interference plus Noise Ratio calculation formula.
Wherein, Signal to Interference plus Noise Ratio calculation formula is:
P is the transmission power of source node,Channel fading coefficient for source node to i-th of via node,For i-th Individual via node to destination node channel fading coefficient,For the channel fading system of the self-interference link of i-th of via node Number, α represent that the collection of energy time accounts for the ratio of whole signal transmission time, and η is energy conversion efficiency.
In practical application, the letter that selection system can first calculate each via node based on Signal to Interference plus Noise Ratio calculation formula is done Make an uproar ratio.When calculating the Signal to Interference plus Noise Ratio of each via node, it is necessary to first obtain the relevant parameter of each via node, such as Channel fading coefficient of self-interference link of the via node etc., these parameters can be pre-entered in selection system, What but the measurement in real time of selection system obtained etc., the present invention is not specifically limited herein.
Step S102:Determine that the maximum via node of Signal to Interference plus Noise Ratio value is object relay node, with based on object relay section Point carries out signal transmission.
Selection system, can be to determine that Signal to Interference plus Noise Ratio value is maximum after the Signal to Interference plus Noise Ratio of each via node is calculated Via node is object relay node, and object relay node mentioned here refers to the relaying section for carrying out signal transmission Point.Selection system determines that the process of the maximum via node of Signal to Interference plus Noise Ratio value can be for:Selection system first obtains one and believes dry make an uproar Ratio as current Signal to Interference plus Noise Ratio value, then by current Signal to Interference plus Noise Ratio value compared with next Signal to Interference plus Noise Ratio value size, will value it is big Signal to Interference plus Noise Ratio value be defined as current Signal to Interference plus Noise Ratio value, then current Signal to Interference plus Noise Ratio value and next Signal to Interference plus Noise Ratio value are compared Compared with it is current Signal to Interference plus Noise Ratio value that still determination, which is worth big Signal to Interference plus Noise Ratio value, these steps is repeated, until each Signal to Interference plus Noise Ratio value Comparison procedure is both participated in, the current Signal to Interference plus Noise Ratio value of last time is maximum Signal to Interference plus Noise Ratio value.
A kind of wireless relay nodes system of selection provided by the invention, first calculates each based on Signal to Interference plus Noise Ratio calculation formula The Signal to Interference plus Noise Ratio of via node, the letter that can obtain each via node easily and fast by Signal to Interference plus Noise Ratio calculation formula are done Make an uproar ratio;It is then determined that the via node of Signal to Interference plus Noise Ratio value maximum is object relay node, to carry out letter based on object relay node Number transmission, can so allow to carry out to a certain extent signal transmission object relay node best performance.In summary, A kind of wireless relay nodes system of selection provided by the invention solves how in full duplex relaying model to a certain extent Select the technical problem of suitable via node.
A kind of wireless relay nodes system of selection provided in an embodiment of the present invention, is specifically as follows:
The Signal to Interference plus Noise Ratio of each via node is calculated based on Signal to Interference plus Noise Ratio calculation formula;
When the object effects factor isWhen, determined based on optimal relay node selection formula in target After node;
When the object effects factor isWhen, target is determined based on maximum useful signal trunk node selection formula Via node;
When the object effects factor isWhen, object relay node is determined based on least interference trunk node selection formula;
Wherein, optimal relay node selection formula for:
Maximum useful signal trunk node selection formula is:
Least interference trunk node selection formula is:
Formula is selected from optimal relay node, the influence of all factors of influence take into account, so in optimal It is optimal that the Signal to Interference plus Noise Ratio of the object relay node of formula determination is selected after node, but its complexity is larger;By maximum useful Signal trunk node selection formula understands that the object relay node that maximum useful signal trunk node selection formula determines is without certainly Interference channel status information, its complexity are relatively low;From least interference trunk node selection formula, least interference via node Select the channel condition information needed for the object relay node of formula determination minimum, its complexity is minimum., can be with being actually needed Corresponding trunk node selection formula is selected to determine object relay node according to different actual demands.
In a kind of wireless relay nodes system of selection provided in an embodiment of the present invention, the maximum relaying of Signal to Interference plus Noise Ratio value is determined Node be object relay node after, can also include:
All kinds of parameters on target relayings are analyzed based on outage probability calculation formula corresponding to each trunk node selection formula The influence of the outage probability of node;
Wherein, optimal outage probability calculation formula corresponding to optimal relay node selection formula for:
Maximum outage probability calculation formula is corresponding to maximum useful signal trunk node selection formula:
Minimal disruption probability calculation formula is corresponding to least interference trunk node selection formula:
Wherein, K1() is 1 rank Bessel function, γ0For target Signal to Interference plus Noise Ratio, λ is the parameter of respective channel, and N is relaying The total quantity of node.
The derivation of optimal outage probability calculation formula is as follows:When Signal to Interference plus Noise Ratio is less than target Signal to Interference plus Noise Ratio, then recognize Occur for interrupt event, therefore the outage probability calculation formula of optimal relay node system of selection is:
Wherein,R0For constant transmissions speed, Pr () is event occurrence rate, because channel is mutual It is independently distributed, institute's above formula can be expressed as:
WhereinRepresent stochastic variable γiCumulative distribution function (Cumulative Distributed Function, CDF), N is the number of via node.By deriving, can obtain its expression formula is:
According to above formula, can obtain outage probability calculation formula under optimal relay node selection for:
Similar with the derivation of optimal outage probability calculation formula, can obtain maximum outage probability calculation formula is:
Accordingly, minimal disruption probability calculation formula is:
In practical application, it is outage probability to evaluate a factor for interrupting joint behavior quality, often outage probability Value is minimum, the best performance of via node;So selection system it is determined that the maximum via node of Signal to Interference plus Noise Ratio value in target After node, outage probability calculation formula parameters pair can also be analyzed according to corresponding to each trunk node selection formula The influence of the outage probability of object relay node, to set what corresponding trunk node selection formula determined according to analysis result Optimum parameter of object relay node etc., optimum parameter mentioned here refer to make it that the interruption of object relay node is general The minimum parameter of rate value.
In a kind of wireless relay nodes system of selection provided in an embodiment of the present invention, the maximum relaying of Signal to Interference plus Noise Ratio value is determined Node be object relay node after, can also include:
All kinds of parameters on target relayings are analyzed based on outage probability boundary equation corresponding to each trunk node selection formula The influence of the outage probability of node;
Wherein, optimal outage probability boundary equation corresponding to optimal relay node selection formula for:
Maximum outage probability boundary equation is corresponding to maximum useful signal trunk node selection formula:
Minimal disruption probabilistic margins formula is corresponding to least interference trunk node selection formula:
In practical application, scaling can be carried out to Signal to Interference plus Noise Ratio, i.e.,:
Accordingly, optimal outage probability boundary equation is corresponding to optimal relay node system of selection:
Maximum outage probability feature modeling formula is corresponding to maximum useful signal relay node selecting method:
Minimal disruption probabilistic margins calculation formula is corresponding to least interference relay node selecting method:
Integrated due to existing in outage probability calculation formula corresponding to each relay node selecting method, in practical application, Sometimes it is difficult to obtain corresponding outage probability value by outage probability calculation formula, at this moment, is reducing the situation of accuracy in computation Under, corresponding outage probability value can be calculated by outage probability boundary equation corresponding to each relay node selecting method. Compared with by outage probability calculation formula, it can improve to obtain the speed of outage probability value by outage probability boundary equation, And then it can improve and analyze the speed that the outage probability of all kinds of parameters on target via nodes influences.
Fig. 3 and Fig. 4 are referred to, Fig. 3 is the outage probability of three kinds of relay node selecting methods with collection of energy time change Curve map, Fig. 4 are the handling capacity of three kinds of relay node selecting methods with collection of energy time changing curve figure.OS in figure is represented Optimal relay node system of selection, MU represent maximum useful signal relay node selecting method, and MI represents least interference relaying section Click selection method.The facilities of all kinds of parameters are:Wherein, X~E (λ) represents that stochastic variable X obeys the exponential distribution that parameter is λ, and the number of via node is 3, R0=2bit/s/Hz, T= 1, signal to noise ratio snr=P/N0, it is assumed that noise power is constant, then SNR change is the change of source node power P.From Fig. 3 and Fig. 4 In as can be seen that each relay node selecting method outage probability curve and throughput curve be most worth a little in the presence of one, therefore In the presence of an optimal collection of energy time, but optimum capacity acquisition time is different corresponding to outage probability and handling capacity, this It is because handling capacity is not the linear function of outage probability.The calculation formula of handling capacity is:θ=R0(1-Pout) (1- α), wherein PoutFor outage probability corresponding to every kind of relay node selecting method.
Refer to Fig. 5 and Fig. 6, Fig. 5 be the outage probability of three kinds of relay node selecting methods with SNR change curve, Fig. 6 is the handling capacity of three kinds of relay node selecting methods with SNR change curve.From fig. 5, it can be seen that outage probability with SNR increase is constantly reduced, but three kinds of relay node selecting methods are different to SNR susceptibility, but in each case, in optimal Interruption performance after node selecting method is best, in low SNR range, the interruption of maximum useful signal relay node selecting method Performance is better than least interference relay node selecting method, and in high SNR range, in least interference relay node selecting method Disconnected performance is better than maximum useful signal relay node selecting method.In practical application, shadow that can be according to SNR to interruption performance Ring, suitable relay node selecting method is selected according to the SNR value of reality, to obtain best interruption performance.Can from Fig. 6 Go out, the handling capacity of every kind of relay node selecting method constantly increases with SNR increase.
Referring to Fig. 7, Fig. 7 is the outage probability of three kinds of relay node selecting methods with the change curve of via node number Figure.It can be seen from figure 7 that as the interruption performance of the increase optimal relay node system of selection of via node number is constantly excellent Change, and the interruption performance of maximum useful signal relay node selecting method and least interference relay node selecting method can gradually become In stabilization, into platform effect., can be according to outage probability with the change reasonable arrangement of via node number in practical application Reach preferable interruption performance after the quantity of node, and then using appropriate number of via node.
Present invention also offers a kind of wireless relay nodes to select system, and it has a kind of nothing provided in an embodiment of the present invention The corresponding effect that line relay node selecting method has.Referring to Fig. 8, Fig. 8 for it is provided in an embodiment of the present invention it is a kind of it is wireless in After the structural representation of node selection system.
A kind of wireless relay nodes selection system provided in an embodiment of the present invention, can include:
Signal to Interference plus Noise Ratio computing module 101, the letter for being calculated each via node based on Signal to Interference plus Noise Ratio calculation formula are done Make an uproar ratio;
Determining module 102, for determining that the maximum via node of Signal to Interference plus Noise Ratio value is object relay node, with based on target Via node carries out signal transmission;
Wherein, Signal to Interference plus Noise Ratio calculation formula is:
P is the transmission power of source node,Channel fading coefficient for source node to i-th of via node,For i-th Individual via node to destination node channel fading coefficient,For the channel fading system of the self-interference link of i-th of via node Number, α represent that the collection of energy time accounts for the ratio of whole signal transmission time, and η is energy conversion efficiency.
In a kind of wireless relay nodes selection system provided in an embodiment of the present invention, determining module can include:
Optimal relay node determining unit, for being when the object effects factorWhen, based on optimal Trunk node selection formula determines object relay node;
Maximum useful signal via node determining unit, for being when the object effects factorWhen, based on most Big useful signal trunk node selection formula determines object relay node;
Least interference via node determining unit, for being when the object effects factorWhen, relayed and saved based on least interference Point selection formula determines object relay node;
Wherein, optimal relay node selection formula for:
Maximum useful signal trunk node selection formula is:
Least interference trunk node selection formula is:
In a kind of wireless relay nodes selection system provided in an embodiment of the present invention, it can also include:
First analysis module, for each based on outage probability calculation formula analysis corresponding to each trunk node selection formula The influence of the outage probability of class parameters on target via node;
Wherein, optimal outage probability calculation formula corresponding to optimal relay node selection formula for:
Maximum outage probability calculation formula is corresponding to maximum useful signal trunk node selection formula:
Minimal disruption probability calculation formula is corresponding to least interference trunk node selection formula:
Wherein, K1() is 1 rank Bessel function, γ0For target Signal to Interference plus Noise Ratio, λ is the parameter of respective channel, and N is relaying The total quantity of node.
In a kind of wireless interruption node selection system provided in an embodiment of the present invention, it can also include:
Second analysis module, for each based on outage probability boundary equation analysis corresponding to each trunk node selection formula The influence of the outage probability of class parameters on target via node;
Wherein, optimal outage probability boundary equation corresponding to optimal relay node selection formula for:
Maximum outage probability boundary equation is corresponding to maximum useful signal trunk node selection formula:
Minimal disruption probabilistic margins formula is corresponding to least interference trunk node selection formula:
Present invention also offers a kind of wireless relay nodes selection equipment and computer media, it is respectively provided with implementation of the present invention The corresponding effect that a kind of wireless relay nodes system of selection that example provides has.Referring to Fig. 9, Fig. 9 carries for the embodiment of the present invention A kind of structural representation of wireless relay nodes selection equipment supplied.
A kind of wireless relay nodes selection equipment provided in an embodiment of the present invention, can include:
Memory 201, for storing computer program;
Processor 202, a kind of as above wireless relay described by any embodiment is realized during for performing computer program The step of node selecting method.
A kind of computer media provided in an embodiment of the present invention, computer program, computer are stored with computer media The step of a kind of as above wireless relay nodes system of selection described by any embodiment is realized when program is executed by processor.
Relevant portion in a kind of wireless relay nodes selection system provided in an embodiment of the present invention, equipment and computer media Explanation refer to the detailed description of corresponding part in a kind of wireless relay nodes system of selection provided in an embodiment of the present invention, This is repeated no more.In addition, realized in above-mentioned technical proposal provided in an embodiment of the present invention with corresponding to technical scheme in the prior art The consistent part of principle is simultaneously unspecified, in order to avoid excessively repeat.
The foregoing description of the disclosed embodiments, those skilled in the art are enable to realize or using the present invention.To this A variety of modifications of a little embodiments will be apparent for a person skilled in the art, and generic principles defined herein can Without departing from the spirit or scope of the present invention, to realize in other embodiments.Therefore, the present invention will not be limited The embodiments shown herein is formed on, and is to fit to consistent with principles disclosed herein and features of novelty most wide Scope.

Claims (10)

  1. A kind of 1. wireless relay nodes system of selection, it is characterised in that including:
    The Signal to Interference plus Noise Ratio of each via node is calculated based on Signal to Interference plus Noise Ratio calculation formula;
    Determine that the maximum via node of Signal to Interference plus Noise Ratio value is object relay node, to carry out signal based on the object relay node Transmission;
    Wherein, the Signal to Interference plus Noise Ratio calculation formula is:
    <mrow> <msub> <mi>&amp;gamma;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mfrac> <mrow> <mi>&amp;eta;</mi> <mi>&amp;alpha;</mi> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
    P is the transmission power of source node,Channel fading coefficient for source node to i-th of via node,For i-th of relaying Node to destination node channel fading coefficient,For the channel fading coefficient of the self-interference link of i-th of via node, α tables Show that the collection of energy time accounts for the ratio of whole signal transmission time, η is energy conversion efficiency.
  2. 2. according to the method for claim 1, it is characterised in that the via node for determining that Signal to Interference plus Noise Ratio value is maximum is mesh Via node is marked, including:
    When the object effects factor isWhen, object relay node is determined based on optimal relay node selection formula;
    When the object effects factor isWhen, object relay is determined based on maximum useful signal trunk node selection formula Node;
    When the object effects factor isWhen, object relay node is determined based on least interference trunk node selection formula;
    Wherein, optimal relay node selection formula for:
    <mrow> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>i</mi> </munder> <mo>{</mo> <msub> <mi>&amp;gamma;</mi> <mi>i</mi> </msub> <mo>}</mo> <mo>;</mo> </mrow>
    The maximum useful signal trunk node selection formula is:
    <mrow> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>i</mi> </munder> <mo>{</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>}</mo> <mo>;</mo> </mrow>
    The least interference trunk node selection formula is:
    <mrow> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>i</mi> </munder> <mo>{</mo> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>}</mo> <mo>.</mo> </mrow>
  3. 3. according to the method for claim 2, it is characterised in that the via node for determining that Signal to Interference plus Noise Ratio value is maximum is mesh After marking via node, in addition to:
    All kinds of parameters on target via nodes are analyzed based on outage probability calculation formula corresponding to each trunk node selection formula Outage probability influence;
    Wherein, optimal outage probability calculation formula corresponding to optimal relay node selection formula for:
    <mrow> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msubsup> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> </mrow> </msup> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> <mi>d</mi> <mi>y</mi> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>N</mi> </msup> <mo>;</mo> </mrow>
    Maximum outage probability calculation formula corresponding to the maximum useful signal trunk node selection formula is:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msubsup> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>N</mi> </msup> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> </mrow> </msup> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> <mi>d</mi> <mi>y</mi> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mrow> </mfrac> </mrow> </msup> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Minimal disruption probability calculation formula is corresponding to the least interference trunk node selection formula:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msubsup> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>N</mi> <mi>y</mi> </mrow> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> </mrow> </msup> <mrow> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <mo>/</mo> <mi>N</mi> </mrow> </mfrac> <mi>d</mi> <mi>y</mi> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Wherein, K1() is 1 rank Bessel function, γ0For target Signal to Interference plus Noise Ratio, λ is the parameter of respective channel, and N is via node Total quantity.
  4. 4. according to the method for claim 2, it is characterised in that the via node for determining that Signal to Interference plus Noise Ratio value is maximum is mesh After marking via node, in addition to:
    All kinds of parameters on target via nodes are analyzed based on outage probability boundary equation corresponding to each trunk node selection formula Outage probability influence;
    Wherein, optimal outage probability boundary equation corresponding to optimal relay node selection formula for:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mi>Pr</mi> <mo>{</mo> <mrow> <mi>min</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&lt;</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> <mo>}</mo> </mrow> <mi>N</mi> </msup> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    Maximum outage probability boundary equation corresponding to the maximum useful signal trunk node selection formula is:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mi>Pr</mi> <mo>{</mo> <mrow> <mi>min</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&lt;</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>N</mi> </msup> </mrow> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    Minimal disruption probabilistic margins formula is corresponding to the least interference trunk node selection formula:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mi>Pr</mi> <mo>{</mo> <mrow> <mi>min</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&lt;</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>N</mi> <mrow> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>.</mo> </mrow>
  5. 5. a kind of wireless relay nodes select system, it is characterised in that including:
    Signal to Interference plus Noise Ratio computing module, for calculating the Signal to Interference plus Noise Ratio of each via node based on Signal to Interference plus Noise Ratio calculation formula;
    Determining module, for determining that the maximum via node of Signal to Interference plus Noise Ratio value is object relay node, with based in the target Signal transmission is carried out after node;
    Wherein, the Signal to Interference plus Noise Ratio calculation formula is:
    <mrow> <msub> <mi>&amp;gamma;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mfrac> <mrow> <mi>&amp;eta;</mi> <mi>&amp;alpha;</mi> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;alpha;</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
    P is the transmission power of source node,Channel fading coefficient for source node to i-th of via node,For in i-th After the channel fading coefficient of node to destination node,For the channel fading coefficient of the self-interference link of i-th of via node, α Represent that the collection of energy time accounts for the ratio of whole signal transmission time, η is energy conversion efficiency.
  6. 6. system according to claim 5, it is characterised in that the determining module includes:
    Optimal relay node determining unit, for being when the object effects factorWhen, based on best relay section Point selection formula determines object relay node;
    Maximum useful signal via node determining unit, for being when the object effects factorWhen, had based on maximum Object relay node is determined with signal trunk node selection formula;
    Least interference via node determining unit, for being when the object effects factorWhen, selected based on least interference via node Select formula and determine object relay node;
    Wherein, optimal relay node selection formula for:
    <mrow> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>i</mi> </munder> <mo>{</mo> <msub> <mi>&amp;gamma;</mi> <mi>i</mi> </msub> <mo>}</mo> <mo>;</mo> </mrow>
    The maximum useful signal trunk node selection formula is:
    <mrow> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> <mi>i</mi> </munder> <mo>{</mo> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>}</mo> <mo>;</mo> </mrow>
    The least interference trunk node selection formula is:
    <mrow> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> <mo>=</mo> <mi>arg</mi> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mi>i</mi> </munder> <mo>{</mo> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>}</mo> <mo>.</mo> </mrow>
  7. 7. system according to claim 6, it is characterised in that also include:
    First analysis module, for analyzing all kinds of ginsengs based on outage probability calculation formula corresponding to each trunk node selection formula The influence of several outage probabilities to object relay node;
    Wherein, optimal outage probability calculation formula corresponding to optimal relay node selection formula for:
    <mrow> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msubsup> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> </mrow> </msup> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> <mi>d</mi> <mi>y</mi> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>N</mi> </msup> <mo>;</mo> </mrow>
    Maximum outage probability calculation formula corresponding to the maximum useful signal trunk node selection formula is:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msubsup> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>2</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>N</mi> </msup> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>y</mi> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> </mrow> </msup> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> <mi>d</mi> <mi>y</mi> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mrow> </mfrac> </mrow> </msup> <mo>;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
    Minimal disruption probability calculation formula is corresponding to the least interference trunk node selection formula:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </msubsup> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> </mrow> <mrow> <mi>k</mi> <mi>P</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> <mi>y</mi> <mo>)</mo> </mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>N</mi> <mi>y</mi> </mrow> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> </mfrac> </mrow> </msup> <mrow> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <mo>/</mo> <mi>N</mi> </mrow> </mfrac> <mi>d</mi> <mi>y</mi> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    Wherein, K1() is 1 rank Bessel function, γ0For target Signal to Interference plus Noise Ratio, λ is the parameter of respective channel, and N is via node Total quantity.
  8. 8. system according to claim 6, it is characterised in that also include:
    Second analysis module, for analyzing all kinds of ginsengs based on outage probability boundary equation corresponding to each trunk node selection formula The influence of several outage probabilities to object relay node;
    Wherein, optimal outage probability boundary equation corresponding to optimal relay node selection formula for:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mi>Pr</mi> <mo>{</mo> <mrow> <mi>min</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>O</mi> <mi>S</mi> </mrow> </msub> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&lt;</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msup> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> <mo>}</mo> </mrow> <mi>N</mi> </msup> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    Maximum outage probability boundary equation corresponding to the maximum useful signal trunk node selection formula is:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mi>Pr</mi> <mo>{</mo> <mrow> <mi>min</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>U</mi> </mrow> </msub> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&lt;</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>k&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>{</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>N</mi> </msup> </mrow> <mo>}</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>;</mo> </mrow>
    Minimal disruption probabilistic margins formula is corresponding to the least interference trunk node selection formula:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mi>Pr</mi> <mo>{</mo> <mrow> <mi>min</mi> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>|</mo> <msub> <mi>h</mi> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> </msub> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mfrac> <mo>,</mo> <mi>k</mi> <mi>P</mi> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>SR</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> </msub> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>|</mo> <msub> <mi>h</mi> <mrow> <msub> <mi>R</mi> <msub> <mi>k</mi> <mrow> <mi>M</mi> <mi>I</mi> </mrow> </msub> </msub> <mi>D</mi> </mrow> </msub> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mo>&lt;</mo> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <mfrac> <mi>N</mi> <mrow> <msub> <mi>&amp;lambda;</mi> <msub> <mi>R</mi> <mi>i</mi> </msub> </msub> <msub> <mi>k&amp;gamma;</mi> <mn>0</mn> </msub> </mrow> </mfrac> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mfrac> <mn>1</mn> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mfrac> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>&amp;gamma;</mi> <mn>0</mn> </msub> <mrow> <msub> <mi>kP&amp;lambda;</mi> <mrow> <msub> <mi>SR</mi> <mi>i</mi> </msub> </mrow> </msub> <msub> <mi>&amp;lambda;</mi> <mrow> <msub> <mi>R</mi> <mi>i</mi> </msub> <mi>D</mi> </mrow> </msub> </mrow> </mfrac> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>.</mo> </mrow>
  9. 9. a kind of wireless relay nodes select equipment, it is characterised in that including:
    Memory, for storing computer program;
    Processor, a kind of wireless relay section as described in any one of Claims 1-4 is realized during for performing the computer program The step of clicking selection method.
  10. A kind of 10. computer media, it is characterised in that including:Computer program, the meter are stored with the computer media A kind of wireless relay nodes system of selection as described in any one of Claims 1-4 being realized when calculation machine program is executed by processor Step.
CN201711122852.8A 2017-11-14 2017-11-14 Wireless relay node selection method, system, equipment and computer medium Active CN107820293B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711122852.8A CN107820293B (en) 2017-11-14 2017-11-14 Wireless relay node selection method, system, equipment and computer medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711122852.8A CN107820293B (en) 2017-11-14 2017-11-14 Wireless relay node selection method, system, equipment and computer medium

Publications (2)

Publication Number Publication Date
CN107820293A true CN107820293A (en) 2018-03-20
CN107820293B CN107820293B (en) 2021-04-20

Family

ID=61609024

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711122852.8A Active CN107820293B (en) 2017-11-14 2017-11-14 Wireless relay node selection method, system, equipment and computer medium

Country Status (1)

Country Link
CN (1) CN107820293B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970740A (en) * 2020-08-04 2020-11-20 汕头大学 Wireless relay communication system
CN113395738A (en) * 2021-08-18 2021-09-14 南京天际易达通信技术有限公司 Transmission link determination method, system and medium for satellite-ground converged network

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568137A (en) * 2009-06-10 2009-10-28 北京邮电大学 Method and device for selecting service node
CN105050155A (en) * 2015-08-20 2015-11-11 广西师范大学 Multi-user relay selection method based on CSI prediction
CN106357377A (en) * 2016-08-30 2017-01-25 上海交通大学 Full-duplex and half-duplex mixed relay implementing method based on diversity gain
CN106603141A (en) * 2016-12-21 2017-04-26 北京邮电大学 Relay and antenna joint selection method for full-duplex bidirectional relay system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101568137A (en) * 2009-06-10 2009-10-28 北京邮电大学 Method and device for selecting service node
CN105050155A (en) * 2015-08-20 2015-11-11 广西师范大学 Multi-user relay selection method based on CSI prediction
CN106357377A (en) * 2016-08-30 2017-01-25 上海交通大学 Full-duplex and half-duplex mixed relay implementing method based on diversity gain
CN106603141A (en) * 2016-12-21 2017-04-26 北京邮电大学 Relay and antenna joint selection method for full-duplex bidirectional relay system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CAILING QIN,ETC: "Performance Analysis of a Multi-User Relay Selection Scheme with Predicted SINR in the Presence of Co-Channel Interference", 《2016 8TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION SOFTWARE AND NETWORKS》 *
吴晓龙等: "采用最优放大因子的全双工中继选择方案", 《信号处理》 *
林青等: "多目标优化的移动中继选择算法", 《小型微型计算机系统》 *
钟斌等: "基于全双工的中继选择协作通信网络性能分析", 《信息通信》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111970740A (en) * 2020-08-04 2020-11-20 汕头大学 Wireless relay communication system
CN111970740B (en) * 2020-08-04 2022-05-27 汕头大学 Wireless relay communication system
CN113395738A (en) * 2021-08-18 2021-09-14 南京天际易达通信技术有限公司 Transmission link determination method, system and medium for satellite-ground converged network

Also Published As

Publication number Publication date
CN107820293B (en) 2021-04-20

Similar Documents

Publication Publication Date Title
CN102355670B (en) Multichannel wireless mesh network channel distribution method
CN105813116B (en) A method of minimizing software definition wireless sensor network energy consumption
CN104394535B (en) The base station planning method of facing cooperation communication
CN109699033B (en) LoRa power Internet of things base station deployment method and device for cost and load balancing
CN110381161B (en) Game theory-based resource scheduling method in power Internet of things system
CN103596191A (en) Intelligent configuration system and intelligent configuration method for wireless sensor network
CN103052147A (en) Energy effectiveness multistage ring-type networking method based on wireless sensor network
CN103781168A (en) Power distribution method and system of cellular network
Zuo et al. A hybrid multi-path routing algorithm for industrial wireless mesh networks
CN106656379B (en) Transmission rate optimization method and device of relay energy-carrying communication system
Tsoumanis et al. Energy-efficient sink placement in wireless sensor networks
CN102638873A (en) Gateway selecting method applied to multi-gateway wireless mesh network
CN107820293A (en) A kind of wireless relay nodes system of selection, system, equipment and computer media
CN109362093A (en) The method for optimizing resources of the total throughput maximization of network function virtualization
CN105246089A (en) Method and device for mobile adaptive wireless network repeater
CN112153715B (en) Hybrid big data transmission topological structure method, system, storage medium and application
CN104994508A (en) Cognitive radio mesh network resource distribution and routing method
Ma et al. New AODV routing method for mobile wireless mesh network (MWMN)
CN106656612B (en) A kind of approximation method for super-intensive network system traversal and rate
Mufid et al. Performance evaluation of PEGASIS protocol for energy efficiency
CN103442382A (en) Topology control method for reducing inter-link interference
CN114285504B (en) Large-scale wireless energy supply backscattering communication network transmission performance research method
CN107171957A (en) A kind of adaptive DTN routing algorithms based under the conditions of resource-constrained
CN106330608A (en) Uplink user throughput fairness optimization method in data and energy integrated communication network
CN105517049A (en) Workload distribution method of wireless relay nodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant