CN107818165A - 基于标签库的营销客户筛选方法、电子装置及存储介质 - Google Patents

基于标签库的营销客户筛选方法、电子装置及存储介质 Download PDF

Info

Publication number
CN107818165A
CN107818165A CN201711062156.2A CN201711062156A CN107818165A CN 107818165 A CN107818165 A CN 107818165A CN 201711062156 A CN201711062156 A CN 201711062156A CN 107818165 A CN107818165 A CN 107818165A
Authority
CN
China
Prior art keywords
client
collection
dimension
marketing
rule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711062156.2A
Other languages
English (en)
Inventor
刘开华
郑志华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ping An Technology Shenzhen Co Ltd
Original Assignee
Ping An Technology Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ping An Technology Shenzhen Co Ltd filed Critical Ping An Technology Shenzhen Co Ltd
Priority to CN201711062156.2A priority Critical patent/CN107818165A/zh
Priority to PCT/CN2018/076540 priority patent/WO2019085343A1/zh
Publication of CN107818165A publication Critical patent/CN107818165A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing
    • G06F16/2455Query execution
    • G06F16/24552Database cache management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Development Economics (AREA)
  • Accounting & Taxation (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于标签库的营销客户筛选方法,属于数据筛选技术领域。一种基于标签库的营销客户筛选方法,包括如下步骤:S1、将两个客户集合加载到系统内存中,每个所述客户集合由至少一个客户集组成,所述客户集包括客户ID和在一个或多个维度上与所述客户ID相匹配的至少一个标签;S2、根据预设的揉合规则,将加载的两个客户集合在预设的比对维度上进行筛选,并输出筛选结果。本发明在筛选之前,提前将客户集合加载到内存中,以提高筛选速度,并提供可选多种筛选规则,也可根据自选维度进行识别,实现各种筛选结果的快速产出,以支持营销的各种需要。

Description

基于标签库的营销客户筛选方法、电子装置及存储介质
技术领域
本发明涉及数据筛选技术领域,涉及一种基于标签库的营销客户筛选方法、电子装置及计算机可读存储介质。
背景技术
营销指的是企业发现或挖掘准消费者需求,从整体氛围的营造以及自身产品形态的营造去推广和销售产品,主要是深挖产品的内涵,切合准消费者的需求,从而让消费者深刻了解该产品进而购买该产品的过程。
为了在进行大规模营销前,能够准确定位客户和营销方案,通常需要经过几轮的试营销,为了防止对同一客户反复试营销而造成客户困扰,通常每次试营销都会针对不同的客户,至少对于本次试营销中有反馈的,不能再次试营销,因而客户的选择就显得尤为重要。例如:之前在试营销选择目标客户时,都是人工将已经推送过活动内容的客户从目标客户中剔除,人工识别费时费力,而且容易出错。
因而,现在亟需一种能针对大量客户进行快速又准确地筛选方法。
发明内容
本发明要解决的技术问题是为了克服现有技术中无无法快速针对大量客户进行筛选的问题,提出了一种基于标签库的营销客户筛选方法、电子装置及计算机可读存储介质,通过具有识别功能的标签,以实现针对大量客户的快速准确筛选。
本发明是通过下述技术方案来解决上述技术问题:
一种基于标签库的营销客户筛选方法,包括如下步骤:
S1、将两个客户集合加载到系统内存中,每个所述客户集合由至少一个客户集组成,所述客户集包括客户ID和在一个或多个维度上与所述客户ID相匹配的至少一个标签;
S2、根据预设的揉合规则,将加载的两个客户集合在预设的比对维度上进行筛选,并输出筛选结果;
所述揉合规则包括交集规则、并集规则和排除规则;所述比对维度与加载的两个客户集中所共有的维度中的一个维度相对应;
当揉合规则为交集规则时,将两个客户集合中在所述比对维度上具有相同标签的那部分客户集输出;
当揉合规则为并集规则时,首先将两个客户集合合并,再将其中在所述比对维度上具有相同标签的那部分客户集去重后输出;
当揉合规则为排除规则时,在所述比对维度上将被排除客户集合中具有与排除客户集合中相同标签的那部分客户集删除,然后将所述被排除客户集合输出。
优选地,步骤S2之前还包括:
S20、构建维度集合:获取加载的所述两个客户集合中所共有的维度作为维度集合输出。
优选地,步骤S20具体包括以下分步骤:
S201、获取一个客户集合中的首个客户集作为当前客户集;
S202、获取当前客户集中的首个维度为当前维度;
S203、判断另一个客户集合中是否具有与当前维度相同的维度,若是执行步骤S204,若否执行步骤S206;
S204、判断维度集合中是否具有与当前维度相同的维度,若是执行步骤S206,若否执行步骤S205;
S205、将当前维度保存至维度集合中;
S206、判断当前维度是否为当前客户集中包含的最后一个维度,若是执行步骤S208,若否执行步骤S207;
S207、将当前维度重置为其之后的维度,执行步骤S203;
S208、判断当前客户集是否为当前客户集合中包含的最后一个客户集,若是则输出维度集合,若否执行步骤S29’;
S29’、将当前客户集重置为其之后的客户集,执行步骤S202。
优选地,当揉合规则为交集规则时,步骤S2具体包括以下分步骤:
S211、将加载的两个客户集合中的一个客户集合作为第一客户集合,另一个客户集合作为第二客户集合;
S212、获取第一个客户集合中的首个客户集作为当前客户集;
S213、将当前客户集在所述比对维度上的标签与第二客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S214、判断在所述比对维度上第二客户集合中是否具有与当前客户集相同标签的客户集,若是执行步骤S215,若否执行步骤S216;
S215、将当前客户集取出暂存;
S216、判断当前客户集是否为所述第一客户集合中的最后一个客户集,若是执行步骤S218,若否执行步骤S217;
S217、将当前客户集重置为其之后的客户集,执行步骤S213;
S218、将暂存的客户集作为筛选结果输出。
优选地,当揉合规则为并集规则时,步骤S2具体包括以下分步骤:
S221、将加载的两个客户集合中的一个客户集合作为第一客户集合,另一个客户集合作为第二客户集合;
S222、获取第一个客户集合中的首个客户集作为当前客户集;
S223、将当前客户集在所述比对维度上的标签与第二客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S224、判断在所述比对维度上第二客户集合中是否具有与当前客户集相同标签的客户集,若是执行步骤S225,若否执行步骤S226;
S225、将第二客户集合中与所述当前客户集在所述比对维度上具有相同标签的客户集删除;
S226、判断当前客户集是否为所述第一客户集合中的最后一个客户集,若是执行步骤S228,若否执行步骤S227;
S227、将当前客户集重置为其之后的客户集,执行步骤S223;
S228、将第一客户集合和第二客户集合合并后作为筛选结果输出。
优选地,所述排除规则包括排除客户集合和被排除客户集合的集合定义设置。
优选地,当揉合规则为排除规则时,步骤S2具体包括以下分步骤:
S231、根据所述集合定义设置,将加载的两个客户集合中的一个客户集合作为排除客户集合,另一个客户集合作为被排除客户集合;
S232、获取排除客户集合中的首个客户集作为当前排除客户集;
S233、将当前排除客户集在所述比对维度上的标签与被排除客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S234、判断在所述比对维度上被排除客户集合中是否具有与当前排除客户集相同标签的客户集,若是执行步骤S235,若否执行步骤S236;
S235、将被排除客户集合中与所述当前排除客户集在所述比对维度上具有相同标签的客户集删除;
S236、判断当前排除客户集是否为所述排除客户集合中的最后一个客户集,若是执行步骤S238,若否执行步骤S237;
S237、将当前客户集重置为其之后的客户集,执行步骤S233;
S238、将被排除客户集合作为筛选结果输出。
一种电子装置,包括存储器和处理器,所述存储器上存储有可被所述处理器执行的基于标签库的营销客户筛选系统,所述基于标签库的营销客户筛选系统包括:
加载模块,用于将两个客户集合加载到系统内存中,每个所述客户集合由至少一个客户集组成,所述客户集包括客户ID和在一个或多个维度上与所述客户ID相匹配的至少一个标签;
规则获取模块,用于获取揉合规则,所述揉合规则包括预设在系统内的交集规则、并集规则和排除规则;
维度获取模块,用于获取比对维度,所述比对维度与所述客户集中所包含的维度相对应;
筛选模块,用于根据预设的揉合规则,将加载的两个客户集合在预设的比对维度上进行筛选,并输出筛选结果。
优选地,所述基于标签库的营销客户筛选系统还包括:
维度集合构建模块,用于获取加载的所述两个客户集合中所共有的维度作为维度集合输出。
一种计算机可读存储介质,所述计算机可读存储介质内存储有基于标签库的营销客户筛选系统,所述基于标签库的营销客户筛选系统可被至少一个处理器所执行,以使所述至少一个处理器执行如前述中任一项所述的基于标签库的营销客户筛选方法的步骤。
本发明的积极进步效果在于:
1)本发明在筛选之前,提前将客户集合加载到内存中,以提高筛选速度。
2)本发明可选多种筛选规则,并可根据自选维度进行识别,实现各种筛选结果的快速产出,以支持营销的各种需要。
附图说明
图1示出了本发明电子装置一实施例的硬件架构示意图;
图2示出了本发明电子装置中基于标签库的营销客户筛选系统第一实施例的程序模块示意图;
图3示出了本发明电子装置中基于标签库的营销客户筛选系统第二实施例的程序模块示意图;
图4示出了本发明基于标签库的营销客户筛选方法实施例一的流程图;
图5示出了本发明基于标签库的营销客户筛选方法实施例二中构建维度集合的流程图;
图6示出了本发明基于标签库的营销客户筛选方法实施例三中筛选的流程图;
图7示出了本发明基于标签库的营销客户筛选方法实施例四中筛选的流程图;
图8示出了本发明基于标签库的营销客户筛选方法实施例五中筛选的流程图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
首先,本发明提出了一种电子装置。
参阅图1所示,是本发明电子装置一实施例的硬件架构示意图。本实施例中,所述电子装置2是一种能够按照事先设定或者存储的指令,自动进行数值计算和/或信息处理的设备。例如,可以是智能手机、平板电脑、笔记本电脑、台式计算机、机架式服务器、刀片式服务器、塔式服务器或机柜式服务器(包括独立的服务器,或者多个服务器所组成的服务器集群)等。如图所示,所述电子装置2至少包括,但不限于,可通过系统总线相互通信连接存储器21、处理器22、网络接口23、以及基于标签库的营销客户筛选系统20。其中:
所述存储器21至少包括一种类型的计算机可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器21可以是所述电子装置2的内部存储单元,例如该电子装置2的硬盘或内存。在另一些实施例中,所述存储器21也可以是所述电子装置2的外部存储设备,例如该电子装置2上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器21还可以既包括所述电子装置2的内部存储单元也包括其外部存储设备。本实施例中,所述存储器21通常用于存储安装于所述电子装置2的操作系统和各类应用软件,例如所述基于标签库的营销客户筛选系统20的程序代码等。此外,所述存储器21还可以用于暂时地存储已经输出或者将要输出的各类数据。
所述处理器22在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器、或其他数据处理芯片。该处理器22通常用于控制所述电子装置2的总体操作,例如执行与所述电子装置2进行数据交互或者通信相关的控制和处理等。本实施例中,所述处理器22用于运行所述存储器21中存储的程序代码或者处理数据,例如运行所述的基于标签库的营销客户筛选系统20等。
所述网络接口23可包括无线网络接口或有线网络接口,该网络接口23通常用于在所述电子装置2与其他电子装置之间建立通信连接。例如,所述网络接口23用于通过网络将所述电子装置2与外部终端相连,在所述电子装置2与外部终端之间的建立数据传输通道和通信连接等。所述网络可以是企业内部网(Intranet)、互联网(Internet)、全球移动通讯系统(Global System of Mobile communication,GSM)、宽带码分多址(Wideband CodeDivision Multiple Access,WCDMA)、4G网络、5G网络、蓝牙(Bluetooth)、WiFi等无线或有线网络。
需要指出的是,图1仅示出了具有组件21-23的电子装置2,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。
在本实施例中,存储于存储器21中的所述基于标签库的营销客户筛选系统20可以被分割为一个或者多个程序模块,所述一个或者多个程序模块被存储于存储器21中,并可由一个或多个处理器(本实施例为处理器22)所执行,以完成本发明。
例如,图2示出了所述基于标签库的营销客户筛选系统20第一实施例的程序模块示意图,该实施例中,所述基于标签库的营销客户筛选系统20可以被分割为加载模块201、规则获取模块202、维度获取模块203和筛选模块204。其中,本发明所称的程序模块是指能够完成特定功能的一系列计算机程序指令段,比程序更适合于描述所述基于标签库的营销客户筛选系统20在所述电子装置2中的执行过程。以下描述将具体介绍所述程序模块201-204的具体功能。
所述加载模块201,用于将两个客户集合加载到系统内存中,每个所述客户集合由至少一个客户集组成,所述客户集包括客户ID和在一个或多个维度上与所述客户ID相匹配的至少一个标签;
所述规则获取模块202,用于获取揉合规则,所述揉合规则包括预设在系统内的交集规则、并集规则和排除规则;
所述维度获取模块203,用于获取比对维度,所述比对维度与所述客户集中所包含的维度相对应;
所述筛选模块204,用于根据预设的揉合规则,将加载的两个客户集合在预设的比对维度上进行筛选,并输出筛选结果。
下面以营销人员使用该系统进行并集筛选为例,具体说明其步骤流程:
1、将需要用到的客户集合一和客户集合二提前加载到系统内存中;
2、从预设的揉合规则中选择并集规则;
3、根据需要选择比对维度,通常选择可以唯一识别的标签所在的维度,比如电话号码;
4、通过电话号码来判断客户集合一和客户集合二中是否具有相同的客户集,将这部分相同的客户集去重后,将客户集合一和客户集合二进行合并,生成筛选结果并输出。
本实施例通过采用内存筛选技术,大大提高了筛选速度。
又例如,图3示出了所述基于标签库的营销客户筛选系统20第二实施例的程序模块示意图,该实施例中,所述基于标签库的营销客户筛选系统20还可以被分割为加载模块201、规则获取模块202、维度获取模块203、筛选模块204和维度集合构建模块205。
其中,模块201-204的具体功能同第一实施例,此处不再赘述。
所述维度集合构建模块205,用于获取加载的所述两个客户集合中所共有的维度作为维度集合输出。
下面以营销人员使用该系统进行交集筛选为例,具体说明其步骤流程:
1、将需要用到的客户集合一和客户集合二提前加载到系统内存中;
2、从预设的揉合规则中选择交集规则;
3、获取客户集合一和客户集合二中所共有的维度作为维度集合输出;
4、根据需要,在输出的维度集合中选择比对维度,通常选择可以唯一识别的标签所在的维度,比如电话号码;
5、通过电话号码来判断客户集合一和客户集合二中是否具有相同的客户集,将这部分相同的客户集去重后作为筛选结果输出。
其次,本发明提出一种基于标签库的营销客户筛选方法。
在实施例一中,如图4所示,所述的基于标签库的营销客户筛选方法包括如下步骤:
S1、将两个客户集合加载到系统内存中,每个所述客户集合由至少一个客户集组成,所述客户集包括客户ID和在一个或多个维度上与所述客户ID相匹配的至少一个标签;
S20、构建维度集合:获取加载的所述两个客户集合中所共有的维度作为维度集合输出;
S2、根据预设的揉合规则,将加载的两个客户集合在预设的比对维度上进行筛选,并输出筛选结果;
所述揉合规则包括交集规则、并集规则和排除规则;所述比对维度与加载的两个客户集中所共有的维度中的一个维度相对应;
当揉合规则为交集规则时,将两个客户集合中在所述比对维度上具有相同标签的那部分客户集去重后输出;
当揉合规则为并集规则时,首先将两个客户集合合并,再将其中在所述比对维度上具有相同标签的那部分客户集去重后输出;
当揉合规则为排除规则时,在所述比对维度上将被排除客户集合中具有与排除客户集合中相同标签的那部分客户集删除,然后将所述被排除客户集合输出。
下面以营销人员使用该方法进行筛选为例具体说明:
假设:营销人员为了预测某个营销方案是否能成功而进行试营销,因结果不符合预期而准备对营销方案进行调整后开展第二次试营销,针对的客户群与前一次试营销的客户群相同,但是为了多次营销使得客户产生厌烦情绪,因此需要将参加前一次试营销的客户从本次待抽样客户名单中剔除。
这里将已参加过前一次试营销的客户的集合定义为抽样客户群,将待抽样客户的集合定义为目标客户群。
1、将抽样客户群和目标客户群加载到系统内存中;
2、根据试营销需要,从揉合规则中选择排除规则,以将目标客户群中与抽样客户群中相同的客户集排除;
3、为了使得所选比对维度为加载的抽样客户群和目标客户群中所共有的,因此在抽样客户群和目标客户群加载到内存中后,自动获取这两个群中的客户集所包含的共有的维度,将这些共有的维度作为维度集合以用于比对维度的选择;
4、从维度集合中选择合适的维度作为比对维度,该维度通常为可以唯一识别的标签所在的维度,本实施例中可以选择电话号码;
5、根据电话号码,判断目标客户群中是否具有和抽样客户群中相同的客户集,如果有,则将该相同的客户集从目标客户群中删除,直到目标客户群中不再具有与抽样客户群中相同的客户集为止,输出完成删除后的目标客户群作为筛选结果输出。
营销人员在筛选结果上进行客户抽样,可以保证本次试营销的客户和上次试营销的客户各不相同,以避免多次打扰同一个客户的事情发生。
在实施例二中,基于实施例一的基础上,如图5所示,维度集合的构建过程具体如下:
S201、获取一个客户集合中的首个客户集作为当前客户集;
S202、获取当前客户集中的首个维度为当前维度;
S203、判断另一个客户集合中是否具有与当前维度相同的维度,若是执行步骤S204,若否执行步骤S207;
S205、判断维度集合中是否具有与当前维度相同的维度,若是执行步骤S207,若否执行步骤S206;
S206、将当前维度保存至维度集合中;
S207、判断当前维度是否为当前客户集中包含的最后一个维度,若是执行步骤S208,若否则将当前维度重置为其之后的维度;
S208、判断当前客户集是否为当前客户集合中包含的最后一个客户集,若是则输出维度集合,若否则将当前客户集重置为其之后的客户集再执行步骤S202。
接上例,具体说明维度集合的构建过程:
1、获取抽样客户群中首个客户集中所包含的首个维度作为当前维度,判断所述当前维度是否同时满足以下两个条件:若是则将该当前维度保存到维度集合中;若有其中任意一个条件不满足,则重置当前维度为其之后的维度,重复前述判断,直到抽样客户群中最后一个客户集中的最后一个维度为止;
条件一:目标客户群是否具有与所述首个维度相同的维度;
条件二:维度集合中是否具有与该首个维度相同的维度;(需要说明的是,维度集合的初始状态为空)
2、所有比对完成后,输出维度集合,该维度集合就是比对维度的选择范围。
在实施例三中,基于实施例二的基础上,如图6所示,公开了当揉合规则为交集规则时,筛选的具体过程:
S211、将加载的两个客户集合中的一个客户集合作为第一客户集合,另一个客户集合作为第二客户集合;
S212、获取第一个客户集合中的首个客户集作为当前客户集;
S213、将当前客户集在所述比对维度上的标签与第二客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S214、判断在所述比对维度上第二客户集合中是否具有与当前客户集相同标签的客户集,若是执行步骤S215,若否执行步骤S216;
S215、将当前客户集取出暂存;
S216、判断当前客户集是否为所述第一客户集合中的最后一个客户集,若是执行步骤S218,若否执行步骤S217;
S217、将当前客户集重置为其之后的客户集,执行步骤S213;
S218、将暂存的客户集作为筛选结果输出。
在实施例四中,基于实施例二的基础上,如图7所示,公开了当揉合规则为并集规则时,筛选的具体过程:
S221、将加载的两个客户集合中的一个客户集合作为第一客户集合,另一个客户集合作为第二客户集合;
S222、获取第一个客户集合中的首个客户集作为当前客户集;
S223、将当前客户集在所述比对维度上的标签与第二客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S224、判断在所述比对维度上第二客户集合中是否具有与当前客户集相同标签的客户集,若是执行步骤S225,若否执行步骤S226;
S225、将第二客户集合中与所述当前客户集在所述比对维度上具有相同标签的客户集删除;
S226、判断当前客户集是否为所述第一客户集合中的最后一个客户集,若是执行步骤S228,若否执行步骤S227;
S227、将当前客户集重置为其之后的客户集,执行步骤S223;
S228、将第一客户集合和第二客户集合合并后作为筛选结果输出。
在实施例五中,基于实施例二的基础上,如图8所示,公开了当揉合规则为排除规则时,所述排除规则包括排除客户集合和被排除客户集合的集合定义设置,根据排除规则进行筛选的具体过程如下:
S231、根据所述集合定义设置,将加载的两个客户集合中的一个客户集合作为排除客户集合,另一个客户集合作为被排除客户集合;
S232、获取排除客户集合中的首个客户集作为当前排除客户集;
S233、将当前排除客户集在所述比对维度上的标签与被排除客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S234、判断在所述比对维度上被排除客户集合中是否具有与当前排除客户集相同标签的客户集,若是执行步骤S235,若否执行步骤S236;
S235、将被排除客户集合中与所述当前排除客户集在所述比对维度上具有相同标签的客户集删除;
S236、判断当前排除客户集是否为所述排除客户集合中的最后一个客户集,若是执行步骤S238,若否执行步骤S237;
S237、将当前客户集重置为其之后的客户集,执行步骤S233;
S238、将被排除客户集合作为筛选结果输出。
此外,本发明一种计算机可读存储介质,该计算机可读存储介质内存储有基于标签库的营销客户筛选系统20,该基于标签库的营销客户筛选系统20可被一个或多个处理器执行时,实现上述基于标签库的营销客户筛选方法或电子装置的操作。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (10)

1.一种基于标签库的营销客户筛选方法,其特征在于,包括如下步骤:
S1、将两个客户集合加载到系统内存中,每个所述客户集合由至少一个客户集组成,所述客户集包括客户ID和在一个或多个维度上与所述客户ID相匹配的至少一个标签;
S2、根据预设的揉合规则,将加载的两个客户集合在预设的比对维度上进行筛选,并输出筛选结果;
所述揉合规则包括交集规则、并集规则和排除规则;所述比对维度与加载的两个客户集中所共有的维度中的一个维度相对应;
当揉合规则为交集规则时,将两个客户集合中在所述比对维度上具有相同标签的那部分客户集输出;
当揉合规则为并集规则时,首先将两个客户集合合并,再将其中在所述比对维度上具有相同标签的那部分客户集去重后输出;
当揉合规则为排除规则时,在所述比对维度上将被排除客户集合中具有与排除客户集合中相同标签的那部分客户集删除,然后将所述被排除客户集合输出。
2.根据权利要求1所述的基于标签库的营销客户筛选方法,其特征在于,步骤S2之前还包括:
S20、构建维度集合:获取加载的所述两个客户集合中所共有的维度作为维度集合输出。
3.根据权利要求2所述的基于标签库的营销客户筛选方法,其特征在于,步骤S20具体包括以下分步骤:
S201、获取一个客户集合中的首个客户集作为当前客户集;
S202、获取当前客户集中的首个维度为当前维度;
S203、判断另一个客户集合中是否具有与当前维度相同的维度,若是执行步骤S204,若否执行步骤S207;
S205、判断维度集合中是否具有与当前维度相同的维度,若是执行步骤S207,若否执行步骤S206;
S206、将当前维度保存至维度集合中;
S207、判断当前维度是否为当前客户集中包含的最后一个维度,若是执行步骤S208,若否则将当前维度重置为其之后的维度;
S208、判断当前客户集是否为当前客户集合中包含的最后一个客户集,若是则输出维度集合,若否则将当前客户集重置为其之后的客户集再执行步骤S202。
4.根据权利要求1所述的基于标签库的营销客户筛选方法,其特征在于,当揉合规则为交集规则时,步骤S2具体包括以下分步骤:
S211、将加载的两个客户集合中的一个客户集合作为第一客户集合,另一个客户集合作为第二客户集合;
S212、获取第一个客户集合中的首个客户集作为当前客户集;
S213、将当前客户集在所述比对维度上的标签与第二客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S214、判断在所述比对维度上第二客户集合中是否具有与当前客户集相同标签的客户集,若是执行步骤S215,若否执行步骤S216;
S215、将当前客户集取出暂存;
S216、判断当前客户集是否为所述第一客户集合中的最后一个客户集,若是执行步骤S218,若否执行步骤S217;
S217、将当前客户集重置为其之后的客户集,执行步骤S213;
S218、将暂存的客户集作为筛选结果输出。
5.根据权利要求1所述的基于标签库的营销客户筛选方法,其特征在于,当揉合规则为并集规则时,步骤S2具体包括以下分步骤:
S221、将加载的两个客户集合中的一个客户集合作为第一客户集合,另一个客户集合作为第二客户集合;
S222、获取第一个客户集合中的首个客户集作为当前客户集;
S223、将当前客户集在所述比对维度上的标签与第二客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S224、判断在所述比对维度上第二客户集合中是否具有与当前客户集相同标签的客户集,若是执行步骤S225,若否执行步骤S226;
S225、将第二客户集合中与所述当前客户集在所述比对维度上具有相同标签的客户集删除;
S226、判断当前客户集是否为所述第一客户集合中的最后一个客户集,若是执行步骤S228,若否执行步骤S227;
S227、将当前客户集重置为其之后的客户集,执行步骤S223;
S228、将第一客户集合和第二客户集合合并后作为筛选结果输出。
6.根据权利要求1所述的基于标签库的营销客户筛选方法,其特征在于,所述排除规则包括排除客户集合和被排除客户集合的集合定义设置。
7.根据权利要求6所述的基于标签库的营销客户筛选方法,其特征在于,当揉合规则为排除规则时,步骤S2具体包括以下分步骤:
S231、根据所述集合定义设置,将加载的两个客户集合中的一个客户集合作为排除客户集合,另一个客户集合作为被排除客户集合;
S232、获取排除客户集合中的首个客户集作为当前排除客户集;
S233、将当前排除客户集在所述比对维度上的标签与被排除客户集合中的各个客户集在所述比对维度上的标签进行一一比对;
S234、判断在所述比对维度上被排除客户集合中是否具有与当前排除客户集相同标签的客户集,若是执行步骤S235,若否执行步骤S236;
S235、将被排除客户集合中与所述当前排除客户集在所述比对维度上具有相同标签的客户集删除;
S236、判断当前排除客户集是否为所述排除客户集合中的最后一个客户集,若是执行步骤S238,若否执行步骤S237;
S237、将当前客户集重置为其之后的客户集,执行步骤S233;
S238、将被排除客户集合作为筛选结果输出。
8.一种电子装置,包括存储器和处理器,其特征在于,所述存储器上存储有可被所述处理器执行的基于标签库的营销客户筛选系统,所述基于标签库的营销客户筛选系统包括:
加载模块,用于将两个客户集合加载到系统内存中,每个所述客户集合由至少一个客户集组成,所述客户集包括客户ID和在一个或多个维度上与所述客户ID相匹配的至少一个标签;
规则获取模块,用于获取揉合规则,所述揉合规则包括预设在系统内的交集规则、并集规则和排除规则;
维度获取模块,用于获取比对维度,所述比对维度与所述客户集中所包含的维度相对应;
筛选模块,用于根据预设的揉合规则,将加载的两个客户集合在预设的比对维度上进行筛选,并输出筛选结果。
9.根据权利要求8所述的电子装置,其特征在于,所述基于标签库的营销客户筛选系统还包括:
维度集合构建模块,用于获取加载的所述两个客户集合中每个客户集中所包含的维度,并将其中相同的维度去重后作为维度集合输出。
10.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质内存储有基于标签库的营销客户筛选系统,所述基于标签库的营销客户筛选系统可被至少一个处理器所执行,以使所述至少一个处理器执行如权利要求1-7中任一项所述的基于标签库的营销客户筛选方法的步骤。
CN201711062156.2A 2017-10-31 2017-10-31 基于标签库的营销客户筛选方法、电子装置及存储介质 Pending CN107818165A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201711062156.2A CN107818165A (zh) 2017-10-31 2017-10-31 基于标签库的营销客户筛选方法、电子装置及存储介质
PCT/CN2018/076540 WO2019085343A1 (zh) 2017-10-31 2018-02-12 基于标签库的营销客户筛选方法、电子装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711062156.2A CN107818165A (zh) 2017-10-31 2017-10-31 基于标签库的营销客户筛选方法、电子装置及存储介质

Publications (1)

Publication Number Publication Date
CN107818165A true CN107818165A (zh) 2018-03-20

Family

ID=61604582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711062156.2A Pending CN107818165A (zh) 2017-10-31 2017-10-31 基于标签库的营销客户筛选方法、电子装置及存储介质

Country Status (2)

Country Link
CN (1) CN107818165A (zh)
WO (1) WO2019085343A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112085542A (zh) * 2020-10-23 2020-12-15 北京金堤科技有限公司 用户筛选方法和装置、计算机可读存储介质、电子设备
CN112991758A (zh) * 2021-03-24 2021-06-18 西安华旗电子技术有限公司 用于海关特殊监管区行政车辆货物夹带检查的抽查方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111159258A (zh) * 2019-12-31 2020-05-15 科技谷(厦门)信息技术有限公司 一种基于聚类分析的客户分群实现方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064908A (zh) * 2012-12-18 2013-04-24 北京讯鸟软件有限公司 一种通过内存快速去重名单的方法
CN105095477A (zh) * 2015-08-12 2015-11-25 华南理工大学 一种基于多指标评分的推荐算法
CN106528643A (zh) * 2016-10-13 2017-03-22 上海师范大学 一种基于社交网络的多维度综合推荐方法
CN106959965A (zh) * 2016-01-12 2017-07-18 腾讯科技(北京)有限公司 一种信息处理方法及服务器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8903904B2 (en) * 2009-08-21 2014-12-02 Avaya Inc. Pushing identity information
CN102542481A (zh) * 2010-12-27 2012-07-04 中国移动通信集团浙江有限公司 自适应营销的实现方法、系统和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064908A (zh) * 2012-12-18 2013-04-24 北京讯鸟软件有限公司 一种通过内存快速去重名单的方法
CN105095477A (zh) * 2015-08-12 2015-11-25 华南理工大学 一种基于多指标评分的推荐算法
CN106959965A (zh) * 2016-01-12 2017-07-18 腾讯科技(北京)有限公司 一种信息处理方法及服务器
CN106528643A (zh) * 2016-10-13 2017-03-22 上海师范大学 一种基于社交网络的多维度综合推荐方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112085542A (zh) * 2020-10-23 2020-12-15 北京金堤科技有限公司 用户筛选方法和装置、计算机可读存储介质、电子设备
CN112085542B (zh) * 2020-10-23 2024-01-26 北京金堤科技有限公司 用户筛选方法和装置、计算机可读存储介质、电子设备
CN112991758A (zh) * 2021-03-24 2021-06-18 西安华旗电子技术有限公司 用于海关特殊监管区行政车辆货物夹带检查的抽查方法及装置

Also Published As

Publication number Publication date
WO2019085343A1 (zh) 2019-05-09

Similar Documents

Publication Publication Date Title
CN107818165A (zh) 基于标签库的营销客户筛选方法、电子装置及存储介质
CN110388315B (zh) 基于多源信息融合的输油泵故障识别方法、装置及系统
CN104268064A (zh) 产品日志的异常诊断方法和装置
CN112468339B (zh) 告警处理方法、系统、装置和存储介质
CN112560997B (zh) 故障识别模型训练方法、故障识别方法及相关装置
CN102831149B (zh) 样本分析方法、装置
CN112686494B (zh) 基于线损异常台区的数据拟合方法、装置及智能设备
CN112070180B (zh) 基于信息物理双侧数据的电网设备状态判断方法及装置
CN107679874A (zh) 丰富微信客户标签的方法、电子装置及存储介质
CN112529319A (zh) 基于多维特征的评分方法、装置、计算机设备及存储介质
CN112508456A (zh) 食品安全风险评估方法、系统、计算机设备及存储介质
CN112437034B (zh) 虚假终端检测方法和装置、存储介质及电子装置
CN117729576A (zh) 告警监控方法、装置、设备及存储介质
CN111242509B (zh) 一种用于智慧社区的服务管理系统及其服务管理方法
CN111209158B (zh) 服务器集群的挖矿监控方法及集群监控系统
CN116012019B (zh) 一种基于大数据分析的金融风控管理系统
CN108038709A (zh) 客户抽样试营销方法、电子装置及计算机可读存储介质
CN110069382B (zh) 软件监控方法、服务器、终端设备、计算机设备及介质
CN112416385A (zh) 采集组件管理方法和系统
CN111831817A (zh) 问卷生成分析方法、装置、计算机设备及可读存储介质
CN114394099B (zh) 车辆行驶异常识别方法、装置、计算机设备及存储介质
CN110851486A (zh) 数据存储方法及装置
CN116257404A (zh) 一种日志解析方法及计算设备
CN114968933A (zh) 数据中心的日志的分类方法和装置
CN117251790B (zh) 一种智慧物流数据的采集方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180320

RJ01 Rejection of invention patent application after publication