CN107817069A - 勘探工程软岩地应力测试装置 - Google Patents

勘探工程软岩地应力测试装置 Download PDF

Info

Publication number
CN107817069A
CN107817069A CN201710890361.1A CN201710890361A CN107817069A CN 107817069 A CN107817069 A CN 107817069A CN 201710890361 A CN201710890361 A CN 201710890361A CN 107817069 A CN107817069 A CN 107817069A
Authority
CN
China
Prior art keywords
stress
drilling
box
triaxial
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710890361.1A
Other languages
English (en)
Other versions
CN107817069B (zh
Inventor
韩少鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Jianhan Engineering Management Co., Ltd.
Original Assignee
韩少鹏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韩少鹏 filed Critical 韩少鹏
Priority to CN201710890361.1A priority Critical patent/CN107817069B/zh
Publication of CN107817069A publication Critical patent/CN107817069A/zh
Application granted granted Critical
Publication of CN107817069B publication Critical patent/CN107817069B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes

Abstract

一种勘探工程软岩地应力测试装置,包括:钻孔机,其用于在围岩体内形成钻孔;应力传感组件,包括相邻设置的一对三向压力传感盒,检测钻孔内的地应力;推杆,用于将应力传感组件推送到钻孔内的指定深度;注浆杆,其用于向钻孔内注浆从而将钻孔填满;纵向压力传感柱,其设置于所述一对三向压力传感盒中间位置,其上端设置法向压力测量部;测量数据分析部,在确定存在测量结果错误的检测面后,使用纵向压力传感柱以及该三向压力传感盒其余两个检测面的测量结果,确定应力传感组件检测点的地应力。

Description

勘探工程软岩地应力测试装置
技术领域
[0001]本发明涉及岩土勘探测量技术领域,具有涉及一种岩土勘探岩土勘探工程软岩地 应力测试装置。
背景技术
[0002] 复杂条件下地下洞室及其围岩的稳定性历来受到关注,尤其是高地应力、地下水 发育和较为破碎的围岩,变形破坏非常严重且持续时间长,同时又表现出时间上和空间上 不均匀、不对称等诸多特性,开挖、支护和维护难度大。
[0003] 地应力是地下工程围岩压力产生的根本来源。重力作用和构造运动是引起地应力 的主要原因,其中尤以水平方向的构造运动对地应力的形成及其特点影响最大。形成构造 应力场的原因复杂,因此地应力在空间的分布极不均匀,在中国地应力场分布规律统计分 析中发现,小范围区域的地应力场分布规律对于指导地应力实测和工程建设更有意义。 [0004]由于构造应力场的复杂性,地应力现场实测是目前准确获得初始地应力的最好手 段,但由于现场条件和测试技术的局限,测试结果往往具有很大离散性甚至会产生错误的 数据。因而,利用统计得到的区域地应力分布规律判别测试结果的合理性显得尤为重要。研 宄基于有限的现场量测信息拓展出整个工程范围的初始地应力场的方法,具有重要的实用 价值。
[0005] 目前,传统的地应力测试方法例如水压致裂法,原子磁性共振法、压容法等较难适 应深部软岩工程稳定性分析引和安全监控的需要,该类地下工程亟需更为有效的地应力测 试方法。现有技术中,中国科学院武汉岩土力学研宄所提出了一种在围岩钻孔安装一对三 向压力传感盒的方式,得到得出测试点处的地应力,从而确定软岩地应力分布,进行稳定性 分析。但是,由于三向压力传感盒在设置过程中,可能发生相对位移导致影响测量的准确 性;同时,在固定三向压力传感盒时需要对钻孔进行全孔注浆。
[0006] 为了解决上述问题,武汉大学在201310496898.1的发明专利中,提出了一种采用 传感柱的软岩多测点地应力测试方法,通过预先将三向压力传感盒固定在传感柱中,将传 感柱设置于钻孔中检测的方式,避免了三向压力传感盒发生相对位移,同时减小了注浆量。 但是,由于其技术方案中,传感柱在钻孔外通过水泥砂浆胶结,其自应力在与钻孔内受到围 岩压力下胶结的条件不同,导致对于测量结果产生影响;同时,由于传感柱容易在设置过程 中产生扭转,用于移动传感柱的推杆需要设置角度测量装置,每个传感柱在固定时,都需要 使用角度测量装置对于传感柱的最终角度进行确定。
[0007] 作为改进在先申请提供了 一种岩土勘探工程软岩地应力测试装置,其将应力传感 组件的基座在钻孔外部浇筑形成,应力传感组件中三向压力传感盒的传感面上方的水泥砂 浆钻孔内受到围岩压力下胶结,从而不会对于测量结果产生影响;同时,由于应力传感组件 在钻孔外形成,也能够减少钻孔的注浆量。但是,改进的技术方案还存在如下问题:由于应 力传感组件需要在围岩流变过程中长期监测围岩应力场中的应力,但是应力传感组件在钻 孔中固定以后就无法更改或者维修,传感器以及数据线在监测过程中可能出现受到压力损 坏,腐蚀,接触不良,断线等问题,导致特定传感面的检测数据错误,从而导致无法确定检测 点的地应力。
发明内容
[0008] 本发明作为现有技术的进一步改进,提供了一种岩土勘探工程软岩地应力测试装 置,能够解决其所存在的问题。
[0009] 作为本发明的一个方面,提供一种勘探工程软岩地应力测试装置,包括:钻孔机, 其用于在围岩体内形成钻孔;应力传感组件,其包括相邻设置的一对三向压力传感盒,用于 设置于钻孔内,检测钻孔内的地应力;推杆,其用于将应力传感组件推送到钻孔内的指定深 度,所述推杆上设置角度传感装置;注浆杆,其用于向钻孔内注浆从而将钻孔填满;纵向压 力传感柱,其设置于所述一对三向压力传感盒中间位置,所述纵向压力柱为圆柱型结构,其 轴线竖直向上设置,下端固定于应力传感组件的底座,上端设置法向压力测量部;还包括测 量数据分析部,其基于检测信号,确定测量结果错误的三向压力传感盒的检测面;在确定存 在测量结果错误的检测面后,使用该三向压力传感盒对应的纵向压力传感柱的检测信息以 及该三向压力传感盒其余两个检测面的测量结果,确定应力传感组件检测点的地应力。
[0010] 优选的,所述测量数据分析部获取三向压力传感器各个检测面的检测信号,当特 定检测面的检测信号值为零时,确定其为测量结果错误的检测面。
[0011] 优选的,设置所述三向压力传感盒的测量角度,使检测面中不存在法线方向为竖 直向上的检测面。
[0012] 优选的,所述纵向压力传感柱的上端的法线方向为竖直向上。
[0013] 优选的,圆柱型前端,其由水泥制成,位于所述三向压力传感盒之前;圆柱型后端, 其由水泥制成,位于所述三向压力传感盒之后;所述圆柱型前端以及圆柱型后端的直径比 钻孔直径小〇. 5〜1 cm。
[0014] 优选的,所述纵向压力柱的高度与所述圆柱型前端以及圆柱型后端的直径相同。
[0015] 优选的,所述纵向压力柱的直径小于三向压力传感盒的1/2。
[0016] 优选的,所述法向压力测量部为振弦式结构。
[0017] 优选的,所述应力传感组件包括水泥砂浆制备的弓形水泥底座,其下表面为弓形 弧面,上表面为平面;所述三向压力传感盒被水泥砂浆固定于弓形水泥底座内,三向压力传 感盒在所述弓形水泥底座内的部分为锥形体;所述三向压力传感盒的三个检测面在水平高 度上的最低点高于所述弓形水泥底座的上表面,从而使三个检测面位于弓形水泥底座之 上。
[0018] 优选的,所述注浆杆向所述弓形水泥底座之上注浆,从而使所述三向压力传感盒 的三个检测面以及所述纵向压力柱的检测面上的注浆在受到软岩压力的情况下凝固。
[0019] 优选的,所述一对三向压力传感盒任意两个工作面法线不重合。
[0020] 优选的,所述三向压力传感盒水平高度最低的点位于所述弓形水泥底座的中轴截 面上。
[0021] 优选的,在钻孔内每设置完一个应力传感组件,所述注浆杆向所述弓形水泥底座 之上注浆,从而使所述三向压力传感盒的三个检测面以及所述纵向压力柱的检测面上的注 浆在受到软岩压力的情况下凝固。
[0022] 优选的,若千标准水泥柱,用于填充应力传感组件之间的空间,所述标准水泥柱通 过水泥砂浆制作,截面与钻孔面积相等,具有不同的长度;所述的标准水泥柱的底部设置线 孔。
[0023] 优选的,所述应力传感组件包括水泥砂浆制备的弓形水泥底座,其下表面为弓形 弧面,上表面为平面;所述三向压力传感盒被水泥砂楽固定于弓形水泥底座内,三向压力传 感器盒在所述弓形水泥底座内的部分为锥形体;所述三向压力传感盒的三个检测面在水平 高度上的最低点高于所述弓形水泥底座的上表面,从而使三个检测面位于弓形水泥底座之 上;所述推杆不设置角度测量装置。
[0024]优选的,位于钻孔最深处的应力传感组件的前端不设置卡榫,后端设置卡槽;不位 于钻孔最深处的应力传感组件以及标准水泥柱前端设置卡榫,后端设置相应的卡槽;所述 卡槽以及卡榫的截面形状为梯形。
[0025]优选的,所述推杆前端设置有与所述卡槽对应的卡榫,用于将应力传感组件以及 标准水泥柱推送到钻孔内的指定位置。
[0026] 优选的,在钻孔内设置应力传感组件时,根据深度方向上相邻的应力传感组件之 间的距离,确定设置于相邻应力传感组件之间的标准水泥柱的长度和数目,使钻孔内相邻 的应力传感组件之间没有空隙;其中相邻的应力传感组件之间最深处标准水泥柱的卡榫与 位于其前端的应力传感组件的卡槽啮合,最浅处标准水泥柱的卡槽与位于其后端的应力传 感组件的卡榫啮合;在钻孔内设置完毕所有应力传感组件后,根据位于钻孔最后端的应力 传感组件的角度,确定钻孔内所述应力传感组件的角度。
附图说明
[0027]图1是本发明实施例的应力传感组件结构示意图。
[°028]图2是本发明优选实施例的应力传感组件以及标准水泥柱示意图。
具体实施方式
[0029]为了更清楚地说明本发明的技术方案,下面将使用实施例对本发明进行简单地介 绍,显而易见地,下面描述中的仅仅是本发明的一个实施例,对于本领域普通技术人员来 讲,在不付出创造性劳动性的前提下,还可以根据这些实施例获取其他的技术方案,也属于 本发明的公开范围。
[0030]本发明实施例的勘探工程软岩地应力测试装置,包括钻孔机,应力传感组件,推 杆,注浆杆以及测量数据分析部。其中,钻孔机用于根据勘探需要,在围岩体内的多个指定 位置形成制定深度的钻孔。
[0031]应力传感组件,用于设置于钻孔内,检测钻孔内的地应力。一个钻孔内不同深度可 以设置多个应力传感组件。
[0032] 推杆,用于将应力传感组件推送到钻孔内的指定深度。注浆杆,其用于向钻孔内注 浆从而将钻孔填满。推杆上可以设置角度传感装置,从而根据推杆的角度变化,能够确定应 力传感组件的最终角度。
[0033] 应力传感组件的结构参见图1,包括水泥砂浆制备的弓形水泥底座10,圆柱型前端 20,圆柱型后端30,相邻设置的三向压力传感盒40以及三向压力传感盒50以及纵向压力传 感柱60。
[0034]在钻孔外将三向压力传感盒40,三向压力传感盒50以及纵向压力传感柱60设置于 水泥砂浆模具中,形成应力传感组件。其中,三向压力传感盒40以及50的任意两个工作面法 线不重合。并且,设置三向三向压力传感器盒40,50的朝向,三向压力传感器盒40,50的工作 面中,不存在法线方向为竖直向上的检测面。可以使用现有技术中已知的三向压力传感盒。 纵向压力传感柱60设置于所述三向压力传感盒40和50的中间位置,纵向压力柱60为圆柱型 结构,其轴线竖直向上设置,下端固定于应力传感组件的弓形水泥底座10,上端设置法向压 力测量部。法向压力测量部可以使用现有技术中的应力测量装置,例如201210096644.6中 振弦式结构的应力测量装置。
[0035]弓形水泥底座10的下表面11为弓形弧面,上表面12为平面。可以在弓形水泥底座 10的下表面11下端设置线孔,用于传感器数据线的设置。三向压力传感盒40、三向压力传感 盒50以及纵向压力柱60通过水泥砂浆固定于弓形水泥底座10内。其中,三向压力传感盒40 以及三向压力传感盒50的设置如下:使三向压力传感盒40以及三向压力传感盒50在弓形水 泥底座10内的部分为锥形体;三向压力传感盒40的三个检测面401,402,403以及三向压力 传感盒50的三个检测面501,502,503的水平高度上的最低点高于弓形水泥底座10的上表面 I2,从而使三向压力传感盒40的三个检测面401,402,403以及三向压力传感盒50的三个检 测面501,502,503位于弓形水泥底座10之上。弓形水泥底座10之上之上的空间由应力传感 组件放置于钻孔指定深度的位置后,在注浆杆向其内注入水泥砂浆,从而使三向压力传感 盒40以及50的检测面上方的砂浆在受到软岩压力的情况下凝固,同时填充应力传感组件与 围岩体之间的空间。
[0036]圆柱型前端20由水泥制成,位于三向压力传感盒40以及50之前;圆柱型后端其由 水泥制成,位于三向压力传感盒40以及50之后;圆柱型前端40以及圆柱型后端50的直径比 钻孔直径小0.5〜lcm。
[0037] 纵向压力柱60固定后的高度与圆柱型前端20以及圆柱型后端30的直径相同,纵向 压力柱60的直径小于三向压力传感盒的1/2,从而使纵向压力柱㈤容纳于圆柱型前端20以 及圆柱型后端30之间。
[0038]在所有钻孔内应力传感组件安装完毕后,测量数据分析部获取三向压力传感盒各 个检测面的检测信号,确定测量结果错误的检测面。具体的,例如可以设置为当特定检测面 的检测信号值为零时,测量数据分析部确定其为测量结果错误的检测面。此时,在确定存在 测量结果错误的检测面后,使用该三向压力传感盒对应的纵向压力传感柱的检测信息以及 该三向压力传感盒其余两个检测面的测量结果,确定应力传感组件检测点的地应力。
[0039] 通过本发明上述实施例,在应力传感组件的三向压力传感盒的检测面出现检测错 误时,能够通过纵向压力传感柱的检测信息,确定应力传感组件检测点的地应力,从而避免 了在长期监测过程中传感器损坏导致的无法检测的结果。同时,通过纵向压力传感柱结构 以及形状参数的设置,能够在三向压力传感盒之间进行冗余设置。
[0040] 优选的,参见图2本发明实施例的勘探工程软岩地应力测试装置,还可以包括若干 标准水泥柱300以及400,标准水泥柱包括多根不同长度的标准水泥柱,其通过水泥砂浆制 作,截面与钻孔面积相等,具有不同的长度。标准水泥柱的底部设置线孔,用于数据线的设 置。标准水泥柱前端设置卡榫,后端设置相应的卡槽。
[0041]标准水泥柱用于填充应力传感组件之间的空间,可以根据钻孔内应力传感组件之 间的距离,确定设置于应力传感组件之间标准水泥柱的规格。例如图2中,可以在应力传感 组件100以及应力传感组件200之间,设置不同长度的标准水泥柱300以及400。 " [0042]位于钻孔最深处的应力传感组件100的前端不设置卡榫,后端设置卡槽110;不位 于钻孔最深处的应力传感组件2〇0的前端设置卡榫220,后端设置相应的卡槽21〇。
[0043]推杆,用于将应力传感组件推送到钻孔内的指定深度。注衆杆,其用于向钻孔内注 浆从而将钻孔填满。其中,推杆上不设置角度传感装置。
[0044]上述实施例的软岩地应力测试装置在进行测试时,通过钻孔机在围岩的指定位置 形成钻孔,在钻孔外形成多个应力传感组件,通过推杆将应力传感组件推入钻孔内指定深 度,通过注浆杆向应力传感组件弓形水泥底座的上方空间注浆,从而使应力传感组件的检 测面上的砂浆在受到软岩压力的情况下凝固;根据应力传感组件之间的距离,确定设置于 应力传感组件之间标准水泥柱的长度和个数,通过将标准水泥柱推入转孔内,其中标准水 泥柱之间,以标准水泥柱及应力传感组件之间通过卡榫以及卡槽啮合;依次向钻孔内推入 应力传感组件以及标准水泥柱,直至钻孔内设置完毕所有应力传感组件;根据位于钻孔最 后端的应力传感组件的角度,确定钻孔内所述应力传感组件的角度,由于钻孔内各个元件 啮合设置,根据卡榫以及卡槽的位置角度,即能够确定各个应力传感组件的角度;基于应力 传感组件的传感器的读数,确定检测点的地应力,从而建立软岩区域空间力学模型。
[0045]通过本发明上述优选的实施例,不需要记录每个应力传感器组件的角度,通过钻 孔最后端的的应力传感器组件的角度即可确定所有应力传感器的角度;同时避免了数据线 的损坏。
[0046]在本发明提及的所有文献都在本申请中引用参考,就如同每一篇文献被单独引用 作为参考那样。以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。 本发明中描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合 适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的 不同实施例或示例以及不同实施例或示例的特征进行结合和组合。凡在本发明的精神和原 则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (6)

1. 一种勘探工程软岩地应力测试装置,包括:钻孔机,其用于在围岩体内形成钻孔;应 力传感组件,其包括相邻设置的一对三向压力传感盒,用于设置于钻孔内,检测钻孔内的地 应力;推杆,其用于将应力传感组件推送到钻孔内的指定深度;注浆杆,其用于向钻孔内注 浆从而将钻孔填满;其特征在于:所述应力传感组件还包括纵向压力传感柱,其设置于所述 一对三向压力传感盒中间位置,所述纵向压力柱为圆柱型结构,其轴线竖直向上设置,下端 固定于应力传感组件的底座,上端设置法向压力测量部;还包括测量数据分析部,其基于检 测信号,确定测量结果错误的三向压力传感盒的检测面;在确定存在测量结果错误的检测 面后,使用该三向压力传感盒对应的纵向压力传感柱的检测信息以及该三向压力传感盒其 佘两个检测面的测量结果,确定应力传感组件检测点的地应力。
2. 根据权利要求1所述的勘探工程软岩地应力测试装置,其特征在于:所述测量数据分 析部获取三向压力传感盒各个检测面的检测信号,当特定检测面的检测信号值为零时,确 定其为测量结果错误的检测面。
3. 根据权利要求2所述的勘探工程软岩地应力测试装置,其特征在于:所述应力传感组 件还包括:圆柱型前端,其由水泥制成,位于所述三向压力传感盒之前;圆柱型后端,其由水 泥制成,位于所述三向压力传感盒之后;所述圆柱型前端以及圆柱型后端的直径比钻孔直 径小0.5〜lcm。
4. 根据权利要求3所述的勘探工程软岩地应力测试装置,其特征在于:所述纵向压力柱 的高度与所述圆柱型前端以及圆柱型后端的直径相同。
5. 根据权利要求3-4所述的勘探工程软岩地应力测试装置,其特征在于:所述纵向压力 柱的直径小于三向压力传感盒的1/2。
6. 根据权利要求4-5所述的勘探工程软岩地应力测试装置,其特征在于:所述法向压力 测量部为振弦式结构。
CN201710890361.1A 2017-09-23 2017-09-23 勘探工程软岩地应力测试装置 Active CN107817069B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710890361.1A CN107817069B (zh) 2017-09-23 2017-09-23 勘探工程软岩地应力测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710890361.1A CN107817069B (zh) 2017-09-23 2017-09-23 勘探工程软岩地应力测试装置

Publications (2)

Publication Number Publication Date
CN107817069A true CN107817069A (zh) 2018-03-20
CN107817069B CN107817069B (zh) 2020-05-22

Family

ID=61607053

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710890361.1A Active CN107817069B (zh) 2017-09-23 2017-09-23 勘探工程软岩地应力测试装置

Country Status (1)

Country Link
CN (1) CN107817069B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628716A (zh) * 2012-04-05 2012-08-08 中国科学院武汉岩土力学研究所 基于流变应力恢复原理的深部软岩地应力测试方法和装置
CN103510951A (zh) * 2013-10-21 2014-01-15 中国科学院武汉岩土力学研究所 深部软岩地应力测试装置的定位安装方法
CN103513016A (zh) * 2013-10-21 2014-01-15 武汉大学 采用传感柱的软岩多测点地应力测试方法
CN103776572A (zh) * 2014-01-22 2014-05-07 安徽理工大学 地应力测试装置
CN103900751A (zh) * 2013-11-28 2014-07-02 长江水利委员会长江科学院 绳索取芯钻杆双回路水压致裂法地应力测试装置及测试方法
CN105606287A (zh) * 2016-03-14 2016-05-25 北京科技大学 一种测量软岩地应力的装置和方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628716A (zh) * 2012-04-05 2012-08-08 中国科学院武汉岩土力学研究所 基于流变应力恢复原理的深部软岩地应力测试方法和装置
CN103510951A (zh) * 2013-10-21 2014-01-15 中国科学院武汉岩土力学研究所 深部软岩地应力测试装置的定位安装方法
CN103513016A (zh) * 2013-10-21 2014-01-15 武汉大学 采用传感柱的软岩多测点地应力测试方法
CN103900751A (zh) * 2013-11-28 2014-07-02 长江水利委员会长江科学院 绳索取芯钻杆双回路水压致裂法地应力测试装置及测试方法
CN103776572A (zh) * 2014-01-22 2014-05-07 安徽理工大学 地应力测试装置
CN105606287A (zh) * 2016-03-14 2016-05-25 北京科技大学 一种测量软岩地应力的装置和方法

Also Published As

Publication number Publication date
CN107817069B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
Haimson The hydrofracturing stress measuring method and recent field results
Fairhurst Stress estimation in rock: a brief history and review
US6896074B2 (en) System and method for installation and use of devices in microboreholes
CN103344491B (zh) 一种基于静载和爆炸荷载共同作用下巷道冲击地压的模拟方法
US8573297B2 (en) Subterranean formation deformation monitoring systems
Pestana et al. Soil deformation and excess pore pressure field around a closed-ended pile
Ljunggren et al. An overview of rock stress measurement methods
CN105676308B (zh) 一种单井地下水渗流流速流向测量方法及测量仪
CN107589471B (zh) 一种高速铁路隧道综合超前地质预报方法
CN105277993B (zh) 一种海域金矿找矿方法
CN104061902B (zh) 复合式地下深部灾害监测装置
CN103727911B (zh) 基于mems阵列的组装式深部位移监测设备及系统
CN101451815B (zh) 一种煤系上覆岩层移动监测装置及其监测方法
CN104329076B (zh) 一种测斜孔渗压计装置及安装方法
CN105604066B (zh) 电阻率剖面法在建筑基坑围护结构渗漏水检测中的应用
CN101871764B (zh) 基于霍尔效应的岩土地下位移测量方法及装置
CN102628716B (zh) 基于流变应力恢复原理的深部软岩地应力测试方法和装置
CN102221332A (zh) 松散地层的光纤光栅多点传感装置及监测系统与监测方法
CN102011389B (zh) 岩土体原位测试设备及利用该设备的测试方法
CN102736124A (zh) 基于综合参数的隧道开挖围岩动态细化分级方法
Haimson Near-surface and deep hydrofracturing stress measurements in the Waterloo quartzite
US4044828A (en) Process for direct measurement of the orientation of hydraulic fractures
CN105735375B (zh) 一种黄土隧道隧底稳定性监测方法、系统及施工方法
CN105509628B (zh) 一种磁测定位装置以及利用该装置进行滑坡深部位移监测的方法
CN104929146B (zh) 一种多层岩溶发育带桩基础工程施工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200417

Address after: 510030 9th floor, provincial coal office building, 116 Yuehua Road, Yuexiu District, Guangzhou City, Guangdong Province

Applicant after: Guangdong Jianhan Engineering Management Co., Ltd.

Address before: 054000 Xingtai Province, Gao Qiao Road, No. 79, Hebei

Applicant before: Han Shaopeng

GR01 Patent grant
GR01 Patent grant