CN107808049A - DNAPL migration method for numerical simulation based on porous media three-dimensional microstructures model - Google Patents

DNAPL migration method for numerical simulation based on porous media three-dimensional microstructures model Download PDF

Info

Publication number
CN107808049A
CN107808049A CN201711018115.3A CN201711018115A CN107808049A CN 107808049 A CN107808049 A CN 107808049A CN 201711018115 A CN201711018115 A CN 201711018115A CN 107808049 A CN107808049 A CN 107808049A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
porous medium
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711018115.3A
Other languages
Chinese (zh)
Other versions
CN107808049B (en
Inventor
吴剑锋
吴鸣
吴吉春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201711018115.3A priority Critical patent/CN107808049B/en
Publication of CN107808049A publication Critical patent/CN107808049A/en
Application granted granted Critical
Publication of CN107808049B publication Critical patent/CN107808049B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明提供了一种基于多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,通过建立了正四棱锥的三维微观结构模型,利用可见光微观成像技术通过可见光对半透明多孔介质的孔隙度进行准确测定,接着用多孔介质三维微观结构的模型计算出渗透率和毛管进入压力。基于对半透明多孔介质渗透率和毛管进入压力的精确测定,用相对梯度误差定量评估典型单元体的尺度。用UTCHEM建立重非水相污染物迁移模型,以REV作为网格尺度对二维半透明多孔介质进行剖分,从而提高DNAPL迁移的模拟精度,实现对模型剖分网格的定量化确定。本方法实现了对多孔介质性质和网格尺度的更准确的定量确定,在对DNAPL在含水层中的迁移乃至修复过程的准确模拟和制定相应的污染物修复方案具有较强的适用性。

The invention provides a DNAPL migration numerical simulation method based on a three-dimensional microstructure model of a porous medium. By establishing a three-dimensional microstructure model of a regular square pyramid, the porosity of a translucent porous medium is accurately measured through visible light using visible light microscopic imaging technology. Then the permeability and capillary entry pressure are calculated using the model of the three-dimensional microstructure of porous media. Relative gradient errors are used to quantitatively assess the scale of typical unit cells based on precise measurements of permeability and capillary entry pressure in translucent porous media. The migration model of heavy non-aqueous pollutants was established with UTCHEM, and the two-dimensional translucent porous medium was subdivided with REV as the grid scale, so as to improve the simulation accuracy of DNAPL migration and realize the quantitative determination of the model subdivision grid. This method achieves a more accurate quantitative determination of the properties of porous media and grid scales, and has strong applicability in accurately simulating the migration and remediation process of DNAPL in aquifers and formulating corresponding pollutant remediation programs.

Description

基于多孔介质三维微观结构模型的DNAPL迁移数值模拟方法Numerical Simulation Method of DNAPL Migration Based on 3D Microstructural Model of Porous Media

技术领域technical field

本发明涉及一种重非水相污染物,具体涉及一种DNAPL迁移数值模拟方法。The invention relates to a heavy non-aqueous phase pollutant, in particular to a DNAPL migration numerical simulation method.

背景技术Background technique

随着工农业的快速发展,人类活动释放出越来越多的重非水相污染物(densenonaqueous phase liquid DNAPL)进入到自然界中。这些泄漏出的DNAPL溶解度低、密度比水大,进入含水层后DNAPL会一直向含水层深部入渗迁移,且容易滞留于低渗透性介质之上形成污染池而残留。由于DNAPL如四氯乙烯(perchloroethylene,PCE)和多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的化学性质稳定、溶解度很低、毒性大、有致癌作用,所以含水层中残留的DNAPL会对地下水环境造成长期的污染,对生态系统人类的健康会造成严重的危害。当DNAPL进入地下环境后,其在含水层中的迁移和修复过程会受到介质性质(如渗透率和毛管进入压力)、非均质性及相应的尺度效应的很大影响,如图1所示,图中横坐标表示测量尺度L,可以看出,多孔介质的性质随测量尺度的变化,REV位于中间区段。因此,在进行DNAPL在含水层中迁移的模拟及制定修复方案之前,对含水层多孔介质的非均质性的准确测定及典型单元体(representative elementary volume,REV)的定量评估是必不可少的重要环节With the rapid development of industry and agriculture, human activities release more and more dense nonaqueous phase liquid DNAPL into nature. The leaked DNAPL has low solubility and higher density than water. After entering the aquifer, the DNAPL will always infiltrate and migrate to the deep part of the aquifer, and it is easy to stay on the low-permeability medium to form a polluted pool and remain. Because DNAPL such as perchloroethylene (PCE) and polycyclic aromatic hydrocarbons (polycyclic aromatic hydrocarbons, PAHs) have stable chemical properties, low solubility, high toxicity, and carcinogenicity, the residual DNAPL in the aquifer will cause serious damage to the groundwater environment. Long-term pollution will cause serious harm to human health in the ecosystem. When DNAPL enters the underground environment, its migration and repair process in the aquifer will be greatly affected by the properties of the medium (such as permeability and capillary entry pressure), heterogeneity and the corresponding scale effect, as shown in Figure 1 , the abscissa in the figure represents the measurement scale L. It can be seen that the properties of porous media change with the measurement scale, and REV is located in the middle section. Therefore, accurate determination of the heterogeneity of the porous media of the aquifer and quantitative evaluation of the representative elementary volume (REV) are essential before simulating the migration of DNAPL in the aquifer and formulating a remediation plan. important link

为了对DNAPL在地下水环境中的复杂迁移行为进行研究,一般实验中通常让水和污染物在半透明石英砂中进行迁移,并对半透明石英砂中DNAPL的浓度进行实时监测,然而半透明石英砂的性质却很难测定,使得石英砂材料的性质对DNAPL的迁移的影响难以确定。随着科技的发展,x射线、γ射线等非侵入式高精度技术在测定材料微观结构性质方面的应用越来越广泛。x射线、γ射线在测定材料性质、多孔介质中流体的饱和度方面已有大量的应用,然而在实际测量中,材料样品尺寸通常要求非常小,从而方便x射线和γ射线穿透材料。同时,在应用x射线、γ射线技术时,需要复杂的设备、较多的能源,操作时放射性风险很大,流程繁杂。近年来出现了一种新的基于可见光透射成像技术,如可见光微观成像技术(light transmission micro-tomography,LTM)和光透法(light transmissionvisualization,LTV),则可以实现对半透明多孔介质中的水、污染物的含量及半透明材料本身的性质的快捷、经济、高效的准确测定。另一方面,自然界中一切多孔介质都可以看成是分形的,通过分形的方法已经对多孔介质的迂曲度、渗透率、热传导率等进行了大量的研究。但是这些分形方法对多孔介质的研究仅限于理论角度,构建的多孔介质的微观结构模型大多只是理想的二维模型,然而实际的多孔介质微观结构是三维的,因此实际测量中多孔介质的性质则难以用目前的分形方法进行准确获取。此外,通常DNAPL迁移的数值模型对含水层的剖分的网格的尺度则是按照定性的方式来确定,带有很大的随意性。因此,目前的可见光成像技术和分形方法都无法对实际中的半透明多孔介质如半透明石英砂的关键参数(渗透率、毛管进入压力)及相应的REV进行定量化准确测定。这会使得多孔介质的性质和DNAPL在多孔介质中迁移的数值模型的网格剖分尺度难以定量确定,从而导致模拟出现误差。In order to study the complex migration behavior of DNAPL in the groundwater environment, in general experiments, water and pollutants are usually allowed to migrate in translucent quartz sand, and the concentration of DNAPL in translucent quartz sand is monitored in real time. The nature of the sand is difficult to measure, making it difficult to determine the effect of the properties of the quartz sand material on the migration of DNAPL. With the development of science and technology, non-invasive high-precision technologies such as x-rays and gamma-rays are more and more widely used in the determination of the microstructural properties of materials. X-rays and γ-rays have been widely used in the determination of material properties and fluid saturation in porous media. However, in actual measurement, the size of material samples is usually required to be very small, so that X-rays and γ-rays can easily penetrate the material. At the same time, when applying x-ray and gamma-ray technology, complex equipment and more energy are required, and the risk of radioactivity is high during operation, and the process is complicated. In recent years, a new visible light transmission imaging technology has emerged, such as light transmission micro-tomography (LTM) and light transmission visualization (LTV), which can detect water, Fast, economical, efficient and accurate determination of the content of pollutants and the properties of translucent materials themselves. On the other hand, all porous media in nature can be regarded as fractal, and a large number of studies have been carried out on the tortuosity, permeability, and thermal conductivity of porous media through fractal methods. However, the research of these fractal methods on porous media is limited to the theoretical point of view, and the microstructure models of porous media constructed are mostly ideal two-dimensional models, but the actual microstructure of porous media is three-dimensional, so the properties of porous media in actual measurement are different. It is difficult to obtain accurately with the current fractal method. In addition, usually the numerical model of DNAPL migration determines the grid scale of the subdivision of the aquifer in a qualitative way, with great randomness. Therefore, the current visible light imaging technology and fractal methods cannot quantitatively and accurately measure the key parameters (permeability, capillary entry pressure) and corresponding REV of translucent porous media such as translucent quartz sand in practice. This will make it difficult to quantitatively determine the properties of porous media and the meshing scale of the numerical model of DNAPL migration in porous media, which will lead to simulation errors.

发明内容Contents of the invention

发明目的:本发明的目的在于针对现有技术的不足,提供了一种高效精确的基于多孔介质三维微观结构模型的DNAPL迁移数值模拟方法。Purpose of the invention: The purpose of the present invention is to provide an efficient and accurate numerical simulation method for DNAPL migration based on a three-dimensional microstructural model of porous media for the deficiencies of the prior art.

技术方案:本发明提供了一种基于多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,包括以下步骤:Technical solution: the present invention provides a method for numerical simulation of DNAPL migration based on a porous medium three-dimensional microstructure model, comprising the following steps:

(1)用可见光微观成像技术扫描半透明多孔介质,精确测量出多孔介质的孔隙度;(1) Use visible light microscopic imaging technology to scan translucent porous media, and accurately measure the porosity of porous media;

(2)对多孔介质微观结构建立三维正四棱锥的微观分形模型,通过微观分形模型计算出渗透率;(2) Establish a micro-fractal model of a three-dimensional regular pyramid for the micro-structure of porous media, and calculate the permeability through the micro-fractal model;

(3)用多孔介质的微观分形模型定量确定平均孔隙直径,从而根据杨-拉普拉斯方程计算出多孔介质的毛管进入压力;(3) Quantitatively determine the average pore diameter with the microscopic fractal model of the porous medium, thereby calculating the capillary entry pressure of the porous medium according to the Young-Laplace equation;

(4)对多孔介质的渗透率和毛管进入压力的REV尺度进行定量评估;(4) Quantitative evaluation of the REV scale for the permeability of porous media and the capillary entry pressure;

(5)DNAPL注入半透明多孔介质进行迁移,用光透法监测DNAPL饱和度的分布;(5) DNAPL is injected into a translucent porous medium for migration, and the distribution of DNAPL saturation is monitored by the light transmission method;

(6)用多组分、多相流模拟程序UTCHEM建立数值模型模拟DNAPL的迁移,以REV的尺度为网格的尺度对二维半透明多孔介质进行剖分,把基于多孔介质三维微观结构模型定量确定的孔隙度、渗透率和毛管进入压力的数据转化成REV尺度的数据输入到UTCHEM中,从而提高模拟精度,避免剖分网格尺度的定性确定,对DNAPL在多孔介质中的迁移进行模拟。(6) Use the multi-component and multi-phase flow simulation program UTCHEM to establish a numerical model to simulate the migration of DNAPL, use the REV scale as the grid scale to subdivide the two-dimensional translucent porous medium, and use the three-dimensional microstructure model based on the porous medium Quantitatively determined porosity, permeability and capillary entry pressure data are converted into REV-scale data and input into UTCHEM, thereby improving simulation accuracy, avoiding qualitative determination of subdivided grid scales, and simulating the migration of DNAPL in porous media .

进一步,步骤(1)将半透明多孔介质填入二维砂箱中饱水,可见光源从一侧照射砂箱,CCD相机在另一侧接收穿透二维半透明多孔介质的透射光信号,用可见光微观成像技术测量每个像素上半透明多孔介质的孔隙度:Further, in step (1), fill the translucent porous medium into the two-dimensional sand box and saturate it with water. The visible light source illuminates the sand box from one side, and the CCD camera receives the transmitted light signal penetrating through the two-dimensional translucent porous medium on the other side. Visible microscopic imaging measures the porosity of translucent porous media at each pixel:

其中,n是半透明多孔介质的孔隙度,Is是穿透饱水的半透明多孔介质的可见光的透射光强,Io是可见光源的原始光强,C是校正可见光透射误差的参数,αs是固相的光吸收系数,ds是饱水的半透明石英砂材料中固相颗粒的平均直径,LT是半透明颗粒材料的厚度,e是欧拉常数,τs,w是固相-液相水界面的光透射率,do是孔隙的平均直径。in, n is the porosity of the semi-transparent porous medium, I s is the transmitted light intensity of visible light penetrating the water-saturated semi-transparent porous medium, I o is the original light intensity of the visible light source, C is the parameter for correcting the transmission error of visible light, α s is the light absorption coefficient of the solid phase, d s is the average diameter of the solid phase particles in the water-saturated translucent quartz sand material, L T is the thickness of the translucent granular material, e is the Euler constant, τ s, w is the solid phase - light transmittance at the liquid-water interface, d o is the average diameter of the pores.

进一步步骤(2)把多孔介质看做毛管束的集合,从中任取一个流体路径长为L、横截面积为AL的微元,多孔介质中流体的粘度为μ,微元中毛管的数量为The further step (2) regards the porous medium as a collection of capillary bundles, and randomly selects a microelement with a fluid path length L and a cross-sectional area A L , the viscosity of the fluid in the porous medium is μ, and the number of capillaries in the microelement for

其中,N(L≥λ)表示微元中直径大于λ的毛管的数量,-dN(L≥λ)是N(L≥λ)的导数,λ是多孔介质中毛管的直径,δ是一个常数参数,Df是分形维数;Among them, N(L≥λ) represents the number of capillaries with a diameter greater than λ in the microelement, -d N(L≥λ) is the derivative of N(L≥λ), λ is the diameter of capillaries in porous media, and δ is a constant parameter, D f is the fractal dimension;

根据泊肃叶方程计算出流量:The flow is calculated according to Poiseuille's equation:

其中,q表示微元中毛管的流量,λmin是毛管的最小直径,λmax是毛管的最大直径,ΔP为微元中流体的流动路径两端的压力差;与计算多孔介质中流体流量的达西定律结合,毛管的最小直径与毛管的最大直径的比值趋近于0,可得:Among them, q represents the flow rate of the capillary in the micro-element, λ min is the minimum diameter of the capillary, λ max is the maximum diameter of the capillary, and ΔP is the pressure difference at both ends of the flow path of the fluid in the micro-element; west law Combined, the ratio of the smallest diameter of the capillary to the largest diameter of the capillary tends to 0, we can get:

其中,k为渗透率, where k is the permeability,

进一步,步骤(3)从多孔介质微观结构中选择一个正四棱锥的研究单元(rightsquare pyramid microstructure,RSPM),其孔隙度和单元体积分别为:Further, step (3) selects a research unit (rightsquare pyramid microstructure, RSPM) from the porous medium microstructure, and its porosity and unit volume are respectively:

where Vr是正四棱锥研究单元的单元体积,Rv是多孔介质固相颗粒的半径,Lr是正四棱锥研究单元的边长;where V r is the unit volume of the regular pyramid research unit, R v is the radius of the solid phase particles in the porous medium, and L r is the side length of the regular quadrangular pyramid research unit;

正四棱锥研究单元的边长和其中的孔隙体积为:The side length and the pore volume of the research unit of the regular pyramid are:

其中,Vrp是正四棱锥研究单元中的孔隙体积;where V rp is the pore volume in the research unit of the regular pyramid;

把正四棱锥研究单元里的孔隙近似为一个球体,从而计算出球体的直径λr1Approximate the pores in the research unit of the regular pyramid as a sphere, and thus calculate the diameter λ r1 of the sphere:

正四棱锥研究单元底部为正方形,其对应的总面积及孔隙面积分别为:The bottom of the regular pyramid research unit is a square, and its corresponding total area and pore area are respectively:

其中,Arb为底面正方形的总体积,Arbs为固相所占的面积,Arbp为孔隙所占的面积;Among them, Arb is the total volume of the bottom square, Arbs is the area occupied by the solid phase, and Arbp is the area occupied by the pores;

将底面正方形中孔隙所占面积近似为一个圆,并计算圆的直径λr2Approximate the area occupied by the pores in the bottom square as a circle, and calculate the diameter λ r2 of the circle:

同理,正四棱锥研究单元的侧面为三角形,把孔隙所占面积也近似为一个圆,圆的直径λr3为:In the same way, the side of the regular pyramid research unit is a triangle, and the area occupied by the pores is also approximated as a circle, and the diameter λ r3 of the circle is:

其中,Arsp是正四棱锥研究单元侧面的正三角形中孔隙面积, Among them, A rsp is the pore area of the regular triangle on the side of the regular pyramid research unit,

正四棱锥研究单元中,固相颗粒间的空隙的距离ΔLr为:In the regular quadrangular pyramid research unit, the distance ΔL r of the gap between solid phase particles is:

当流体在多孔介质中流动时,不仅会通过单元内的中间孔隙、底面和侧面的孔隙,也会流过颗粒之间的空隙,因此,孔隙直径do是λr1、λr2、λr3和颗粒间空隙距离ΔLr的平均值:When the fluid flows in the porous medium, it will not only pass through the middle pores, bottom and side pores in the unit, but also flow through the gaps between particles. Therefore, the pore diameter d o is λ r1 , λ r2 , λ r3 and The mean value of the interparticle interstitial distance ΔL r :

将正四棱锥研究单元中的孔隙直径do作为其中毛细管的直径λ,就可以根据杨-拉普拉斯方程计算出毛管进入压力PbTaking the pore diameter d o in the research unit of the regular pyramid as the diameter λ of the capillary, the capillary entry pressure P b can be calculated according to the Young-Laplace equation:

其中,ω=Fσcosθ,θ是流体和固体颗粒之间界面上的接触角,σ是界面上的表面张力,F是与多孔介质中毛细管形状和流体流动方向有关的参数。where ω=Fσcosθ, θ is the contact angle on the interface between the fluid and solid particles, σ is the surface tension on the interface, and F is a parameter related to the capillary shape and fluid flow direction in porous media.

进一步,步骤(4)用相对梯度误差来定量评估半透明多孔介质的渗透率和毛管进入压力的REV尺度:Further, step (4) uses the relative gradient error To quantitatively evaluate the permeability of translucent porous media and the REV scale of capillary entry pressure:

其中,是需要评估的参数,如多孔介质的渗透率或毛管进入压力,i是计算多孔介质性质时从小尺度向大尺度变化的序数,ΔL是每次增加的尺度;in, is the parameter to be evaluated, such as the permeability of the porous medium or the capillary entry pressure, i is the ordinal number of the change from the small scale to the large scale when calculating the properties of the porous medium, and ΔL is the scale of each increase;

把二维半透明多孔介质按照正方形的大网格进行剖分,对每个网格的渗透率和毛管进入压力的REV进行定量评估,然后对所有网格的REV尺度进行统计分析,确定半透明多孔介质的REV的均值。Divide the two-dimensional semi-transparent porous medium into large square grids, quantitatively evaluate the REV of the permeability and capillary entry pressure of each grid, and then perform statistical analysis on the REV scale of all grids to determine the translucency Mean REV of porous media.

进一步,步骤(5)向二维半透明多孔介质中注入DNAPL,让DNAPL在多孔介质中进行迁移,半透明多孔介质中DNAPL的饱和度SDL用光透法来测定:Further, step (5) injects DNAPL into the two-dimensional translucent porous medium, allowing DNAPL to migrate in the porous medium, and the saturation S DL of DNAPL in the translucent porous medium is measured by light transmission method:

其中,Is是二维半透明多孔介质被水完全饱和时可见光穿透之后的透射光强值,IDL是二维半透明多孔介质被DNAPL完全饱和时可见光穿透之后的透射光强值,在实验中进行测定,I是透射光强。Among them, I s is the transmitted light intensity value after the visible light penetrates when the two-dimensional translucent porous medium is completely saturated by water, and I DL is the transmitted light intensity value after the visible light penetrates when the two-dimensional translucent porous medium is completely saturated by DNAPL, Measured in the experiment, I is the transmitted light intensity.

有益效果:本发明对多孔介质建立了一种新的正四棱锥的三维微观结构模型,利用可见光微观成像技术通过可见光对半透明多孔介质的孔隙度进行准确测定,接着用多孔介质三维微观结构的模型计算出渗透率和毛管进入压力。基于对半透明多孔介质渗透率和毛管进入压力的精确测定,用相对梯度误差定量评估典型单元体(representativeelementary volume,REV)的尺度。用UTCHEM建立重非水相污染物迁移模型,以REV作为网格尺度对二维半透明多孔介质进行剖分,从而提高DNAPL迁移的模拟精度,实现对模型剖分网格的定量化确定。本方法快捷、经济、高效、精度高,与以往的多孔介质的二维微观结构模型和DNAPL模拟时的剖分网格尺度的定性确定方法相比,实现了对多孔介质性质和网格尺度的更准确的定量确定,对含水层中DNAPL迁移的精确模拟迈出了重要的一步,在对DNAPL在含水层中的迁移乃至修复过程的准确模拟和制定相应的污染物修复方案具有较强的适用性。Beneficial effects: the present invention establishes a new three-dimensional microstructure model of regular quadrangular pyramids for porous media, uses visible light microscopic imaging technology to accurately measure the porosity of translucent porous media through visible light, and then uses the model of three-dimensional microstructure of porous media Calculate the permeability and capillary entry pressure. Based on the precise measurement of the permeability and capillary entry pressure of translucent porous media, the relative gradient error is used to quantitatively evaluate the scale of representative elementary volume (REV). The migration model of heavy non-aqueous pollutants was established with UTCHEM, and the two-dimensional translucent porous medium was subdivided with REV as the grid scale, so as to improve the simulation accuracy of DNAPL migration and realize the quantitative determination of the model subdivision grid. This method is fast, economical, efficient, and high-precision. Compared with the previous two-dimensional microstructure model of porous media and the qualitative determination method of the subdivided mesh size in DNAPL simulation, it realizes the determination of the properties of porous media and the mesh size. The more accurate quantitative determination has taken an important step in the accurate simulation of DNAPL migration in aquifers, and has a strong application in the accurate simulation of DNAPL migration in aquifers and even the remediation process and the formulation of corresponding pollutant remediation programs. sex.

附图说明Description of drawings

图1为多孔介质的性质随尺度变化的理论曲线;Fig. 1 is the theoretical curve of the properties of porous media changing with the scale;

图2为实验中填充非均质半透明石英砂的二维砂箱和选取的6个用于REV评估的观测网格的位置关系图;Fig. 2 is the position relationship diagram of the two-dimensional sand box filled with heterogeneous translucent quartz sand and the six selected observation grids for REV evaluation in the experiment;

图3为多孔介质RSPM三维微观结构模型;Fig. 3 is the three-dimensional microstructure model of porous media RSPM;

图4(a)为PCE注入之前可见光穿透饱和的二维半透明石英砂的透射光强分布图像;(b)为LTM测量得到的孔隙度分布图像;(c)为多孔介质三维微观分形模型计算出的渗透率分布图像;(d)为多孔介质三维微观分形模型计算出的毛管进入压力分布图像;Figure 4(a) is the transmitted light intensity distribution image of 2D translucent quartz sand saturated with visible light before PCE injection; (b) is the porosity distribution image obtained by LTM measurement; (c) is the 3D micro-fractal model of porous media The calculated permeability distribution image; (d) the capillary entry pressure distribution image calculated for the three-dimensional micro-fractal model of porous media;

图5为6个观测网格处半透明石英砂的性质及其相对梯度误差随测量尺度的变化:(a)孔隙度;(b)孔隙度的相对梯度误差;(c)渗透率;(d)渗透率的相对梯度误差;(e)毛管进入压力;(f)毛管进入压力的相对梯度误差;Fig. 5 shows the properties of translucent quartz sand and their relative gradient errors at the six observation grids as a function of the measurement scale: (a) porosity; (b) relative gradient error of porosity; (c) permeability; (d ) relative gradient error of permeability; (e) capillary entry pressure; (f) relative gradient error of capillary entry pressure;

图6(a)半透明石英砂孔隙度的REV最小尺度的频率分布和累积频率分布;(b)半透明石英砂的孔隙度的REV最小尺度随固相颗粒平均直径的变化;(c)渗透率的REV最小尺度的频率分布和累积频率分布;(d)毛管进入压力的REV最小尺度的频率分布和累积频率分布;Fig. 6(a) Frequency distribution and cumulative frequency distribution of REV minimum scale of translucent quartz sand porosity; (b) variation of REV minimum scale of porosity of translucent quartz sand with average diameter of solid particles; (c) permeability (d) Frequency distribution and cumulative frequency distribution of REV minimum scale of capillary entry pressure;

图7为实验过程中PCE在不同时刻的饱和度SPCE分布图像:(a)t=1.44min;(b)t=22min;(c)t=58min;(d)t=80min;(e)t=418min;(f)t=756min;(g)t=1095min;(h)t=1433min;Figure 7 is the PCE saturation S PCE distribution image at different times during the experiment: (a) t=1.44min; (b) t=22min; (c) t=58min; (d) t=80min; (e) t=418min; (f) t=756min; (g) t=1095min; (h) t=1433min;

图8为使用多孔介质微观结构模型和不使用多孔介质微观结构模型模拟出的不同时候PCE的污染羽与实验所得PCE污染羽在PCE入渗阶段的对比:(a-d)Model-I,使用多孔介质微观结构模型;(e-h)Model-II,不使用多孔介质微观结构模型;Figure 8 shows the comparison between the PCE pollution plumes at different times simulated using the microstructure model of porous media and without the microstructure model of porous media and the PCE pollution plume obtained from the experiment in the PCE infiltration stage: (a-d) Model-I, using porous media Microstructural model; (e-h) Model-II, without using the porous media microstructural model;

图9为使用多孔介质微观结构模型和不使用多孔介质微观结构模型模拟出的不同时候PCE的污染羽与实验所得PCE污染羽在PCE再分部阶段的对比:(a-d)Model-I,使用多孔介质微观结构模型;(e-h)Model-II,不使用多孔介质微观结构模型;Figure 9 shows the comparison of the PCE pollution plumes at different times simulated using the porous media microstructure model and without the porous media microstructure model and the PCE pollution plume obtained from the experiment in the PCE subdivision stage: (a-d) Model-I, using porous Media microstructure model; (e-h) Model-II, without using porous media microstructure model;

图10(a)为实验与两种模型模拟出的PCE污染羽入渗距离随时间变化;(b)为两种模型模拟出的PCE污染羽垂直入渗距离与实验观测结果的对比。Figure 10(a) shows the time-dependent variation of the infiltration distance of the PCE pollution plume simulated by the experiment and the two models; (b) shows the comparison between the vertical infiltration distance of the PCE pollution plume simulated by the two models and the experimental observations.

具体实施方式Detailed ways

下面对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。The technical solutions of the present invention will be described in detail below, but the protection scope of the present invention is not limited to the embodiments.

实施例:一种基于多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,具体操作如下:Embodiment: a kind of DNAPL migration numerical simulation method based on porous medium three-dimensional microstructure model, concrete operation is as follows:

如图2所示,准备一个二维砂箱,长60cm,高45cm,厚度1.6cm,向其中填充6种不同粒径的半透明石英砂,同时设置取样针1和注射针2。填充的背景介质是F20/30目的半透明石英砂,F70/F100,F70/F80、F40/F50、F50/F70和F30/F40目的半透明石英砂填充到二维砂箱中分别作为5个低渗透性的透镜体,砂箱的顶部和底部都用F70/80目的低渗透性半透明石英砂填充薄薄的一层以防止水和PCE等从顶部和底部逸出。实验中用到的六种石英砂的性质如表1:As shown in Figure 2, prepare a two-dimensional sand box with a length of 60 cm, a height of 45 cm, and a thickness of 1.6 cm. Fill it with translucent quartz sand of 6 different particle sizes, and set the sampling needle 1 and the injection needle 2 at the same time. The filled background medium is F20/30 mesh translucent quartz sand, and F70/F100, F70/F80, F40/F50, F50/F70 and F30/F40 mesh translucent quartz sand are filled into two-dimensional sand boxes as 5 low The permeable lens body, the top and bottom of the sand box are filled with a thin layer of F70/80 purpose low-permeability translucent quartz sand to prevent water and PCE from escaping from the top and bottom. The properties of the six kinds of quartz sand used in the experiment are shown in Table 1:

表1 实验中所用的不同粒径的半透明石英砂的性质Table 1 Properties of translucent quartz sand with different particle sizes used in the experiment

去离子水从砂箱右侧进水口I-1~I-3从水平方向均匀进入砂箱中,然后从砂箱的左侧出水口E-1~E-3流出,实验中砂箱内水平方向上流速设置为0.5m/d,从而使得半透明石英砂均处于饱水状态。整个装置准备就绪后,将可见光源放置在砂箱的一侧使得可见光从砂箱一侧穿透二维半透明石英砂,在砂箱另一侧设置一台CCD相机用于接收透射光强度,如图4(a)。二维半透明石英砂的孔隙度用LTM计算测定:Deionized water enters the sand box evenly from the water inlet I-1~I-3 on the right side of the sand box from the horizontal direction, and then flows out from the water outlet E-1~E-3 on the left side of the sand box. The flow velocity in the direction is set to 0.5m/d, so that the translucent quartz sand is in a saturated state. After the whole device is ready, the visible light source is placed on one side of the sand box so that the visible light penetrates the two-dimensional translucent quartz sand from one side of the sand box, and a CCD camera is set on the other side of the sand box to receive the transmitted light intensity. Figure 4(a). The porosity of two-dimensional translucent quartz sand is determined by LTM calculation:

其中,n是半透明多孔介质的孔隙度,Is是穿透饱水的半透明多孔介质的可见光的透射光强,Io是可见光源的原始光强,C是校正可见光透射误差的参数,αs是固相的光吸收系数,ds是饱水的半透明石英砂材料中固相颗粒的平均直径,LT是半透明颗粒材料的厚度,e是欧拉常数,τs,w是固相-液相水界面的光透射率,do是孔隙的平均直径。in, n is the porosity of the semi-transparent porous medium, I s is the transmitted light intensity of visible light penetrating the water-saturated semi-transparent porous medium, I o is the original light intensity of the visible light source, C is the parameter for correcting the transmission error of visible light, α s is the light absorption coefficient of the solid phase, d s is the average diameter of the solid phase particles in the water-saturated translucent quartz sand material, L T is the thickness of the translucent granular material, e is the Euler constant, τ s, w is the solid phase - light transmittance at the liquid-water interface, d o is the average diameter of the pores.

从分形的角度,将多孔介质看做毛细管束的集合,从二维半透明石英砂中任取一个微元,其中流体路径长度为Lo,横截面积为AL,微元中直径大于或等于λ的毛细管的数目及对应的导数为:From a fractal point of view, the porous medium is regarded as a collection of capillary bundles, and a microelement is randomly selected from the two-dimensional translucent quartz sand, where the length of the fluid path is L o , the cross-sectional area is A L , and the diameter of the microelement is greater than or The number of capillaries equal to λ and the corresponding derivative are:

其中,λ是毛细管直径,Df是分形维数,δ是一个常数。where λ is the capillary diameter, D f is the fractal dimension, and δ is a constant.

流体粘度为μ,微元中毛细管束的最小和最大直径分别为λmin和λmax,微元中流体流动路径两端的压力差为ΔP,由此可基于泊肃叶方程计算出流量:The fluid viscosity is μ, the minimum and maximum diameters of the capillary bundles in the microcell are λ min and λ max respectively, and the pressure difference at both ends of the fluid flow path in the microcell is ΔP, so the flow rate can be calculated based on the Poiseuille equation:

将达西定律代入到式(4)中,设微元中毛细管束的最小直径和最大直径的比值趋近于可以得到渗透率的计算式:Darcy's law Substituted into formula (4), the ratio of the minimum diameter to the maximum diameter of the capillary bundle in the micro-element tends to be The formula for calculating the permeability can be obtained:

其中 in

接着建立多孔介质的三维微观结构模型,确定毛管进入压力。多孔介质是由堆积的固相颗粒和孔隙构成的,如图3所示,从中选出一个正四棱锥(right square pyramidmicrostructure,RSPM)的研究单元,其孔隙度和单元体积分别为:Then the three-dimensional microstructure model of porous media is established to determine the capillary entry pressure. The porous medium is composed of stacked solid phase particles and pores, as shown in Figure 3, a research unit of a right square pyramid microstructure (RSPM) is selected from it, and its porosity and unit volume are respectively:

其中,RV是介质颗粒的半径,Vr是RSPM单元的总体积,Lr是RSPM单元的棱长。Among them, R V is the radius of the medium particle, V r is the total volume of the RSPM unit, and L r is the edge length of the RSPM unit.

接着确定出RSPM单元的棱长:Then determine the edge length of the RSPM unit:

将RSPM单元内孔隙近似为一个球体,从而求出球体的直径λr1The pores in the RSPM unit are approximated as a sphere, so the diameter λ r1 of the sphere can be obtained:

其中,Vrp是RSPM单元中的孔隙体积。where Vrp is the pore volume in the RSPM cell.

RSPM单元的底面为正方形,先确定其中固相颗粒和孔隙所占的面积,把其中孔隙所占面积近似为一个圆从而计算出圆的直径λr2The bottom surface of the RSPM unit is a square, first determine the area occupied by the solid phase particles and pores, and approximate the area occupied by the pores as a circle to calculate the diameter λ r2 of the circle:

其中,Arb是RSPM单元底面的总面积,Arbs是底面正方形中固相颗粒所占面积,Arbp是底面正方形中孔隙所占面积。Among them, Arb is the total area of the bottom surface of the RSPM unit, Arbs is the area occupied by the solid phase particles in the square on the bottom surface, and Arbp is the area occupied by the pores in the square on the bottom surface.

RSPM的侧面为正三角形,通过把其中孔隙所占面积近似为圆,计算出圆的直径λr3The side of the RSPM is a regular triangle, and the diameter λ r3 of the circle is calculated by approximating the area occupied by the pores in it as a circle:

其中,Arsp是侧面正三角形中孔隙所占的面积, where Arsp is the area occupied by pores in the side equilateral triangle,

当流体在多孔介质中流动时,不仅会通过RSPM单元内的中间孔隙、RSPM底面和侧面上的孔隙,也会流过颗粒之间的空隙,因此,孔隙直径do是λr1、λr2、λr3和颗粒间空隙距离ΔLr的平均值:When the fluid flows in the porous medium, it will not only pass through the intermediate pores in the RSPM unit, the pores on the bottom and side of the RSPM, but also flow through the gaps between particles. Therefore, the pore diameter d o is λ r1 , λ r2 , The average value of λ r3 and interparticle interstitial distance ΔL r :

将单元的孔隙直径do作为其中毛细管的直径λ,就可以计算出毛管进入压力PbTaking the pore diameter d o of the cell as the capillary diameter λ, the capillary entry pressure P b can be calculated:

其中,ω=Fσcosθ,θ是流体和固体颗粒之间界面上的接触角,σ是界面上的表面张力,F是与多孔介质中毛细管形状和流体流动方向有关的参数。where ω=Fσcosθ, θ is the contact angle on the interface between the fluid and solid particles, σ is the surface tension on the interface, and F is a parameter related to the capillary shape and fluid flow direction in porous media.

用LTM和多孔介质的三维微观模型所测得的半透明石英砂的孔隙度n、渗透率k和毛管进入压力Pb分别如图4(b)-(d)所示。在REV评估中,把二维半透明石英砂剖分成30层、40列共1200个网格,网格尺寸是0.015m×0.015m。从填充的6种不同粒径的半透明石英砂中分别选取6个观测网格来观察渗透率、毛管进入压力随测量尺度的变化,其中图2中的CA属于透镜体A,CB属于透镜体B,CC属于透镜体C,CD属于透镜体D,CE属于透镜体E,CF属于背景填充的F20/30目半透明石英砂。进行REV评估时,长方体格子从每个网格的中心开始逐渐增大,计算介质性质及相对梯度误差随测量尺度的变化。The porosity n, permeability k and capillary entry pressure Pb of translucent quartz sand measured by LTM and the three-dimensional microscopic model of porous media are shown in Fig. 4( b )-(d), respectively. In the REV evaluation, the two-dimensional translucent quartz sand is divided into 30 layers and 40 columns with a total of 1200 grids, and the grid size is 0.015m×0.015m. Select 6 observation grids from the translucent quartz sand filled with 6 different particle sizes to observe the change of permeability and capillary entry pressure with the measurement scale, in which CA in Figure 2 belongs to lens A, and CB belongs to lens B, CC belongs to lens body C, CD belongs to lens body D, CE belongs to lens body E, CF belongs to F20/30 mesh translucent quartz sand filled in the background. When performing REV evaluation, the cuboid grid gradually increases from the center of each grid, and the change of medium properties and relative gradient errors with the measurement scale is calculated.

6个观测网格的孔隙度n、渗透率k和毛管进入压力Pb随着测量尺度L增加而变化的曲线,如图5(a)、(c)和(e)所示,观测网格CA、CB、CC、CD、CE和CF分别选自透镜体A、B、C、D、E和砂箱中填充的背景介质F20/30目石英砂。孔隙度n和渗透率k随测量尺度的变化呈现一种平稳的趋势,而部分毛管进入压力Pb随测量尺度变化的曲线出现递减的趋势,但是这些曲线大多是平稳的,未随测量尺度发生明显的变化,很难从这些曲线的变化中识别出多孔介质性质随测量尺度变化的稳定区间II,这使得REV尺度很难从孔隙度n、渗透率k和毛管进入压力Pb随测量尺度变化的曲线上直接识别出来。此外,不同粒径的透镜体上的观测网格所测得的性质随测量尺度变化曲线有着不同的特征。Curves of the porosity n, permeability k and capillary entry pressure P b of the six observation grids as the measurement scale L increases, as shown in Fig. 5(a), (c) and (e), the observation grid CA, CB, CC, CD, CE and CF are respectively selected from the lens body A, B, C, D, E and the background medium F20/30 mesh quartz sand filled in the sand box. The porosity n and permeability k show a steady trend with the change of the measurement scale, while the curves of partial capillary entry pressure P b with the change of the measurement scale show a decreasing trend, but most of these curves are stable and do not change with the measurement scale. Obvious changes, it is difficult to identify the stable interval II of the porous media properties with the measurement scale from the changes of these curves, which makes it difficult for the REV scale to change the porosity n, permeability k and capillary entry pressure Pb with the measurement scale can be identified directly on the curve. In addition, the curves of properties measured by observation grids on lens bodies with different particle sizes versus measurement scales have different characteristics.

基于获取多孔介质性质随测量尺度的变化曲线,接着计算出对应的相对梯度误差来使得REV平台更加明显:Based on obtaining the change curve of porous media properties with the measurement scale, the corresponding relative gradient error is then calculated to make the REV platform more obvious:

其中,是相对梯度误差,是需要评估的性质,如孔隙度n、渗透率k、毛管进入压力Pb,i是计算多孔介质性质时长方体格子从小尺度向大尺度变化的序数,ΔL是长方体格子每次增加的尺度。in, is the relative gradient error, is the property to be evaluated, such as porosity n, permeability k, and capillary entry pressure P b , i is the ordinal number of the cuboid grid changing from small scale to large scale when calculating the properties of porous media, and ΔL is the scale of each increase of cuboid grid.

如图5(b)、(d)和(f)所示,相对梯度误差使得曲线的波动更加明显:当测量尺度较小时,相对梯度误差的波动较大;随着测量尺度的增大,相对误差曲线的波动逐渐减弱,曲线也相应趋于平缓出现REV的稳定平台。在图5(b)、(d)和(f)中,粒径小的半透明石英砂的渗透率REV平台较窄,而粒径大的半透明石英砂的REV平台则较宽,当测量尺度进一步增大时,渗透率随测量尺度的变化曲线受宏观非均质性的影响重新发生波动。相对梯度误差随尺度变化曲线可以使得REV稳定区间更加显著,有利于REV的评估。但由于梯度误差随尺度变化曲线上存在大量的波动,使得准确识别REV尺度变得困难。为了平滑这种波动从而准确识别出REV的尺度,本发明中利用相对梯度误差的5点平均值来作为识别REV的标准:As shown in Figure 5(b), (d) and (f), the relative gradient error Make the fluctuation of the curve more obvious: when the measurement scale is small, the relative gradient error The fluctuation of the relative error curve is relatively large; with the increase of the measurement scale, the fluctuation of the relative error curve gradually weakens, and the curve also tends to be gentle correspondingly, and a stable platform of REV appears. In Fig. 5(b), (d) and (f), the REV platform of translucent quartz sand with small particle size is narrower, while the REV platform of translucent quartz sand with large particle size is wider. When measuring When the scale is further increased, the variation curve of permeability with measurement scale fluctuates again due to the influence of macroscopic heterogeneity. The curve of relative gradient error versus scale can make the stable interval of REV more significant, which is beneficial to the evaluation of REV. However, it is difficult to accurately identify the REV scale due to the large fluctuations in the gradient error versus scale curve. In order to smooth this fluctuation so as to accurately identify the scale of REV, the present invention utilizes the 5-point average value of the relative gradient error As a standard for identifying REV:

半透明石英砂的孔隙度n、渗透率k和毛管进入压力Pb的REV最小尺度与毛管进入压力的REV最小尺度的统计结果如图6(a)、(c)和(d)。结果表明孔隙度REV的尺度分布在0-12mm,频率接近高斯分布,与自然界中材料性质大多接近正态分布相符合;渗透率的REV最小尺度分布在0.0-9.0mm间,呈高斯分布特征;而毛管进入压力的REV最小尺度则均匀分布于0.0-15.0mm。孔隙度和渗透率的REV最小尺度的累计频率呈现一种非线性的增加趋势,而毛管进入压力的REV最小尺度则呈现一种线性的增加趋势。当累计频率超过80%时,对应的孔隙度和渗透率的REV最小尺度分别为9.0mm和8.0mm,而毛管进入压力的REV最小尺度则达到12.0mm。综合考虑渗透率和毛管进入压力的REV评估结果,实验中的二维半透明石英砂的REV尺度平均为10.0mm。另外,统计结果表明孔隙度REV最小尺度与颗粒平均直径呈现显著的正相关关系(p<0.05),如图6(b),半透明石英砂的颗粒直径越大,其孔隙度REV最小尺度的分布范围越大。The statistical results of the minimum REV scale of porosity n, permeability k and capillary entry pressure P b of translucent quartz sand and the minimum REV scale of capillary entry pressure are shown in Figure 6(a), (c) and (d). The results show that the scale distribution of porosity REV is between 0-12mm, and the frequency is close to Gaussian distribution, which is consistent with the normal distribution of most of the material properties in nature; the minimum scale distribution of REV of permeability is between 0.0-9.0mm, showing the characteristics of Gaussian distribution; The REV minimum scale of the capillary entry pressure is evenly distributed in the range of 0.0-15.0mm. The cumulative frequency of REV minimum scale for porosity and permeability shows a nonlinear increasing trend, while the REV minimum scale for capillary entry pressure shows a linear increasing trend. When the accumulative frequency exceeds 80%, the corresponding minimum REV scales of porosity and permeability are 9.0mm and 8.0mm, respectively, while the minimum REV scale of capillary entry pressure reaches 12.0mm. Considering the REV evaluation results of permeability and capillary entry pressure, the average REV scale of the two-dimensional translucent quartz sand in the experiment is 10.0 mm. In addition, statistical results show that there is a significant positive correlation between the minimum scale of porosity REV and the average particle diameter (p<0.05). The larger the distribution range.

对半透明石英砂的渗透率、毛管进入压力和相应的REV进行定量确定后,从注射针从砂箱顶部注入PCE,使其在二维半透明石英砂中进行迁移。80分钟内从砂箱的顶部向砂箱中注入40ml的染色的PCE。实验的整个过程用LTV技术对二维半透明石英砂中DNAPL的饱和度SDL进行实时测定:After quantitatively determining the permeability, capillary entry pressure, and corresponding REV of the translucent quartz sand, inject PCE from the injection needle from the top of the sand box to make it migrate in the two-dimensional translucent quartz sand. 40 ml of dyed PCE was injected into the flask from the top of the flask over 80 minutes. During the whole process of the experiment, LTV technology was used to measure the saturation S DL of DNAPL in two-dimensional translucent quartz sand in real time:

其中,IDL是二维半透明多孔介质被DNAPL完全饱和时可见光穿透之后的透射光强值,可在实验中进行测定,I是透射光强。Among them, I DL is the transmitted light intensity value after visible light penetrates when the two-dimensional translucent porous medium is completely saturated by DNAPL, which can be measured in experiments, and I is the transmitted light intensity.

实验过程中PCE在不同时候的污染羽如图7(a-h)所示。实验开始的时候,注入的PCE呈现水滴的形状在重力的作用下向下入渗,如图7(a),当PCE污染羽遇到低渗透性透镜体的时候,由于PCE无法克服透镜体的毛管进入压力因而在透镜体上累积,接着从透镜体的一侧流出继续向深部迁移,如图7(b-d)。受水平方向上的侧向水流的影响,没有PCE从透镜体C和D的右侧流出,PCE只从透镜体C和D的左侧流出。这表明PCE在多孔介质中的迁移与介质的非均质性和地下水流速密切相关,较大的非均质性使得PCE污染羽形状更加不规则。The pollution plume of PCE at different times during the experiment is shown in Fig. 7(a-h). At the beginning of the experiment, the injected PCE was in the shape of water droplets and infiltrated downwards under the action of gravity, as shown in Figure 7(a). When the PCE pollution plume encountered the low-permeability lens, the PCE could not overcome the pressure of the lens. The capillary entry pressure thus accumulates on the lens body, and then flows out from one side of the lens body and continues to migrate to the deep part, as shown in Figure 7(b-d). Affected by the lateral water flow in the horizontal direction, no PCE flows out from the right side of lens bodies C and D, and PCE only flows out from the left side of lens body C and D. This indicates that the migration of PCE in porous media is closely related to the heterogeneity of the media and the groundwater flow rate, and the larger heterogeneity makes the shape of the PCE pollution plume more irregular.

基于REV的评估结果用UTCHEM建立PCE迁移的数值模型。把REV尺度10.0mm作为数值模型的剖分的网格尺度,对二维半透明石英砂进行剖分,孔隙度、渗透率和毛管进入压力的也转化为相应尺度的数据输入到UTCHEM中。为了进一步证明基于新的多孔介质三维微观结构模型对PCE迁移模拟的效果,同时用以前的模拟方法对PCE迁移进行模拟,从而比较模拟效果。Model-I是使用新的多孔介质三维微观结构模型的PCE迁移的数值模拟模型,Model-II是不使用新的多孔介质三维微观结构模型的PCE迁移的数值模拟模型。在Model-I和Model-II中,PCE的注入用注射井来模拟,在0~80min内把40ml的PCE注入到二维半透明砂箱中,注入速率为0.5ml/min。顶部和底部都设为零通量边界,左侧和右侧设置为压力边界,使得水流从右向左水平流动保持0.5m/d的流速。孔隙度、渗透率和毛管进入压力均转化为相应尺度的数据输入到三个模型中。PCE的整个迁移过程分为三个阶段:校正期0~22min,检验期22~58min,验证期58~80min。经过校正的与PCE和水相关的其他参数列于表1中。Based on the evaluation results of REV, a numerical model of PCE migration was established with UTCHEM. Taking the REV scale of 10.0mm as the grid scale of the numerical model, the two-dimensional translucent quartz sand is subdivided, and the porosity, permeability and capillary entry pressure are also converted into corresponding scale data and input into UTCHEM. In order to further prove the effect of the PCE migration simulation based on the new porous media three-dimensional microstructure model, the previous simulation method was used to simulate the PCE migration to compare the simulation effect. Model-I is a numerical simulation model of PCE migration using a new 3D microstructural model of porous media, and Model-II is a numerical simulation model of PCE migration without using a new 3D microstructural model of porous media. In Model-I and Model-II, the injection of PCE is simulated by the injection well, and 40ml of PCE is injected into the two-dimensional translucent sand box within 0-80min, and the injection rate is 0.5ml/min. The top and bottom are set as zero-flux boundaries, and the left and right sides are set as pressure boundaries, so that the water flows horizontally from right to left to maintain a flow rate of 0.5m/d. Porosity, permeability and capillary entry pressure are converted into corresponding scale data and input into the three models. The whole migration process of PCE is divided into three stages: the correction period is 0-22 minutes, the test period is 22-58 minutes, and the verification period is 58-80 minutes. The corrected other parameters related to PCE and water are listed in Table 1.

图8(a-h)为Model-I和Model-II对PCE入渗阶段迁移的模拟结果与实验结果的对比,图9(a-h)为Model-I和Model-II对PCE再分布阶段的模拟结果与实验观测所得PCE污染羽的对比。所有模型的模拟结果均显示,PCE都从注入点向下进行入渗,碰到低渗透性透镜体时都在其上方堆积,基本与实验结果相符。然而,Model-II模拟的PCE入渗过程中,PCE垂向入渗的速度比实验观测所得的结果更慢,如图9(e-h),说明Model-II的误差较大。而Model-I模拟出的PCE迁移速度与实验观测的结果相近,PCE污染羽的大小也与实验相符。对PCE的污染羽进行总体比较,在整个模拟过程中,Model-I所得的模拟结果与实验相符合的程度最高。Figure 8(a-h) is the comparison between the simulation results of Model-I and Model-II on the migration of PCE in the infiltration stage and the experimental results, and Figure 9(a-h) is the simulation results and experimental results of Model-I and Model-II on the PCE redistribution stage Comparison of PCE pollution plumes obtained from experimental observations. The simulation results of all models show that PCE infiltrates downward from the injection point and accumulates on top of the low-permeability lens, which is basically consistent with the experimental results. However, in the process of PCE infiltration simulated by Model-II, the vertical infiltration speed of PCE is slower than that obtained by experimental observation, as shown in Fig. 9(e-h), which shows that the error of Model-II is relatively large. However, the PCE migration speed simulated by Model-I is similar to the experimental observation, and the size of the PCE pollution plume is also consistent with the experimental results. An overall comparison of the PCE pollution plume shows that the simulation results obtained by Model-I are in the highest agreement with the experiment in the whole simulation process.

进一步对三种模型的模拟结果进行定量比较如图10(a)(b)。图10a显示了实验和Model-I、Model-II模拟所得的PCE污染羽的垂向入渗距离随时间的变化。在PCE注入到砂箱的最初的几分钟之内,PCE污染羽的垂向入渗距离随时间快速增加,当PCE污染羽碰到砂箱中的透镜体的时候,PCE污染羽垂向入渗的速度变得缓慢。t=4~12min时,PCE污染羽到达透镜体A的上部,随时间的推移,PCE污染羽在t=11.8~31.8min和t=34.3~54.4min时分别到达透镜体B和E的上部。最后,PCE污染羽到达砂箱底部并进行堆积。Model-I的平均绝对误差MAE、均方根误差RMSE和决定系数R2分别为1.63cm,2.60cm和0.96,而Model-II的平均绝对误差MAE、均方根误差RMSE和决定系数R2分别为2.00cm、3.21cm和0.94,说明不使用多孔介质的三维微观结构模型时,Model-II对PCE在多孔介质中迁移的数值模拟会出现更大的误差。总的来说,使用了多孔介质三维微观结构模型的Model-I的模拟结果更加符合实验观测的结果。Further quantitative comparison of the simulation results of the three models is shown in Figure 10(a)(b). Figure 10a shows the vertical infiltration distance of the PCE plume as a function of time obtained from experiments and Model-I and Model-II simulations. In the first few minutes when PCE is injected into the sand box, the vertical infiltration distance of the PCE pollution plume increases rapidly with time. When the PCE pollution plume hits the lens in the sand box, the vertical infiltration speed becomes slow. When t=4~12min, the PCE pollution plume reaches the upper part of the lens body A, and as time goes by, the PCE pollution plume reaches the upper part of the lens body B and E respectively at t=11.8~31.8min and t=34.3~54.4min. Finally, the PCE contamination plume reaches the bottom of the sand box and accumulates. The mean absolute error MAE, root mean square error RMSE and coefficient of determination R2 of Model-I are 1.63cm, 2.60cm and 0.96 respectively, while the mean absolute error MAE, root mean square error RMSE and coefficient of determination R2 of Model - II are respectively are 2.00cm, 3.21cm and 0.94, indicating that when the three-dimensional microstructure model of porous media is not used, the numerical simulation of the migration of PCE in porous media by Model-II will have greater errors. In general, the simulation results of Model-I using the three-dimensional microstructure model of porous media are more in line with the experimental observations.

此外,对PCE污染羽质心与注入点之间垂向距离、PCE污染羽在水平方向上的二阶矩和PCE污染羽在垂直方向上的二阶矩,实验结果和三种模型的模拟结果都进行了对比,见表2、3:In addition, for the vertical distance between the centroid of the PCE pollution plume and the injection point, the second-order moment of the PCE pollution plume in the horizontal direction, and the second-order moment of the PCE pollution plume in the vertical direction, the experimental results and the simulation results of the three models are consistent. For comparison, see Tables 2 and 3:

表2 实验和两种模型所得PCE污染羽质心与注入点之间垂向距离随时间的变化Table 2 The vertical distance between the centroid of the PCE pollution plume and the injection point as a function of time obtained from experiments and two models

VDIPa,PCE污染羽质心与注入点之间垂向距离VDIP a , the vertical distance between the centroid of the PCE pollution plume and the injection point

AEb,绝对误差,负号表示比观测值小,正号表示高于实际观测值AE b , absolute error, negative sign means smaller than the observed value, positive sign means higher than the actual observed value

REc,相对误差,等于绝对误差与实际观测值的比值RE c , the relative error, is equal to the ratio of the absolute error to the actual observed value

表3 实验和两种模型所得PCE污染羽在水平方向上和在垂直方向上的二阶矩随时间的变化Table 3 The horizontal and vertical second moments of the PCE pollution plume obtained from the experiment and the two models vary with time

SMHDa,水平方向上污染羽的二阶矩SMHD a , the second moment of the pollution plume in the horizontal direction

SMVDb,垂向上污染羽的二阶矩SMVD b , the second moment of the vertical pollution plume

表2中,Model-II在PCE入渗的早期(t=1.44min)时的相对误差超过了30%,相比较来看,Model-I的相对误差则较小,在整个模拟期内变化不大,都较低。对PCE污染羽质心与注入点之间垂向距离的比较结果表明,Model-I的模拟结果与实验最符合。In Table 2, the relative error of Model-II in the early stage of PCE infiltration (t=1.44min) exceeds 30%. In comparison, the relative error of Model-I is smaller and does not change during the entire simulation period. Big, both lower. The comparison of the vertical distance between the centroid of the PCE pollution plume and the injection point shows that the simulation results of Model-I are in good agreement with the experiment.

对表3中的PCE污染羽在水平方向上的二阶矩来说,Model-I与实验观测结果相符,其相对误差始终低于Model-II的相对误差,因此,Model-I获得的PCE污染羽在水平方向上的二阶矩最准确。对于PCE污染羽在垂直方向上的二阶矩,Model-I和Model-II的最大相对误差分别为68.42%、74.75%,这些最大的相对误差均出现在校正期内,在之后的检验期和验证期中,相对误差逐渐降低。在整个模拟期内,Model-I所得PCE污染羽在垂直方向上的二阶矩的相对误差最小。综合表2-3对PCE污染羽一阶矩和二阶矩的比较,Model-I的模拟结果与实验最为吻合,表明基于多孔介质的三维微观结构模型能准确刻画多孔介质的微观结构特性,从而定量测出多孔介质的渗透率和毛管进入压力,显著降低模拟的误差,提高对DNAPL在多孔介质中迁移的模拟精度。For the second moment of the PCE pollution plume in the horizontal direction in Table 3, Model-I is consistent with the experimental observations, and its relative error is always lower than that of Model-II. Therefore, the PCE pollution obtained by Model-I The second moment of the feather in the horizontal direction is most accurate. For the second moment of the PCE pollution plume in the vertical direction, the maximum relative errors of Model-I and Model-II are 68.42% and 74.75%, respectively. During the verification period, the relative error gradually decreased. During the whole simulation period, the relative error of the second moment of the PCE pollution plume obtained by Model-I in the vertical direction is the smallest. Based on the comparison of the first-order moments and second-order moments of the PCE pollution plume in Table 2-3, the simulation results of Model-I are in good agreement with the experiments, indicating that the 3D microstructure model based on porous media can accurately describe the microstructural characteristics of porous media, thereby Quantitatively measure the permeability and capillary entry pressure of porous media, significantly reduce the error of simulation, and improve the simulation accuracy of DNAPL migration in porous media.

本方法针对现有多孔介质微观结构研究和DNAPL迁移数值模型的网格剖分方法的局限性,基于分形方法提出了一种新的多孔介质三维微观结构模型,结合可见光微观成像技术(light transmission micro-tomography,LTM),可以实现对半透明多孔介质的孔隙度、渗透率和毛管进入压力的快捷、经济、高效的定量化测定。接着通过相对梯度误差来定量评估多孔介质的REV,用REV尺度对多孔介质进行剖分。最后基于多孔介质的三维微观结构模型和REV的评估,用UTCHEM实现对DNAPL在多孔介质中的迁移进行准确模拟。通过本方法,可以更准确地定量测定半透明多孔介质的渗透率、毛管进入压力等性质,并定量确定DNAPL在半透明材料内迁移的数值模型的网格剖分尺度,对研究多孔介质微观结构的认识和准确模拟DNAPL在含水层中的迁移及修复具有重要作用。Aiming at the limitations of the existing research on the microstructure of porous media and the meshing method of the numerical model of DNAPL migration, this method proposes a new three-dimensional microstructure model of porous media based on the fractal method, combined with the visible light microscopic imaging technology (light transmission micro -tomography, LTM), can realize the quick, economical and efficient quantitative determination of the porosity, permeability and capillary entry pressure of translucent porous media. Then, the REV of the porous medium is quantitatively evaluated by the relative gradient error, and the porous medium is segmented with the REV scale. Finally, based on the three-dimensional microstructure model of porous media and the evaluation of REV, the migration of DNAPL in porous media is accurately simulated with UTCHEM. Through this method, properties such as permeability and capillary entry pressure of translucent porous media can be quantitatively determined more accurately, and the grid division scale of the numerical model for the migration of DNAPL in translucent materials can be determined quantitatively, which is useful for studying the microstructure of porous media. The understanding and accurate simulation of DNAPL migration and repair in aquifers play an important role.

Claims (6)

1.一种基于多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,其特征在于:包括以下步骤:1. A DNAPL migration numerical simulation method based on porous media three-dimensional microstructure model, is characterized in that: comprise the following steps: (1)用可见光微观成像技术扫描半透明多孔介质,精确测量出多孔介质的孔隙度;(1) Use visible light microscopic imaging technology to scan translucent porous media, and accurately measure the porosity of porous media; (2)对多孔介质微观结构建立三维正四棱锥的微观分形模型,通过微观分形模型计算出渗透率;(2) Establish a micro-fractal model of a three-dimensional regular pyramid for the micro-structure of porous media, and calculate the permeability through the micro-fractal model; (3)用多孔介质的微观分形模型定量确定平均孔隙直径,从而根据杨-拉普拉斯方程计算出多孔介质的毛管进入压力;(3) Quantitatively determine the average pore diameter with the microscopic fractal model of the porous medium, thereby calculating the capillary entry pressure of the porous medium according to the Young-Laplace equation; (4)对多孔介质的渗透率和毛管进入压力的REV尺度进行定量评估;(4) Quantitative evaluation of the REV scale for the permeability of porous media and the capillary entry pressure; (5)DNAPL注入半透明多孔介质进行迁移,用光透法监测DNAPL饱和度的分布;(5) DNAPL is injected into a translucent porous medium for migration, and the distribution of DNAPL saturation is monitored by the light transmission method; (6)用多组分、多相流模拟程序UTCHEM建立数值模型模拟DNAPL的迁移,以REV的尺度为网格的尺度对二维半透明多孔介质进行剖分,把基于多孔介质三维微观结构模型定量确定的孔隙度、渗透率和毛管进入压力的数据转化成REV尺度的数据输入到UTCHEM中,对DNAPL在多孔介质中的迁移进行模拟。(6) Use the multi-component and multi-phase flow simulation program UTCHEM to establish a numerical model to simulate the migration of DNAPL, use the REV scale as the grid scale to subdivide the two-dimensional translucent porous medium, and use the three-dimensional microstructure model based on the porous medium The quantitatively determined data of porosity, permeability and capillary entry pressure were converted into REV-scale data and input into UTCHEM to simulate the migration of DNAPL in porous media. 2.根据权利要求1所述的多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,其特征在于:步骤(1)将半透明多孔介质填入二维砂箱中饱水,可见光源从一侧照射砂箱,CCD相机在另一侧接收穿透二维半透明多孔介质的透射光信号,用可见光微观成像技术测量每个像素上半透明多孔介质的孔隙度:2. the DNAPL migration numerical simulation method of porous medium three-dimensional microstructure model according to claim 1, is characterized in that: step (1) fills translucent porous medium in the two-dimensional sand box and is saturated with water, and visible light source is irradiated from one side On the other side of the sand box, the CCD camera receives the transmitted light signal that penetrates the two-dimensional translucent porous medium, and uses visible light microscopic imaging technology to measure the porosity of the translucent porous medium on each pixel: <mrow> <mi>n</mi> <mo>=</mo> <mfrac> <mrow> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mi>s</mi> </msub> <mo>-</mo> <mi>&amp;beta;</mi> </mrow> <mi>&amp;gamma;</mi> </mfrac> </mrow> <mrow><mi>n</mi><mo>=</mo><mfrac><mrow><mi>ln</mi><mi></mi><msub><mi>I</mi><mi>s</mi></msub><mo>-</mo><mi>&amp;beta;</mi></mrow><mi>&amp;gamma;</mi></mfrac></mrow> 其中,n是半透明多孔介质的孔隙度,Is是穿透饱水的半透明多孔介质的可见光的透射光强,Io是可见光源的原始光强,C是校正可见光透射误差的参数,αs是固相的光吸收系数,ds是饱水的半透明石英砂材料中固相颗粒的平均直径,LT是半透明颗粒材料的厚度,e是欧拉常数,τs,w,是固相-液相水界面的光透射率,do是孔隙的平均直径。in, n is the porosity of the semi-transparent porous medium, I s is the transmitted light intensity of visible light penetrating the water-saturated semi-transparent porous medium, I o is the original light intensity of the visible light source, C is the parameter for correcting the transmission error of visible light, α s is the light absorption coefficient of the solid phase, d s is the average diameter of the solid phase particles in the water-saturated translucent quartz sand material, L T is the thickness of the translucent granular material, e is the Euler constant, τ s, w , are the solid Light transmittance at the phase-liquid water interface, d o is the average diameter of the pores. 3.根据权利要求1所述的多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,其特征在于:步骤(2)把多孔介质看做毛管束的集合,从中任取一个流体路径长为L、横截面积为AL的微元,多孔介质中流体的粘度为μ,微元中毛管的数量为3. the DNAPL migration numerical simulation method of porous medium three-dimensional microstructure model according to claim 1, is characterized in that: step (2) regards porous medium as the collection of capillary bundle, therefrom arbitrarily gets a fluid path length and is L, The microelement with cross-sectional area AL, the viscosity of the fluid in the porous medium is μ, and the number of capillaries in the microelement is <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>L</mi> <mo>&amp;GreaterEqual;</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>A</mi> <mi>L</mi> </msub> <msup> <mi>&amp;delta;&amp;lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>D</mi> <mi>f</mi> </msub> </mrow> </msup> </mrow> <mrow><mi>N</mi><mrow><mo>(</mo><mi>L</mi><mo>&amp;GreaterEqual;</mo><mi>&amp;lambda;</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>A</mi><mi>L</mi></msub><msup><mi>&amp;delta;&amp;lambda;</mi><mrow><mo>-</mo><msub><mi>D</mi><mi>f</mi></msub></mrow></msup></mrow> <mrow> <mo>-</mo> <msub> <mi>d</mi> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>L</mi> <mo>&amp;GreaterEqual;</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>&amp;delta;D</mi> <mi>f</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>D</mi> <mi>f</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>d</mi> <mi>&amp;lambda;</mi> </msub> </mrow> <mrow><mo>-</mo><msub><mi>d</mi><mrow><mi>N</mi><mrow><mo>(</mo><mi>L</mi><mo>&amp;GreaterEqual;</mo><mi>&amp;lambda;</mi><mo>)</mo></mrow></mrow></msub><mo>=</mo><msub><mi>A</mi><mi>L</mi></msub><msub><mi>&amp;delta;D</mi><mi>f</mi></msub><msup><mi>&amp;lambda;</mi><mrow><mo>-</mo><msub><mi>D</mi><mi>f</mi></msub><mo>-</mo><mn>1</mn></mrow></msup><msub><mi>d</mi><mi>&amp;lambda;</mi></msub></mrow> 其中,N(L≥λ)表示微元中直径大于λ的毛管的数量,-dN(L≥λ)是N(L≥λ)的导数,λ是多孔介质中毛管的直径,δ是一个常数参数,Df是分形维数;Among them, N(L≥λ) represents the number of capillaries with a diameter larger than λ in the microelement, -d N(L≥λ) is the derivative of N(L≥λ), λ is the diameter of capillaries in porous media, and δ is a constant parameter, D f is the fractal dimension; 根据泊肃叶方程计算出流量:The flow is calculated according to Poiseuille's equation: <mrow> <mi>Q</mi> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>&amp;lambda;</mi> <mi>min</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mi>max</mi> </msub> </msubsup> <msub> <mi>d</mi> <mi>p</mi> </msub> <mo>=</mo> <msubsup> <mo>&amp;Integral;</mo> <msub> <mi>&amp;lambda;</mi> <mi>min</mi> </msub> <msub> <mi>&amp;lambda;</mi> <mi>max</mi> </msub> </msubsup> <mfrac> <mrow> <mi>&amp;pi;</mi> <msup> <mrow> <mo>(</mo> <mfrac> <mi>&amp;lambda;</mi> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>4</mn> </msup> <mi>&amp;Delta;</mi> <mi>P</mi> </mrow> <mrow> <mn>8</mn> <mi>&amp;mu;</mi> <mi>L</mi> </mrow> </mfrac> <msub> <mi>A</mi> <mi>L</mi> </msub> <msub> <mi>&amp;delta;D</mi> <mi>L</mi> </msub> <msup> <mi>&amp;lambda;</mi> <mrow> <mo>-</mo> <msub> <mi>D</mi> <mi>f</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>d</mi> <mi>&amp;lambda;</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;pi;&amp;delta;D</mi> <mi>f</mi> </msub> <msub> <mi>A</mi> <mi>L</mi> </msub> <mi>&amp;Delta;</mi> <mi>P</mi> </mrow> <mrow> <mn>128</mn> <mi>&amp;mu;</mi> <mi>L</mi> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mrow> <mo>(</mo> <msubsup> <mi>&amp;lambda;</mi> <mi>max</mi> <mrow> <mn>4</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>f</mi> </msub> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;lambda;</mi> <mi>min</mi> <mrow> <mn>4</mn> <mo>-</mo> <msub> <mi>D</mi> <mi>f</mi> </msub> </mrow> </msubsup> <mo>)</mo> </mrow> </mrow> <mrow><mi>Q</mi><mo>=</mo><msubsup><mo>&amp;Integral;</mo><msub><mi>&amp;lambda;</mi><mi>min</mi></msub><msub><mi>&amp;lambda;</mi><mi>max</mi></msub></msubsup><msub><mi>d</mi><mi>p</mi></msub><mo>=</mo><msubsup><mo>&amp;Integral;</mo><msub><mi>&amp;lambda;</mi><mi>min</mi></msub><msub><mi>&amp;lambda;</mi><mi>max</mi></msub></msubsup><mfrac><mrow><mi>&amp;pi;</mi><msup><mrow><mo>(</mo><mfrac><mi>&amp;lambda;</mi><mn>2</mn></mfrac><mo>)</mo></mrow><mn>4</mn></msup><mi>&amp;Delta;</mi><mi>P</mi></mrow><mrow><mn>8</mn><mi>&amp;mu;</mi><mi>L</mi></mrow></mfrac><msub><mi>A</mi><mi>L</mi></msub><msub><mi>&amp;delta;D</mi><mi>L</mi></msub><msup><mi>&amp;lambda;</mi><mrow><mo>-</mo><msub><mi>D</mi><mi>f</mi></msub><mo>-</mo><mn>1</mn></mrow></msup><msub><mi>d</mi><mi>&amp;lambda;</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>&amp;pi;&amp;delta;D</mi><mi>f</mi></msub><msub><mi>A</mi><mi>L</mi></msub><mi>&amp;Delta;</mi><mi>P</mi></mrow><mrow><mn>128</mn><mi>&amp;mu;</mi><mi>L</mi><mrow><mo>(</mo><mn>4</mn><mo>-</mo><msub><mi>D</mi><mi>f</mi></msub><mo>)</mo></mrow></mrow></mfrac><mrow><mo>(</mo><msubsup><mi>&amp;lambda;</mi><mi>max</mi><mrow><mn>4</mn><mo>-</mo><msub><mi>D</mi><mi>f</mi></msub></mrow></msubsup><mo>-</mo><msubsup><mi>&amp;lambda;</mi><mi>min</mi><mrow><mn>4</mn><mo>-</mo><msub><mi>D</mi><mi>f</mi></msub></mrow></msubsup><mo>)</mo></mrow></mrow> 其中,q表示微元中毛管的流量,λmin是毛管的最小直径,λmax是毛管的最大直径,ΔP为微元中流体的流动路径两端的压力差;与计算多孔介质中流体流量的达西定律结合,毛管的最小直径与毛管的最大直径的比值趋近于0,可得:Among them, q represents the flow rate of the capillary in the micro-element, λ min is the minimum diameter of the capillary, λ max is the maximum diameter of the capillary, and ΔP is the pressure difference at both ends of the flow path of the fluid in the micro-element; west law Combined, the ratio of the smallest diameter of the capillary to the largest diameter of the capillary tends to 0, we can get: 其中,k为渗透率, where k is the permeability, 4.根据权利要求1所述的多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,其特征在于:步骤(3)从多孔介质微观结构中选择一个正四棱锥的研究单元,其孔隙度和单元体积分别为:4. the DNAPL migration numerical simulation method of porous medium three-dimensional microstructure model according to claim 1 is characterized in that: step (3) selects the research unit of a regular quadrangular pyramid from porous medium microstructure, its porosity and unit volume They are: <mrow> <mi>n</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>r</mi> </msub> <mo>-</mo> <mfrac> <mn>4</mn> <mn>9</mn> </mfrac> <msubsup> <mi>&amp;pi;R</mi> <mi>v</mi> <mn>3</mn> </msubsup> </mrow> <msub> <mi>V</mi> <mi>r</mi> </msub> </mfrac> </mrow> <mrow><mi>n</mi><mo>=</mo><mfrac><mrow><msub><mi>V</mi><mi>r</mi></msub><mo>-</mo><mfrac><mn>4</mn><mn>9</mn></mfrac><msubsup><mi>&amp;pi;R</mi><mi>v</mi>mi><mn>3</mn></msubsup></mrow><msub><mi>V</mi><mi>r</mi></msub></mfrac></mrow> <mrow> <msub> <mi>V</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <msubsup> <mi>&amp;pi;R</mi> <mi>v</mi> <mn>3</mn> </msubsup> </mrow> <mrow> <mn>9</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><msub><mi>V</mi><mi>r</mi></msub><mo>=</mo><mfrac><mrow><mn>4</mn><msubsup><mi>&amp;pi;R</mi><mi>v</mi><mn>3</mn></msubsup></mrow><mrow><mn>9</mn><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mrow> 其中,Vr是正四棱锥研究单元的单元体积,Rv是多孔介质固相颗粒的半径,Lr是正四棱锥研究单元的边长;Among them, V r is the unit volume of the regular pyramid research unit, R v is the radius of the solid phase particle in the porous medium, L r is the side length of the regular square pyramid research unit; 正四棱锥研究单元的边长和其中的孔隙体积为:The side length and the pore volume of the research unit of the regular pyramid are: <mrow> <msub> <mi>V</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <msqrt> <mn>2</mn> </msqrt> <mn>6</mn> </mfrac> <msubsup> <mi>L</mi> <mi>r</mi> <mn>3</mn> </msubsup> </mrow> <mrow><msub><mi>V</mi><mi>r</mi></msub><mo>=</mo><mfrac><msqrt><mn>2</mn></msqrt><mn>6</mn></mfrac><msubsup><mi>L</mi><mi>r</mi><mn>3</mn></msubsup></mrow> <mrow> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mroot> <mfrac> <mrow> <mn>8</mn> <mi>&amp;pi;</mi> </mrow> <mrow> <mn>3</mn> <msqrt> <mn>2</mn> </msqrt> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mn>3</mn> </mroot> </mrow> <mrow><msub><mi>L</mi><mi>r</mi></msub><mo>=</mo><msub><mi>R</mi><mi>v</mi></msub><mroot><mfrac><mrow><mn>8</mn><mi>&amp;pi;</mi></mrow><mrow><mn>3</mn><msqrt><mn>2</mn></msqrt><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac><mn>3</mn></mroot></mrow> <mrow> <msub> <mi>V</mi> <mrow> <mi>r</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>V</mi> <mi>r</mi> </msub> <mo>-</mo> <mfrac> <mn>4</mn> <mn>9</mn> </mfrac> <msubsup> <mi>&amp;pi;R</mi> <mi>v</mi> <mn>3</mn> </msubsup> <mo>=</mo> <mfrac> <mrow> <mn>4</mn> <msubsup> <mi>&amp;pi;R</mi> <mi>v</mi> <mn>3</mn> </msubsup> <mi>n</mi> </mrow> <mrow> <mn>9</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mrow><msub><mi>V</mi><mrow><mi>r</mi><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>V</mi><mi>r</mi></msub><mo>-</mo><mfrac><mn>4</mn><mn>9</mn></mfrac><msubsup><mi>&amp;pi;R</mi><mi>v</mi><mn>3</mn></msubsup><mo>=</mo><mfrac><mrow><mn>4</mn><msubsup><mi>&amp;pi;R</mi><mi>v</mi><mn>3</mn></msubsup><mi>n</mi></mrow><mrow><mn>9</mn><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mrow> 其中,Vrp是正四棱锥研究单元中的孔隙体积;where V rp is the pore volume in the research unit of the regular pyramid; 把正四棱锥研究单元里的孔隙近似为一个球体,从而计算出球体的直径λr1Approximate the pores in the research unit of the regular pyramid as a sphere, and thus calculate the diameter λ r1 of the sphere: <mrow> <msub> <mi>V</mi> <mrow> <mi>r</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> <mi>&amp;pi;</mi> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>1</mn> </mrow> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>3</mn> </msup> </mrow> <mrow><msub><mi>V</mi><mrow><mi>r</mi><mi>p</mi></mrow></msub><mo>=</mo><mfrac><mn>4</mn><mn>3</mn></mfrac><mi>&amp;pi;</mi><msup><mrow><mo>(</mo><mfrac><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>1</mn></mrow></msub><mn>2</mn></mfrac><mo>)</mo></mrow><mn>3</mn></msup></mrow> <mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>v</mi> </msub> <mroot> <mfrac> <mi>n</mi> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mn>3</mn> </mroot> </mrow> <mrow><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>1</mn></mrow></msub><mo>=</mo><mn>2</mn><msub><mi>R</mi><mi>v</mi></msub><mroot><mfrac><mi>n</mi><mrow><mn>3</mn><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac><mn>3</mn></mroot></mrow> 正四棱锥研究单元底部为正方形,其对应的总面积及孔隙面积分别为:The bottom of the regular pyramid research unit is a square, and its corresponding total area and pore area are respectively: <mrow> <msub> <mi>A</mi> <mrow> <mi>r</mi> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>L</mi> <mi>r</mi> <mn>2</mn> </msubsup> </mrow> <mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>b</mi></mrow></msub><mo>=</mo><msubsup><mi>L</mi><mi>r</mi><mn>2</mn></msubsup></mrow> <mrow> <msub> <mi>A</mi> <mrow> <mi>r</mi> <mi>b</mi> <mi>s</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>&amp;pi;R</mi> <mi>v</mi> <mn>2</mn> </msubsup> </mrow> <mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>b</mi><mi>s</mi></mrow></msub><mo>=</mo><msubsup><mi>&amp;pi;R</mi><mi>v</mi><mn>2</mn></msubsup></mrow> <mrow> <msub> <mi>A</mi> <mrow> <mi>r</mi> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>L</mi> <mi>r</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;pi;R</mi> <mi>v</mi> <mn>2</mn> </msubsup> </mrow> <mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>b</mi><mi>p</mi></mrow></msub><mo>=</mo><msubsup><mi>L</mi><mi>r</mi><mn>2</mn></msubsup><mo>-</mo><msubsup><mi>&amp;pi;R</mi><mi>v</mi><mn>2</mn></msubsup></mrow> 其中,Arb为底面正方形的总体积,Arbs为固相所占的面积,Arbp为孔隙所占的面积;Among them, Arb is the total volume of the bottom square, Arbs is the area occupied by the solid phase, and Arbp is the area occupied by the pores; 将底面正方形中孔隙所占面积近似为一个圆,并计算圆的直径λr2Approximate the area occupied by the pores in the bottom square as a circle, and calculate the diameter λ r2 of the circle: <mrow> <msub> <mi>A</mi> <mrow> <mi>r</mi> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mi>&amp;pi;</mi> <msup> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow><msub><mi>A</mi><mrow><mi>r</mi><mi>b</mi><mi>p</mi></mrow></msub><mo>=</mo><mi>&amp;pi;</mi><msup><mrow><mo>(</mo><mfrac><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>2</mn></mrow></msub><mn>2</mn></mfrac><mo>)</mo></mrow><mn>2</mn></msup></mrow> <mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>A</mi> <mrow> <mi>r</mi> <mi>b</mi> <mi>p</mi> </mrow> </msub> <mi>&amp;pi;</mi> </mfrac> </msqrt> </mrow> <mrow><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>2</mn></mrow></msub><mo>=</mo><mn>2</mn><msqrt><mfrac><msub><mi>A</mi><mrow><mi>r</mi><mi>b</mi><mi>p</mi></mrow></msub><mi>&amp;pi;</mi></mfrac></msqrt></mrow> 同理,正四棱锥研究单元的侧面为三角形,把孔隙所占面积也近似为一个圆,圆的直径λr3为:In the same way, the side of the regular pyramid research unit is a triangle, and the area occupied by the pores is also approximated as a circle, and the diameter λ r3 of the circle is: <mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msqrt> <mfrac> <msub> <mi>A</mi> <mrow> <mi>r</mi> <mi>s</mi> <mi>p</mi> </mrow> </msub> <mi>&amp;pi;</mi> </mfrac> </msqrt> </mrow> <mrow><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>3</mn></mrow></msub><mo>=</mo><mn>2</mn><msqrt><mfrac><msub><mi>A</mi><mrow><mi>r</mi><mi>s</mi><mi>p</mi></mrow></msub><mi>&amp;pi;</mi></mfrac></msqrt></mrow> 其中,Arsp是正四棱锥研究单元侧面的正三角形中孔隙面积, Among them, A rsp is the pore area of the regular triangle on the side of the regular pyramid research unit, 正四棱锥研究单元中,固相颗粒间的空隙的距离ΔLr为:In the regular quadrangular pyramid research unit, the distance ΔL r of the gap between solid phase particles is: <mrow> <msub> <mi>&amp;Delta;L</mi> <mi>r</mi> </msub> <mo>=</mo> <msub> <mi>L</mi> <mi>r</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>R</mi> <mi>v</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mroot> <mfrac> <mrow> <mn>8</mn> <mi>&amp;pi;</mi> </mrow> <mrow> <mn>3</mn> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>n</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mn>3</mn> </mroot> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;Delta;L</mi><mi>r</mi></msub><mo>=</mo><msub><mi>L</mi><mi>r</mi></msub><mo>-</mo><mn>2</mn><msub><mi>R</mi><mi>v</mi></msub><mo>=</mo><msub><mi>R</mi><mi>v</mi></msub><mrow><mo>(</mo><mroot><mfrac><mrow><mn>8</mn><mi>&amp;pi;</mi></mrow><mrow><mn>3</mn><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac><mn>3</mn></mroot><mo>-</mo><mn>2</mn><mo>)</mo></mrow></mrow> 当流体在多孔介质中流动时,不仅会通过单元内的中间孔隙、底面和侧面的孔隙,也会流过颗粒之间的空隙,因此,孔隙直径do是λr1、λr2、λr3和颗粒间空隙距离ΔLr的平均值:When the fluid flows in the porous medium, it will not only pass through the middle pores, bottom and side pores in the unit, but also flow through the gaps between particles. Therefore, the pore diameter d o is λ r1 , λ r2 , λ r3 and The mean value of the interparticle interstitial distance ΔL r : <mrow> <msub> <mi>d</mi> <mi>o</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>r</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;L</mi> <mi>r</mi> </msub> </mrow> <mn>4</mn> </mfrac> </mrow> <mrow><msub><mi>d</mi><mi>o</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>2</mn></mrow></msub><mo>+</mo><msub><mi>&amp;lambda;</mi><mrow><mi>r</mi><mn>3</mn></mrow></msub><mo>+</mo><msub><mi>&amp;Delta;L</mi><mi>r</mi></msub></mrow><mn>4</mn></mfrac></mrow> 将正四棱锥研究单元中的孔隙直径do作为其中毛细管的直径λ,就可以根据杨-拉普拉斯方程计算出毛管进入压力PbTaking the pore diameter d o in the research unit of the regular pyramid as the diameter λ of the capillary, the capillary entry pressure P b can be calculated according to the Young-Laplace equation: <mrow> <msub> <mi>P</mi> <mi>b</mi> </msub> <mo>=</mo> <mfrac> <mi>&amp;omega;</mi> <mi>&amp;lambda;</mi> </mfrac> <mfrac> <mrow> <mn>1</mn> <mo>-</mo> <mi>n</mi> </mrow> <mi>n</mi> </mfrac> </mrow> <mrow><msub><mi>P</mi><mi>b</mi></msub><mo>=</mo><mfrac><mi>&amp;omega;</mi><mi>&amp;lambda;</mi></mfrac><mfrac><mrow><mn>1</mn><mo>-</mo><mi>n</mi></mrow><mi>n</mi></mfrac></mrow> 其中,ω=Fσcosθ,θ是流体和固体颗粒之间界面上的接触角,σ是界面上的表面张力,F是与多孔介质中毛细管形状和流体流动方向有关的参数。where ω=Fσcosθ, θ is the contact angle on the interface between the fluid and solid particles, σ is the surface tension on the interface, and F is a parameter related to the capillary shape and fluid flow direction in porous media. 5.根据权利要求1所述的多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,其特征在于:步骤(4)用相对梯度误差来定量评估半透明多孔介质的渗透率和毛管进入压力的REV尺度:5. the DNAPL migration numerical simulation method of porous medium three-dimensional microstructure model according to claim 1 is characterized in that: step (4) uses relative gradient error To quantitatively evaluate the permeability of translucent porous media and the REV scale of capillary entry pressure: 其中,是需要评估的参数,如多孔介质的渗透率或毛管进入压力,i是计算多孔介质性质时从小尺度向大尺度变化的序数,ΔL是每次增加的尺度;in, is the parameter to be evaluated, such as the permeability of the porous medium or the capillary entry pressure, i is the ordinal number of the change from the small scale to the large scale when calculating the properties of the porous medium, and ΔL is the scale of each increase; 把二维半透明多孔介质按照正方形的大网格进行剖分,对每个网格的渗透率和毛管进入压力的REV进行定量评估,然后对所有网格的REV尺度进行统计分析,确定半透明多孔介质的REV的均值。Divide the two-dimensional semi-transparent porous medium into large square grids, quantitatively evaluate the REV of the permeability and capillary entry pressure of each grid, and then perform statistical analysis on the REV scale of all grids to determine the translucency Mean REV of porous media. 6.根据权利要求1所述的多孔介质三维微观结构模型的DNAPL迁移数值模拟方法,其特征在于:步骤(5)向二维半透明多孔介质中注入DNAPL,让DNAPL在多孔介质中进行迁移,半透明多孔介质中DNAPL的饱和度SDL用光透法来测定:6. the DNAPL migration numerical simulation method of porous medium three-dimensional microstructure model according to claim 1 is characterized in that: step (5) injects DNAPL in two-dimensional translucent porous medium, allows DNAPL to migrate in porous medium, The saturation S DL of DNAPL in translucent porous media is determined by light transmission method: <mrow> <msub> <mi>S</mi> <mrow> <mi>D</mi> <mi>L</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mi>S</mi> </msub> <mo>-</mo> <mi>ln</mi> <mi> </mi> <mi>I</mi> </mrow> <mrow> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mi>S</mi> </msub> <mo>-</mo> <mi>ln</mi> <mi> </mi> <msub> <mi>I</mi> <mrow> <mi>D</mi> <mi>L</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mrow><msub><mi>S</mi><mrow><mi>D</mi><mi>L</mi></mrow></msub><mo>=</mo><mfrac><mrow><mi>ln</mi><mi></mi><msub><mi>I</mi><mi>S</mi></msub><mo>-</mo><mi>ln</mi><mi></mi><mi>I</mi></mrow><mrow><mi>ln</mi><mi></mi><msub><mi>I</mi><mi>S</mi></msub><mo>-</mo><mi>ln</mi><mi></mi><msub><mi>I</mi><mrow><mi>D</mi><mi>L</mi></mrow></msub></mrow></mfrac></mrow> 其中,Is是二维半透明多孔介质被水完全饱和时可见光穿透之后的透射光强值,IDL是二维半透明多孔介质被DNAPL完全饱和时可见光穿透之后的透射光强值,在实验中进行测定,I是透射光强。Among them, I s is the transmitted light intensity value after the visible light penetrates when the two-dimensional translucent porous medium is completely saturated by water, and I DL is the transmitted light intensity value after the visible light penetrates when the two-dimensional translucent porous medium is completely saturated by DNAPL, Measured in the experiment, I is the transmitted light intensity.
CN201711018115.3A 2017-10-26 2017-10-26 Numerical simulation method of DNAPL migration based on three-dimensional microstructure model of porous media Active CN107808049B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711018115.3A CN107808049B (en) 2017-10-26 2017-10-26 Numerical simulation method of DNAPL migration based on three-dimensional microstructure model of porous media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711018115.3A CN107808049B (en) 2017-10-26 2017-10-26 Numerical simulation method of DNAPL migration based on three-dimensional microstructure model of porous media

Publications (2)

Publication Number Publication Date
CN107808049A true CN107808049A (en) 2018-03-16
CN107808049B CN107808049B (en) 2021-03-19

Family

ID=61582285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711018115.3A Active CN107808049B (en) 2017-10-26 2017-10-26 Numerical simulation method of DNAPL migration based on three-dimensional microstructure model of porous media

Country Status (1)

Country Link
CN (1) CN107808049B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117579A (en) * 2018-08-30 2019-01-01 沈阳云仿科技有限公司 A kind of design and calculation method of multi-hole orifice flowmeter
CN109284555A (en) * 2018-09-28 2019-01-29 南京大学 A Grid Random Walk Method for Estimating Permeability Based on Porous Media Geometry
CN112417711A (en) * 2020-12-25 2021-02-26 上海勘察设计研究院(集团)有限公司 Pollutant migration analysis method based on polluted soil structure evolution
CN114862835A (en) * 2022-05-31 2022-08-05 中国地质大学(北京) Method for quantifying quality of DNAPL (deoxyribose nucleic acid) source region in two-dimensional sand box

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140057814A1 (en) * 2010-12-07 2014-02-27 Tufts University Gum arabic encapsulation of reactive particles for enhanced delivery during subsurface restoration
US20150014221A1 (en) * 2013-07-09 2015-01-15 New York University Composition, method, and apparatus for crude oil remediation
CN105893651A (en) * 2016-01-29 2016-08-24 中国农业大学 Method for establishing and simulating aerobic composting model
CN106644848A (en) * 2016-12-22 2017-05-10 南京大学 Analogy method for heavy nonaqueous-phase organic pollutant transport in semitransparent particulate material
CN106908447A (en) * 2017-03-24 2017-06-30 南京大学 The determination method of DNAPL REV during long term migration in translucent particle material
CN107055809A (en) * 2016-04-15 2017-08-18 台湾塑胶工业股份有限公司 High-effect multi-angle well screen groundwater remediation equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140057814A1 (en) * 2010-12-07 2014-02-27 Tufts University Gum arabic encapsulation of reactive particles for enhanced delivery during subsurface restoration
US20150014221A1 (en) * 2013-07-09 2015-01-15 New York University Composition, method, and apparatus for crude oil remediation
CN105893651A (en) * 2016-01-29 2016-08-24 中国农业大学 Method for establishing and simulating aerobic composting model
CN107055809A (en) * 2016-04-15 2017-08-18 台湾塑胶工业股份有限公司 High-effect multi-angle well screen groundwater remediation equipment
CN106644848A (en) * 2016-12-22 2017-05-10 南京大学 Analogy method for heavy nonaqueous-phase organic pollutant transport in semitransparent particulate material
CN106908447A (en) * 2017-03-24 2017-06-30 南京大学 The determination method of DNAPL REV during long term migration in translucent particle material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MING WU 等: "Quantifying representative elementary volume of connectivity for translucent granular materials by light transmission micro-tomography", 《JOURNAL OF HYDROLOGY》 *
MING WU 等: "Simulation of DNAPL migration in heterogeneous translucent porous media based on estimation of representative elementary volume", 《JOURNAL OF HYDROLOGY》 *
于立章 等: "多孔介质通道中单相流阻力特性数值模拟", 《原子能科学技术》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109117579A (en) * 2018-08-30 2019-01-01 沈阳云仿科技有限公司 A kind of design and calculation method of multi-hole orifice flowmeter
CN109117579B (en) * 2018-08-30 2022-12-27 沈阳云仿致准科技股份有限公司 Design calculation method of porous orifice plate flowmeter
CN109284555A (en) * 2018-09-28 2019-01-29 南京大学 A Grid Random Walk Method for Estimating Permeability Based on Porous Media Geometry
CN109284555B (en) * 2018-09-28 2023-02-14 南京大学 Grid random walk method for estimating permeability based on porous medium geometric shape
CN112417711A (en) * 2020-12-25 2021-02-26 上海勘察设计研究院(集团)有限公司 Pollutant migration analysis method based on polluted soil structure evolution
CN112417711B (en) * 2020-12-25 2022-05-31 上海勘察设计研究院(集团)有限公司 Pollutant migration analysis method based on polluted soil structure evolution
CN114862835A (en) * 2022-05-31 2022-08-05 中国地质大学(北京) Method for quantifying quality of DNAPL (deoxyribose nucleic acid) source region in two-dimensional sand box
CN114862835B (en) * 2022-05-31 2023-04-07 中国地质大学(北京) Method for quantifying quality of DNAPL source area in two-dimensional sand box

Also Published As

Publication number Publication date
CN107808049B (en) 2021-03-19

Similar Documents

Publication Publication Date Title
CN103852425B (en) Method for quantitatively monitoring DNAPL (Dense Nonaqueous Phase Liquid) migration process and saturation degree
CN107808049B (en) Numerical simulation method of DNAPL migration based on three-dimensional microstructure model of porous media
Zhang et al. Method to measure soil matrix infiltration in forest soil
CN103822865B (en) A kind of high-resolution three-dimension digital cores modeling method
Kirstetter et al. Modeling rain-driven overland flow: Empirical versus analytical friction terms in the shallow water approximation
Alazaiza et al. Influence of macro-pores on DNAPL migration in double-porosity soil using light transmission visualization method
Flores et al. A simplified image analysis method to study LNAPL migration in porous media
Mallants et al. Evaluation of multimodal hydraulic functions in characterizing a heterogeneous field soil
Zhang et al. Characterizing preferential flow in landfilled municipal solid waste
Sheng et al. Investigation into preferential flow in natural unsaturated soils with field multiple-tracer infiltration experiments and the active region model
CN106644848B (en) A kind of weight nonaqueous phase organic pollutant Migration Simulation method in translucent particle material
Ma et al. Partial least squares regression for linking aggregate pore characteristics to the detachment of undisturbed soil by simulating concentrated flow in Ultisols (subtropical China)
Wu et al. Estimation of representative elementary volume for DNAPL saturation and DNAPL-water interfacial areas in 2D heterogeneous porous media
Beckers et al. Characterization of stony soils' hydraulic conductivity using laboratory and numerical experiments
CN103983551B (en) Two-dimensional visual seepage experiment device for simulating homogeneity in layer and experiment method thereof
Bagarello et al. A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils
Li et al. A new method to simultaneously measure the soil–water characteristic curve and hydraulic conductivity function using filter paper
CN106908447A (en) The determination method of DNAPL REV during long term migration in translucent particle material
Wu et al. A new criterion for determining the representative elementary volume of translucent porous media and inner contaminant
Alazaiza et al. Quantification of dense nonaqueous phase liquid saturation in double-porosity soil media using a light transmission visualization technique
Dong et al. Modeling soil solute release into runoff and transport with runoff on a loess slope
Snehota et al. Impact of the entrapped air on water flow and solute transport in heterogeneous soil: Experimental set-up
Zarei et al. Modeling transient evaporation from descending shallow groundwater table based on Brooks–Corey retention function
Svensson et al. Modelling transport of reactive tracers in a heterogeneous crystalline rock matrix
Kang et al. A modified Green-Ampt infiltration model for muddy water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 210008 No. 22, Hankou Road, Gulou District, Jiangsu, Nanjing

Applicant after: NANJING University

Address before: 210046 Xianlin Avenue 163, Qixia District, Nanjing City, Jiangsu Province

Applicant before: NANJING University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant