CN107818209A - A kind of vibration analysis method of elastic plate - Google Patents

A kind of vibration analysis method of elastic plate Download PDF

Info

Publication number
CN107818209A
CN107818209A CN201711016929.3A CN201711016929A CN107818209A CN 107818209 A CN107818209 A CN 107818209A CN 201711016929 A CN201711016929 A CN 201711016929A CN 107818209 A CN107818209 A CN 107818209A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
mfrac
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711016929.3A
Other languages
Chinese (zh)
Other versions
CN107818209B (en
Inventor
叶天贵
陈玉坤
靳国永
张春雨
张艳涛
王雪仁
缪旭弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201711016929.3A priority Critical patent/CN107818209B/en
Publication of CN107818209A publication Critical patent/CN107818209A/en
Application granted granted Critical
Publication of CN107818209B publication Critical patent/CN107818209B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A kind of vibration analysis method of elastic plate, comprises the following steps:Elastic plate thickness direction displacement is fitted using Kano high-order interception technology;Fourier space is improved using two dimension the expansion of full solution domain is carried out to elastic plate in-plane displacement;The global displacement of elastic plate is calculated by elastic plate section in-plane displacement and axial displacement;Calculate the strain vector and stress vector of elastic plate;The strain energy and kinetic energy equation of elastic plate are calculated, sets virtual spring border to obtain border energy;Structure Lagrange energy functional is established, the core mass matrix and stiffness matrix of elastic plate is calculated;The characteristic equation of overall mass matrix, stiffness matrix and structure is tried to achieve by iterative cycles kernel matrix;The intrinsic frequency of elastic plate is calculated, according to the vibration shape of characteristic vector export structure.The inventive method is applied to Multiple Shape, the elastic plate of multi-boundary Condition, and precision is high, convergence is fast, it is low to calculate cost.

Description

A kind of vibration analysis method of elastic plate
Technical field
The invention belongs to Structural Dynamics field, and in particular to a kind of vibration analysis method of elastic plate.
Background technology
Elastic plate is widely used in the engineering equipments such as Naval Architecture and Ocean Engineering, architectural engineering and Aero-Space, example Such as submarine, automobile and airframe.Vibration characteristics and its parameter affecting laws for furtheing investigate this class formation are early in equipment Design phase phase vibration noise level estimates and realized that Low Noise Design has important theory and practice directive significance.
Traditional elastic plate theory mainly has thin plate bending theoretical and shear deformable theory, and thin plate bending theory have ignored The strain and detrusion in structural thickness direction and the influence of rotary inertia, it is only applicable to solve the thin plate knot of micro-strain Structure;Shear deformable theory although it is contemplated that the influence of detrusion and rotary inertia, but still have ignored cross directional stretch deformation and Buckling deformation during torsion, it is only applicable to the transverse curvature problem of cut deal structure.When the thickness of harden structure is larger, both Often deviation is larger or even is not used to calculate analysis for the calculated results.Kano proposes Kano system based on three dimensional elasticity theory One theorem (CUF) (Carrera E.A class of two-dimensional theories for anisotropic multilayered plates analysis.[J].Mem.accad.sci.torino Cl.sci.fis.mat.natur, 1995:49-87.), theoretical based on this, the computational accuracy of elastic plate can be controlled by by the interpolating function of thickness direction, and The order for changing interpolating function does not have an impact to the theoretical kernel matrix, in this way, the elastic plate of corresponding different-thickness, its Kinetics equation can be come by same matrix core iteration, the number of the simply iteration of change.In addition, in the technology The number of known variables can determine according to the demand of problem in displacement, and most elastic plate vibration problem can pass through Select the quantity of suitable known variables and reach corresponding computational accuracy.
However, existing Kano high-order interception fitting technique is largely to solve elastic plate by embedded finite element method (typical document is Carrera E.Theories and finite elements for Structural Dynamics multilayered,anisotropic,composite plates and shells[J].Archives of Computational Methods in Engineering,2002,9(2):87-140.Cinefra M,Valvano S.A variable kinematic doubly-curved MITC9shell element for the analysis of laminated composites[J].Mechanics of Advanced Materials&Structures,2016,23 (11):P á gs.1312-1325.), change the shape of elastic plate or boundary condition generally requires adding unit quantity even again Modeling analysis, in addition finite element method generally have computationally intensive, computational accuracy is not high, and boundary condition applies relatively complicated grade and lacked Point.Therefore studying and establish a kind of can be applicable shaking for the fast elastic plate of Multiple Shape Parameters, multi-boundary Condition, calculating speed Dynamic analysis method is still focus on research direction.
The content of the invention
It is an object of the invention to provide a kind of applicable Multiple Shape Parameters and multi-boundary Condition, and precision is high, convergence is fast, Calculate that cost is low and the vibration analysis method of the simple elastic plate of computational methods.
The object of the present invention is achieved like this, comprises the following steps:
(1) elastic plate thickness direction displacement is fitted using Kano high-order interception technology, fitting form is as follows:
Wherein, x, y and z are the coordinate of space coordinates, and Φ (x, y, z) is the global displacement of elastic plate, Represent elastic plate in-plane displacement, i=1,2 ..., N+1, FiFor i-th in Taylor expansion, h is the thickness of elastic plate, N is the order of Taylor expansion.Φ takes U, V, W,U, v accordingly are taken, w corresponds to the displacement component on tri- directions of x, y and z respectively.
(2) Fourier space is improved using two dimension elastic plate in-plane displacement is carried out to solve domain expansion, specific shape entirely Formula is as follows:
WhereinWithFor the coefficient of corresponding expansion item, λm=m π/L1And λp=p π/L2(L1And L2Respectively For geometrical scale of the structure in x and y directions), M, P are to block item number.XmAnd YpRespectively x and y function,To be corresponding The coefficient of item, supplement function ξkAnd η (x)g(y) the displacement structure that is introduced for eliminating is launched into conventional Fourier cosine levels Itself and derivative are in the discontinuity of boundary during number, and so as to accelerate the convergence rate solved, supplement function concrete form is set It is set to:
(3) global displacement of elastic plate is calculated by elastic plate section in-plane displacement and axial displacement, has Body expression formula is as follows:
Wherein, U (x, y, z), V (x, y, z) and W (x, y, z) correspond to the position on tri- directions of space coordinates x, y and z respectively Move component, Ampi, BmpiAnd CmpiFor the coefficient of corresponding entry in displacement component.
(4) strain vector and stress vector of elastic plate are calculated;
The expression formula of the strain vector of involved elastic plate is:
ε=[εxyzxyyzxz]T
Wherein, ε represents the strain vector of elastic plate;Subscript T represents transposition;εx, εyAnd εzFor normal strain component; γxy, γyzAnd γxzFor shear strain component, and have
The expression formula of involved stress vector is:
σ=D ε
Wherein, σ represents the stress vector of elastic plate, and D is structural material coefficient matrix.
(5) strain energy and kinetic energy equation of elastic plate are calculated, meanwhile, set virtual spring border to obtain border Can, expression is as follows:
Wherein, Vs, TpAnd VpThe respectively strain energy of elastic plate, kinetic energy and border energy.T represents the time, and ρ is material Density.WithFor the virtual spring border set by x directions x=0 ends in plate face,WithFor x side in plate face To other end x=L1The virtual spring border that place is set;WithFor the virtual spring set by y directions y=0 ends in plate face Border,WithFor y directions other end y=L in plate face2The virtual spring border that place is set.
(6) structure Lagrange energy functional Ω=V is establisheds+Vp-Tp, then to coefficient A thereinmpi, BmpiAnd CmpiAsk Local derviation and to make its result be zero, you can obtain 3 × 3 rank core mass matrixes and stiffness matrix of elastic plate.Kernel matrix In element it is as follows:
Wherein KmnpqijFor core rigidity matrix, MmnpqijFor core mass matrix, superscript a, b and c are representing core Each element in matrix, such as the element that a rows b is arranged in ab representing matrixs;Subscript m, n=1 ..., M+3;P, q= 1,…,P+3;I, j=1 ..., N+1;X′m, Y 'pWith F 'iX is represented respectivelym, YpAnd FiFirst derivative, similarly X 'n, Y 'qWith F 'j X is represented respectivelyn, YqAnd FjFirst derivative.D11,…,D66For the element in structural material coefficient matrix D.
(7) overall mass matrix, stiffness matrix and oeverall quality matrix M are tried to achieve by iterative cycles kernel matrix, And then obtain the characteristic equation of structure;
The method for solving of the mass matrix and stiffness matrix is:Pointer i, j get N+1 circulation core rigidity matrixes by 1 KmnpqijObtain sub- submatrix Kmnpq, pointer p, q get P+3 by 1 and circulate sub- submatrix KmnpqObtain submatrix Kmn, pointer m, n by 1 gets M+3 circulation submatrixs KmnObtain global stiffness matrix K;
The characteristic equation expression formula of the structure is:
(K-ω2M) A=0
Wherein ω is circular frequency, and A is corresponding ω characteristic vector;
(8) intrinsic frequency of elastic plate is calculated, according to the vibration shape of characteristic vector export structure.
The present invention has the advantages that:
1. the present invention realizes the Parametric Analysis to elastic plate computational accuracy and convergence rate, the meter of method is improved Calculate precision or item number is blocked in increase, need to only simply increase the loop iteration number of kernel matrix;
2. the displacement of harden structure thickness direction is fitted with Taylor polynomial in the present invention, special specific aim is had no, it is theoretical Upper this method is applied to the elastic plate of any thickness;
3. harden structure cross-sectional displacement improves Fourier space with two dimension and carries out the fitting of full solution domain in the present invention, have with tradition Limit first method to compare, have the characteristics that fast convergence rate, computational accuracy are high;
4. the method for the present invention only needs to meet that the various boundary of structure will by controlling the rigidity of border spring Ask, without making any modification to program.
In summary, Multiple Shape Parameters, multi-boundary Condition, precision are high, convergence is fast, calculating with being applicable for method of the invention The features such as cost is low.
Brief description of the drawings
Fig. 1 is the flow chart of the present invention;
Fig. 2 is elastic plate schematic diagram;
Fig. 3 is stiffness matrix installation diagram.
Embodiment
For make present invention solves the technical problem that, the technical scheme that uses and the technique effect that reaches it is clearer, below The present invention is described further with reference to accompanying drawing.
The inventive method is performed shown in step reference picture 1.
A Rectangular Elastic harden structure is considered, as shown in Fig. 2 sectional dimension is L1=2m, L2=3m, thickness of elastic plates h= 0.2m, is isotropic material, Young's modulus E=75GPa, density p=7800kg/m3, Poisson's ratio μ=0.3.Harden structure four sides Freely-supported is without plus load.It is solved using the inventive method, comprised the following steps that:
(1) elastic plate thickness direction displacement is fitted using Kano high-order interception technology, by thickness and length Ratio choose Taylor expansion order N=2, fitting form it is as follows:
Wherein, x, y and z are the coordinate of space coordinates, and Φ (x, y, z) is the global displacement of elastic plate, Represent elastic plate in-plane displacement, i=1,2 ..., N+1, FiFor i-th in Taylor expansion, h is the thickness of elastic plate. Φ takes U, V and W,Accordingly u, v and w is taken to correspond to the displacement component on three directions of elastic plate respectively:
Wherein, U (x, y, z), V (x, y, z) and W (x, y, z) correspond to the position on tri- directions of space coordinates x, y and z respectively Move component.
(2) Fourier space is improved using two dimension elastic plate in-plane displacement is carried out to solve domain expansion, specific shape entirely Formula is as follows:
WhereinWithFor the coefficient of corresponding expansion item, λm=m π/L1And λp=p π/L2(L1And L2Respectively For geometrical scale of the structure in x and y directions), M, P are to block item number.XmAnd YpRespectively x and y function,To be corresponding The coefficient of item, supplement function ξkAnd η (x)g(y) the displacement structure that is introduced for eliminating is launched into conventional Fourier cosine levels Itself and derivative are in the discontinuity of boundary during number, and so as to accelerate the convergence rate solved, supplement function concrete form is set It is set to:
(3) elastic plate section in-plane displacement and axial displacement are combined, you can the global displacement of elastic plate is obtained, Expression is as follows:
Wherein, Ampi, BmpiAnd CmpiFor the coefficient of corresponding entry in displacement component.
(4) elastic plate is isotropic material, Young's modulus E=75GPa, Poisson's ratio μ=0.3.Calculate elastic plate The strain vector and stress vector of structure, vibration strains concrete form are as follows:
ε=[εxyzxyyzxz]T
Wherein, εx, εyAnd εzFor normal strain component, γxy, γyzAnd γxzFor shear strain component;ε represents elastic plate Strain vector;T represents transposition.Vibration stress concrete form is as follows:
σ=D ε
Wherein, σ represents the stress vector of elastic plate, and D is structural material coefficient matrix.
(5) strain energy and kinetic energy equation of elastic plate are calculated, meanwhile, set virtual spring border to obtain border Can, expression is as follows:
Wherein, Vs, TpAnd VpThe respectively strain energy of elastic plate, kinetic energy and border energy.T represent the time, material it is close Spend ρ=7800kg/m3WithFor the virtual spring border set by x directions x=0 ends in plate face,WithFor X directions other end x=L in plate face1The virtual spring border that place is set;WithFor set by y directions y=0 ends in plate face Virtual spring border,WithFor y directions other end y=L in plate face2The virtual spring border that place is set.
(6) structure Lagrange energy functional Ω=V is establisheds+Vp-Tp, then to coefficient A thereinmpi, BmpiAnd CmpiAsk Local derviation and to make its result be zero, you can obtain 3 × 3 rank core mass matrixes and stiffness matrix of elastic plate.Kernel matrix In element it is as follows:
Wherein KmnpqijFor core rigidity matrix, MmnpqijFor core mass matrix, superscript a, b and c are representing core Each element in matrix, such as the element that a rows b is arranged in ab representing matrixs;Subscript m, n=1 ..., M+3;P, q= 1,…,P+3;I, j=1 ..., N+1;X′m, Y 'pWith F 'iX is represented respectivelym, YpAnd FiFirst derivative, similarly X 'n, Y 'qWith F 'j X is represented respectivelyn, YqAnd FjFirst derivative.D11,…,D66For the element in structural material coefficient matrix D.
(7) as shown in figure 3, trying to achieve overall mass matrix and stiffness matrix by iterative cycles kernel matrix:Pointer i, j N+1 circulation core rigidity matrix Ks are got by 1mnpqijObtain sub- submatrix Kmnpq, pointer p, q get P+3 by 1 and circulate sub- submatrix KmnpqObtain submatrix Kmn, pointer m, n get M+3 circulation submatrixs K by 1mnGlobal stiffness matrix K is obtained, by identical side Method circulation core mass matrix obtains oeverall quality matrix M, and then obtains the characteristic equation of structure:
(K-ω2M) A=0
Wherein ω is circular frequency, and A is corresponding ω characteristic vector.
(8) intrinsic frequency of MATLAB solvers output elastic plate is established using Arnoldi algorithm, and according to feature Each first order mode of vectorial export structure.
Finally it should be noted that:Implement example above to be merely illustrative of the technical solution of the present invention, rather than its limitations, this The technical staff in field should be understood:It modifies to the technical scheme described in foregoing embodiments, or to its middle part Divide or all technical characteristic carries out equivalent substitution, the essence of appropriate technical solution is departed from various embodiments of the present invention technology The scope of scheme.

Claims (1)

1. a kind of vibration analysis method of elastic plate, it is characterised in that comprise the following steps:
Step 1 is fitted using Kano high-order interception technology to elastic plate thickness direction displacement, and fitting form is as follows:
Wherein, x, y and z are the coordinate of space coordinates, and Φ (x, y, z) is the global displacement of elastic plate,Represent bullet Property harden structure in-plane displacement, i=1,2 ..., N+1, FiFor i-th in Taylor expansion, h is the thickness of elastic plate, and N is Thailand Strangle the order of expansion;Φ takes U, V, W,U, v accordingly are taken, w corresponds to the displacement component on tri- directions of x, y and z respectively;
Step 2 improves Fourier space using two dimension and elastic plate in-plane displacement is carried out to solve domain expansion, specific shape entirely Formula is as follows:
WhereinWithFor the coefficient of corresponding expansion item, λm=m π/L1And λp=p π/L2, L1And L2Respectively tie Geometrical scale of the structure in x and y directions;M, P are to block item number;XmAnd YpRespectively x and y function,For corresponding entry Coefficient, ξkAnd η (x)g(y) it is supplement function, supplement function expression is:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;xi;</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <msup> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>x</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msup> <mi>x</mi> <mn>2</mn> </msup> <msub> <mi>L</mi> <mn>1</mn> </msub> </mfrac> <mrow> <mo>(</mo> <mrow> <mfrac> <mi>x</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;eta;</mi> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>y</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>y</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </mtd> <mtd> <mrow> <mi>g</mi> <mo>=</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <msup> <mi>y</mi> <mn>2</mn> </msup> <msub> <mi>L</mi> <mn>2</mn> </msub> </mfrac> <mrow> <mo>(</mo> <mfrac> <mi>y</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </mfrac> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mi>g</mi> <mo>=</mo> <mn>2</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
Step 3 is calculated the global displacement of elastic plate, specific table by elastic plate section in-plane displacement and axial displacement It is as follows up to formula:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>U</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>M</mi> <mo>+</mo> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>+</mo> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>A</mi> <mrow> <mi>m</mi> <mi>p</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mi>V</mi> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>M</mi> <mo>+</mo> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>+</mo> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>B</mi> <mrow> <mi>m</mi> <mi>p</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mrow> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>M</mi> <mo>+</mo> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>P</mi> <mo>+</mo> <mn>3</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>C</mi> <mrow> <mi>m</mi> <mi>p</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> </mrow>
Wherein, U (x, y, z), V (x, y, z) and W (x, y, z) correspond to the displacement point on tri- directions of space coordinates x, y and z respectively Amount, Ampi, BmpiAnd CmpiFor the coefficient of corresponding entry in displacement component;
Step 4 calculates the strain vector and stress vector of elastic plate;
The expression formula of the strain vector of involved elastic plate is:
ε=[εxyzxyyzxz]T
Wherein, ε represents the strain vector of elastic plate;Subscript T represents transposition;εx, εyAnd εzFor normal strain component;γxy, γyz And γxzFor shear strain component, and have
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mo>;</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> <mo>:</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>z</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>x</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;epsiv;</mi> <mi>z</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>z</mi> </mrow> </mfrac> <mo>;</mo> <msub> <mi>&amp;gamma;</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>z</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>y</mi> </mrow> </mfrac> <mo>;</mo> </mrow>
The expression formula of involved stress vector is:
σ=D ε
Wherein, σ represents the stress vector of elastic plate, and D is structural material coefficient matrix;
Step 5 calculates the strain energy and kinetic energy equation of elastic plate, and sets virtual spring border so as to obtain border energy, Expression is as follows:
<mrow> <msub> <mi>V</mi> <mi>s</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&amp;Integral;</mo> <mo>&amp;Integral;</mo> <mo>&amp;Integral;</mo> <msup> <mi>&amp;epsiv;</mi> <mi>T</mi> </msup> <mi>&amp;sigma;</mi> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>z</mi> </mrow>
<mrow> <msub> <mi>T</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>&amp;rho;</mi> <mo>&amp;Integral;</mo> <mo>&amp;Integral;</mo> <mo>&amp;Integral;</mo> <mrow> <mo>(</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>U</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>V</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>W</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <mi>t</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mi>d</mi> <mi>x</mi> <mi>d</mi> <mi>y</mi> <mi>d</mi> <mi>z</mi> </mrow>
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>L</mi> <mn>2</mn> </msub> </msubsup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> </mrow> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>k</mi> <mrow> <mi>x</mi> <mn>0</mn> </mrow> <mi>u</mi> </msubsup> <mi>U</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <mi>x</mi> <mn>0</mn> </mrow> <mi>v</mi> </msubsup> <mi>V</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <mi>x</mi> <mn>0</mn> </mrow> <mi>w</mi> </msubsup> <mi>W</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>k</mi> <mrow> <msub> <mi>xL</mi> <mn>1</mn> </msub> </mrow> <mi>u</mi> </msubsup> <mi>U</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <msub> <mi>xL</mi> <mn>1</mn> </msub> </mrow> <mi>v</mi> </msubsup> <mi>V</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <msub> <mi>xL</mi> <mn>1</mn> </msub> </mrow> <mi>w</mi> </msubsup> <mi>W</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mrow> <mi>x</mi> <mo>=</mo> <msub> <mi>L</mi> <mn>1</mn> </msub> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>d</mi> <mi>z</mi> <mi>d</mi> <mi>y</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <msub> <mi>L</mi> <mn>1</mn> </msub> </msubsup> <msubsup> <mo>&amp;Integral;</mo> <mrow> <mo>-</mo> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> </mrow> <mfrac> <mi>h</mi> <mn>2</mn> </mfrac> </msubsup> <mfenced open = "(" close = ")"> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>k</mi> <mrow> <mi>y</mi> <mn>0</mn> </mrow> <mi>u</mi> </msubsup> <mi>U</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <mi>y</mi> <mn>0</mn> </mrow> <mi>v</mi> </msubsup> <mi>V</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <mi>y</mi> <mn>0</mn> </mrow> <mi>w</mi> </msubsup> <mi>W</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>k</mi> <mrow> <msub> <mi>yL</mi> <mn>2</mn> </msub> </mrow> <mi>u</mi> </msubsup> <mi>U</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <msub> <mi>yL</mi> <mn>2</mn> </msub> </mrow> <mi>v</mi> </msubsup> <mi>V</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msubsup> <mi>k</mi> <mrow> <msub> <mi>yL</mi> <mn>2</mn> </msub> </mrow> <mi>w</mi> </msubsup> <mi>W</mi> <msup> <mrow> <mo>(</mo> <mrow> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> </mrow> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mo>)</mo> </mrow> <msub> <mo>|</mo> <mrow> <mi>y</mi> <mo>=</mo> <msub> <mi>L</mi> <mn>2</mn> </msub> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>d</mi> <mi>z</mi> <mi>d</mi> <mi>x</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, Vs, TpAnd VpThe respectively strain energy of elastic plate, kinetic energy and border energy;T represents the time, and ρ is the close of material Degree;WithFor the virtual spring border set by x directions x=0 ends in plate face,WithIt is another for x directions in plate face One end x=L1The virtual spring border that place is set;WithFor the virtual spring side set by y directions y=0 ends in plate face Boundary,WithFor y directions other end y=L in plate face2The virtual spring border that place is set;
Step 6 establishes structure Lagrange energy functional Ω=Vs+Vp-Tp, then to coefficient A thereinmpi, BmpiAnd CmpiAsk Local derviation and to make its result be zero, is calculated the core mass matrix and stiffness matrix of elastic plate;Member in kernel matrix Element is as follows:
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>a</mi> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>11</mn> </msub> <msubsup> <mi>X</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>X</mi> <mi>n</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>44</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msubsup> <mi>Y</mi> <mi>p</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>Y</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>55</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msubsup> <mi>F</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>F</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>12</mn> </msub> <msubsup> <mi>X</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msubsup> <mi>Y</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>44</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msubsup> <mi>X</mi> <mi>n</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>Y</mi> <mi>p</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>13</mn> </msub> <msubsup> <mi>X</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msubsup> <mi>F</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>D</mi> <mn>55</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msubsup> <mi>X</mi> <mi>n</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msubsup> <mi>F</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>j</mi> </msub> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>21</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msubsup> <mi>X</mi> <mi>n</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>Y</mi> <mi>p</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>44</mn> </msub> <msubsup> <mi>X</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msubsup> <mi>Y</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>22</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msubsup> <mi>Y</mi> <mi>p</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>Y</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>44</mn> </msub> <msubsup> <mi>X</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>X</mi> <mi>n</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>66</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msubsup> <mi>F</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>F</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>b</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>23</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msubsup> <mi>Y</mi> <mi>p</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msubsup> <mi>F</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>D</mi> <mn>66</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msubsup> <mi>Y</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>F</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>j</mi> </msub> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>31</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msubsup> <mi>X</mi> <mi>n</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msubsup> <mi>F</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>55</mn> </msub> <msubsup> <mi>X</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msubsup> <mi>F</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>c</mi> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>32</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msubsup> <mi>Y</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>F</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>66</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msubsup> <mi>Y</mi> <mi>p</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msubsup> <mi>F</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> </mrow>
<mrow> <msubsup> <mi>K</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>c</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>D</mi> <mn>33</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msubsup> <mi>F</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>F</mi> <mi>j</mi> <mo>&amp;prime;</mo> </msubsup> <mo>+</mo> <msub> <mi>D</mi> <mn>55</mn> </msub> <msubsup> <mi>X</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>X</mi> <mi>n</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>D</mi> <mn>66</mn> </msub> <msub> <mi>X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msubsup> <mi>Y</mi> <mi>p</mi> <mo>&amp;prime;</mo> </msubsup> <msubsup> <mi>Y</mi> <mi>q</mi> <mo>&amp;prime;</mo> </msubsup> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> </mrow>
<mrow> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>a</mi> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>b</mi> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>c</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>&amp;rho;X</mi> <mi>m</mi> </msub> <msub> <mi>X</mi> <mi>n</mi> </msub> <msub> <mi>Y</mi> <mi>p</mi> </msub> <msub> <mi>Y</mi> <mi>q</mi> </msub> <msub> <mi>F</mi> <mi>i</mi> </msub> <msub> <mi>F</mi> <mi>j</mi> </msub> </mrow>
<mrow> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>a</mi> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>a</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>b</mi> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>b</mi> <mi>c</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>c</mi> <mi>a</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>M</mi> <mrow> <mi>m</mi> <mi>n</mi> <mi>p</mi> <mi>q</mi> <mi>i</mi> <mi>j</mi> </mrow> <mrow> <mi>c</mi> <mi>b</mi> </mrow> </msubsup> <mo>=</mo> <mn>0</mn> </mrow>
Wherein KmnpqijFor core rigidity matrix, MmnpqijFor core mass matrix, superscript a, b and c are element in kernel matrix Label;Subscript m, n=1 ..., M+3;P, q=1 ..., P+3;I, j=1 ..., N+1;X′m, Y 'pWith F 'iX is represented respectivelym, YpAnd FiFirst derivative, similarly X 'n, Y 'qWith F 'jX is represented respectivelyn, YqAnd FjFirst derivative;D11,…,D66For structural material Element in coefficient matrix D;
Step 7 tries to achieve overall mass matrix, stiffness matrix and oeverall quality matrix M by iterative cycles kernel matrix, And then obtain the characteristic equation of structure;
The method for solving of the mass matrix and stiffness matrix is:Pointer i, j get N+1 circulation core rigidity matrix Ks by 1mnpqij Obtain sub- submatrix Kmnpq, pointer p, q get P+3 by 1 and circulate sub- submatrix KmnpqObtain submatrix Kmn, pointer m, n are got by 1 M+3 circulation submatrixs KmnObtain global stiffness matrix K;
The characteristic equation expression formula of the structure is:
(K-ω2M) A=0
Wherein ω is circular frequency, and A is corresponding ω characteristic vector;
Step 8 calculates the intrinsic frequency of elastic plate, according to the vibration shape of characteristic vector export structure.
CN201711016929.3A 2017-10-26 2017-10-26 Vibration analysis method for elastic plate structure Active CN107818209B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711016929.3A CN107818209B (en) 2017-10-26 2017-10-26 Vibration analysis method for elastic plate structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711016929.3A CN107818209B (en) 2017-10-26 2017-10-26 Vibration analysis method for elastic plate structure

Publications (2)

Publication Number Publication Date
CN107818209A true CN107818209A (en) 2018-03-20
CN107818209B CN107818209B (en) 2021-02-02

Family

ID=61604116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711016929.3A Active CN107818209B (en) 2017-10-26 2017-10-26 Vibration analysis method for elastic plate structure

Country Status (1)

Country Link
CN (1) CN107818209B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953004A (en) * 2018-03-23 2018-12-07 西安航天动力试验技术研究所 A kind of high-thrust rocket lateral force test predictor method
CN109117504A (en) * 2018-07-09 2019-01-01 哈尔滨工程大学 A kind of two-way function gradient song shell vibration analysis method
CN109117500A (en) * 2018-07-03 2019-01-01 武汉工程大学 A method of based on Lamb wave frequency dispersion curve in thin layer discrete calculation lamellated plate
CN109580193A (en) * 2018-11-14 2019-04-05 中北大学 A kind of calculation method of the cross-section simply supported beam load factor under Blast Loads
CN109632230A (en) * 2019-02-18 2019-04-16 哈尔滨工程大学 A kind of low resistance based on electronics spring is than Flow vibration experimental provision
CN109829211A (en) * 2019-01-21 2019-05-31 东南大学 A kind of thermal environment lower plate structure high frequency partial method of response calculation
CN109992824A (en) * 2019-02-19 2019-07-09 哈尔滨工程大学 A kind of arbitrary shape solid elastomeric plate oscillation crosswise semi-analytical analysis method
CN113420370A (en) * 2021-06-02 2021-09-21 中国航空工业集团公司沈阳飞机设计研究所 Strength design load obtaining method of highly static indefinite structure
CN113486512A (en) * 2021-07-05 2021-10-08 哈尔滨工程大学 Flutter analysis method for functional gradient variable-thickness blade model
CN116384205A (en) * 2023-06-05 2023-07-04 华东交通大学 Periodic orbit structure band gap calculation method based on energy method and Gaussian elimination method
CN116384162A (en) * 2023-06-05 2023-07-04 华东交通大学 Track structure complex energy band calculation method based on virtual spring model and electronic equipment
CN116822298A (en) * 2023-06-30 2023-09-29 华中科技大学 Band gap calculation method of metamaterial plate of membrane resonator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870629A (en) * 2014-01-12 2014-06-18 太原理工大学 Multi-objective optimization designing method of aeroelastic fiber reinforced composite plate-shell structure
WO2015151189A1 (en) * 2014-03-31 2015-10-08 株式会社日立製作所 Shaft vibration analysis model creation method and shaft vibration analysis device
CN105184060A (en) * 2015-08-24 2015-12-23 哈尔滨工程大学 Spatial plane configuration and improved Fourier series based laminated structure vibration analysis method
EP3185154A1 (en) * 2015-12-22 2017-06-28 Dassault Systemes Simulia Corp. Effectively solving structural dynamics problems with modal damping in physical coordinates
CN107066753A (en) * 2017-04-28 2017-08-18 西安工业大学 The Forecasting Methodology of shallow tunnel blast working earth's surface particle peak value vibration velocity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103870629A (en) * 2014-01-12 2014-06-18 太原理工大学 Multi-objective optimization designing method of aeroelastic fiber reinforced composite plate-shell structure
WO2015151189A1 (en) * 2014-03-31 2015-10-08 株式会社日立製作所 Shaft vibration analysis model creation method and shaft vibration analysis device
CN105184060A (en) * 2015-08-24 2015-12-23 哈尔滨工程大学 Spatial plane configuration and improved Fourier series based laminated structure vibration analysis method
EP3185154A1 (en) * 2015-12-22 2017-06-28 Dassault Systemes Simulia Corp. Effectively solving structural dynamics problems with modal damping in physical coordinates
CN107066753A (en) * 2017-04-28 2017-08-18 西安工业大学 The Forecasting Methodology of shallow tunnel blast working earth's surface particle peak value vibration velocity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. CARRERA: "Theories and finite elements for multilayered, anisotropic, composite plates and shells", 《ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING》 *
肖森,叶天贵,靳国永,董世崇: "加筋薄板结构声辐射特性研究", 《声学技术》 *
黄德进; 王骥: "层合板结构的薄膜体声波谐振器的振动分析", 《2010年全国压电和声波理论及器件技术研讨会》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108953004A (en) * 2018-03-23 2018-12-07 西安航天动力试验技术研究所 A kind of high-thrust rocket lateral force test predictor method
CN108953004B (en) * 2018-03-23 2019-11-19 西安航天动力试验技术研究所 A kind of high-thrust rocket lateral force test predictor method
CN109117500A (en) * 2018-07-03 2019-01-01 武汉工程大学 A method of based on Lamb wave frequency dispersion curve in thin layer discrete calculation lamellated plate
CN109117504A (en) * 2018-07-09 2019-01-01 哈尔滨工程大学 A kind of two-way function gradient song shell vibration analysis method
CN109580193A (en) * 2018-11-14 2019-04-05 中北大学 A kind of calculation method of the cross-section simply supported beam load factor under Blast Loads
CN109829211A (en) * 2019-01-21 2019-05-31 东南大学 A kind of thermal environment lower plate structure high frequency partial method of response calculation
CN109632230A (en) * 2019-02-18 2019-04-16 哈尔滨工程大学 A kind of low resistance based on electronics spring is than Flow vibration experimental provision
CN109992824A (en) * 2019-02-19 2019-07-09 哈尔滨工程大学 A kind of arbitrary shape solid elastomeric plate oscillation crosswise semi-analytical analysis method
CN113420370A (en) * 2021-06-02 2021-09-21 中国航空工业集团公司沈阳飞机设计研究所 Strength design load obtaining method of highly static indefinite structure
CN113420370B (en) * 2021-06-02 2024-03-19 中国航空工业集团公司沈阳飞机设计研究所 Intensity design load acquisition method for highly static indefinite structure
CN113486512A (en) * 2021-07-05 2021-10-08 哈尔滨工程大学 Flutter analysis method for functional gradient variable-thickness blade model
CN116384205A (en) * 2023-06-05 2023-07-04 华东交通大学 Periodic orbit structure band gap calculation method based on energy method and Gaussian elimination method
CN116384162A (en) * 2023-06-05 2023-07-04 华东交通大学 Track structure complex energy band calculation method based on virtual spring model and electronic equipment
CN116384162B (en) * 2023-06-05 2023-08-08 华东交通大学 Track structure complex energy band calculation method based on virtual spring model and electronic equipment
CN116384205B (en) * 2023-06-05 2023-08-11 华东交通大学 Periodic orbit structure band gap calculation method based on energy method and Gaussian elimination method
CN116822298A (en) * 2023-06-30 2023-09-29 华中科技大学 Band gap calculation method of metamaterial plate of membrane resonator
CN116822298B (en) * 2023-06-30 2024-03-29 华中科技大学 Band gap calculation method of metamaterial plate of membrane resonator

Also Published As

Publication number Publication date
CN107818209B (en) 2021-02-02

Similar Documents

Publication Publication Date Title
CN107818209A (en) A kind of vibration analysis method of elastic plate
Setoodeh et al. Vibrational behavior of doubly curved smart sandwich shells with FG-CNTRC face sheets and FG porous core
Kolahchi et al. Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods
Kolahchi A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods
CN107808048A (en) A kind of vibration analysis method of uniform cross-section girder construction
Zhang et al. Mechanical behavior of laminated CNT-reinforced composite skew plates subjected to dynamic loading
Zhang et al. Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges
Zhang et al. Vibro-acoustic analysis of the thin laminated rectangular plate-cavity coupling system
Zhang et al. Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow
Mahapatra et al. Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: a micromechanical approach
Khare et al. Free vibration of composite and sandwich laminates with a higher-order facet shell element
Mehar et al. Nonlinear frequency responses of functionally graded carbon nanotube-reinforced sandwich curved panel under uniform temperature field
Dehkordi et al. Non-linear transient dynamic analysis of sandwich plate with composite face-sheets embedded with shape memory alloy wires and flexible core-based on the mixed LW (layer-wise)/ESL (equivalent single layer) models
Rout et al. Thermoelastic free vibration response of graphene reinforced laminated composite shells
Yu An introduction to micromechanics
Pandey et al. A new C0 higher-order layerwise finite element formulation for the analysis of laminated and sandwich plates
Panda et al. Large amplitude free vibration analysis of thermally post-buckled composite doubly curved panel using nonlinear FEM
Akbaş Post-buckling analysis of axially functionally graded three-dimensional beams
Zhang et al. A simple first-order shear deformation theory for vibro-acoustic analysis of the laminated rectangular fluid-structure coupling system
Lei et al. Vibration of FG-CNT reinforced composite thick quadrilateral plates resting on Pasternak foundations
Dozio et al. A variable kinematic Ritz formulation for vibration study of quadrilateral plates with arbitrary thickness
Mohammadimehr et al. Electro-thermo-mechanical vibration and stability analyses of double-bonded micro composite sandwich piezoelectric tubes conveying fluid flow
Hosseini-Hashemi et al. Hydroelastic vibration and buckling of rectangular Mindlin plates on Pasternak foundations under linearly varying in-plane loads
Lezgy-Nazargah A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates
Ramezani et al. Nonlinear dynamic analysis of FG/SMA/FG sandwich cylindrical shells using HSDT and semi ANS functions

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant