CN107802255B - 一种基于代谢法的血糖数据处理方法及装置 - Google Patents

一种基于代谢法的血糖数据处理方法及装置 Download PDF

Info

Publication number
CN107802255B
CN107802255B CN201711241120.0A CN201711241120A CN107802255B CN 107802255 B CN107802255 B CN 107802255B CN 201711241120 A CN201711241120 A CN 201711241120A CN 107802255 B CN107802255 B CN 107802255B
Authority
CN
China
Prior art keywords
blood
blood sugar
interval
heart rate
radiation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711241120.0A
Other languages
English (en)
Other versions
CN107802255A (zh
Inventor
赵巨峰
华玮平
崔光茫
林君
逯鑫淼
樊兆华
辛青
公晓丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201711241120.0A priority Critical patent/CN107802255B/zh
Publication of CN107802255A publication Critical patent/CN107802255A/zh
Application granted granted Critical
Publication of CN107802255B publication Critical patent/CN107802255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Cardiology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本发明公开了一种基于代谢法的血糖数据处理方法及装置,所述方法包括:建立心率、血氧、辐射温度三个参数和血糖的关系模型,对血糖的取值范围进行分段划分;然后在各个分段区间上,采集预设数量的样本数据用于训练关系模型;分别获取心率、血氧、辐射温度三个参数和血糖对应的概率分布关系,以及各个分段区间对应的关系模型系数;最后获取待测者的心率、血氧和辐射温度,利用所述三个参数和所述概率分布关系,判断待测者的血糖所处的分段区间,再根据该区间的关系模型系数计算血糖。本发明解决了传统的代谢热整合法血糖模型的计算参数过多、精细程度不足以及参数系数通用性不够好的问题,极大提高了血糖检测精度。

Description

一种基于代谢法的血糖数据处理方法及装置
技术领域
本发明涉及计算机技术领域,更具体地,涉及一种基于代谢法的血糖数据处理方法及装置。
背景技术
血糖检测是人们健康体检过程中非常重要的一个环节,传统的血糖检测方法主要是侵入式的有创检测方式。由于这种检测方式带来的疼痛感,以及由此引发的心理恐惧,该方式直接导致很多用户放弃血糖检测。于是,微创甚至无创的检测方式就成为了趋势。
目前,在关于人体的生理参数中,心率、血氧、辐射温度这些参数的获取方式已经相当成熟,并且在此基础上实现血糖估计的方法得到了一定的研究,即利用代谢法来获取血糖,这类模型主要是以代谢热整合法数学模型为主,该模型提出血糖是关于人体产热量、人体局部血液流速和人体动脉血氧饱和度的函数,通用的数学模型如下述公式所示:
Figure DEST_PATH_IMAGE001
其中,
Figure DEST_PATH_IMAGE002
Figure DEST_PATH_IMAGE003
的归一化参数,表示代谢热量;
Figure DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
的归一化参数,表示血液 流速;
Figure DEST_PATH_IMAGE006
Figure DEST_PATH_IMAGE007
的归一化参数,表示血氧饱和度;
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
的归一化参数,表示脉率;
Figure DEST_PATH_IMAGE010
为回归系数,单位为“
Figure DEST_PATH_IMAGE011
”;
Figure DEST_PATH_IMAGE012
为血糖值,单位为“
Figure DEST_PATH_IMAGE013
”。
基于此模型,国内外的一些研究单位、企业进行了样机或者产品的研发,但工程上实现以后发现问题很多,主要包括:第一,需要的生理参数多,增加了不确定性,因为参数的探测总会存在误差;第二,模型是一次叠加,精细程度不足,而高次方可以修正不同参数对血糖计算的影响;第三,模型计算的血糖精度欠佳,这是由于在0~∞宽波段的血糖范围下,难以实现较好的数据拟合训练而获得通用性较好的系数。因此,解决以上这些问题,成为目前面临的主要挑战。
发明内容
本发明的目的在于提供一种基于代谢法的血糖数据处理方法及装置,解决目前的血糖计算模型面临的参数过多、精细程度不足、精度欠佳等问题。
为实现上述目的,本发明提供了一种基于代谢法的血糖数据处理方法,包括以下步骤:
建立心率、血氧、辐射温度三个参数和血糖的关系模型,并将血糖的取值范围按照预设的区间进行分段;
在所述分段后获得的各个分段区间上,分别采集预设数量的样本数据,所述样本数据包括心率、血氧、辐射温度和血糖数据;
根据采集的所述样本数据,分别获取心率、血氧、辐射温度三个参数和血糖的对应概率分布关系,以及各个分段区间对应的关系模型的系数;
获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数的值和所述对应概率分布关系,判断待测者血糖所处的分段区间,根据所述分段区间对应的关系模型系数计算血糖。
所述心率、血氧、辐射温度三个参数和血糖的关系模型为:
Figure DEST_PATH_IMAGE014
Figure DEST_PATH_IMAGE015
Figure DEST_PATH_IMAGE016
其中R,S,H分别表示心率、血氧饱和度、辐射温度,G为血糖,
Figure DEST_PATH_IMAGE017
为修正参数,
Figure DEST_PATH_IMAGE018
(p= 1,2,3;q=1,2,3)表示九个系数。
所述分段区间之间存在交叉重叠。
所述获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数的值和所述对应概率分布关系,判断待测者血糖所处的分段区间,具体为:
获取待测者的心率、血氧和辐射温度三个参数值,然后获取三个参数值在各个血糖分段区间上对应的概率值,对各个血糖分段区间上的概率值分别相加,概率值的和为最大值的所在区间就是待测者的血糖所处的区间。
所述获取各个分段区间对应的关系模型的系数包括
Figure 805844DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)与
Figure 191826DEST_PATH_IMAGE017
这 十个系数。
本发明还提供了一种基于代谢法的血糖数据处理装置,包括:
关系模型建立模块,用于建立心率、血氧、辐射温度三个参数和血糖的关系模型,并将血糖的取值范围按照预设的区间进行分段;
样本数据采集模块,用于在所述分段后获得的各个分段区间上,分别采集预设数量的样本数据,所述样本数据包括心率、血氧、辐射温度和血糖数据;
模型系数计算模块,用于根据采集的所述样本数据,分别获取心率、血氧、辐射温度三个参数和血糖的对应概率分布关系,以及各个分段区间对应的关系模型的系数;
血糖计算模块,用于获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数的值和所述对应概率分布关系,判断待测者血糖所处的分段区间,根据所述分段区间对应的关系模型系数计算血糖。
所述关系模型建立模块建立的模型为:
Figure 440404DEST_PATH_IMAGE014
Figure 179821DEST_PATH_IMAGE015
Figure 931877DEST_PATH_IMAGE016
其中R,S,H分别表示心率、血氧饱和度、辐射温度,G为血糖,
Figure 426443DEST_PATH_IMAGE017
为修正参数,
Figure 427897DEST_PATH_IMAGE018
(p= 1,2,3;q=1,2,3)表示九个系数。
所述关系模型建立模块对血糖的取值范围进行分段后的区间之间存在交叉重叠。
所述血糖计算模块用于获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数的值和所述对应概率分布关系,判断待测者血糖所处的分段区间,具体为:
获取待测者的心率、血氧和辐射温度三个参数值,然后获取三个参数值在各个血糖分段区间上对应的概率值,对各个血糖分段区间上的概率值分别相加,概率值的和为最大值的所在区间就是待测者的血糖所处的区间。
所述模型系数计算模块计算的关系模型系数包括
Figure 95639DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)与
Figure 233359DEST_PATH_IMAGE017
这十 个系数。
本发明的有益效果:
本发明提供的基于代谢法的血糖数据处理方法,设计了多次三参数血糖计算模型,利用获取的心率、血氧、辐射温度作为输入的三个参数,解决了过多输入参数会导致的模型系数不收敛、模型不稳定等问题;同时克服了传统的一次模型精细度不足的缺点。另一方面,该方法提出了分段概率分布模型,解决了宽波段血糖范围下,参数系数通用性不够好的问题。该血糖数据处理方法极大地提高了血糖检测精度,为用户进行血糖检测提供了方便,保证了血糖检测的准确性。
附图说明
图1为基于代谢法的血糖数据处理方法的流程图;
图2为基于代谢法的血糖数据处理装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
以下结合附图实施例对本发明的实施作进一步说明。
如图1所示,本发明实施例提供了一种基于代谢法的血糖数据处理方法,包括以下步骤:
S101,建立心率、血氧、辐射温度三个参数和血糖的关系模型,采用多次三参数来设计模型,这样可以提升系数的精细度,避免一次模型所具有的精细程度不够的缺点。同时三参数模型更为紧凑,避免了参数过多带来的较大不确定性。最终设计的关系模型如下:
Figure 695564DEST_PATH_IMAGE014
Figure 121998DEST_PATH_IMAGE015
Figure 327851DEST_PATH_IMAGE016
其中,其中R,S,H分别表示心率、血氧饱和度、辐射温度,G为血糖,
Figure DEST_PATH_IMAGE019
为修正参数,
Figure 54499DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)是九个系数。通过该模型,只需要计算出
Figure 953184DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)与
Figure 663652DEST_PATH_IMAGE017
这十个系数,在输入R、S、H这三个参数后,就能获得对应的血糖。
同时对血糖的取值范围按照预设区间进行分段,将血糖分为(0,6.5],(6, 9.5], (9,12],(11, ∞)共4段,相邻段之间存在交叉重叠。分段可以避免由于心率等参数的波动 性,引起的模型在宽范围内收敛性不佳的缺点。进行分段估计,针对典型的血糖波段,利用 采集训练数据分别求取不同波段的对应参数
Figure 407617DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)与
Figure 723191DEST_PATH_IMAGE017
,保证了模型在 不同血糖范围内都能获得较好的准确性以及回归性。
S102,在所述分段后获得的各个分段区间上,并且在特定的条件要求下,分别采集预设数量的样本数据。特定的条件要求为:
1.要求在室内常温下,可开窗。
2.用户状态要处于自然平静,没有出汗或者颤抖等状况。
3.室内若有空调、暖气、风扇等影响温度的工作装置,用户不能处于风口位置而受到太多的影响。
4.用户用棉球清水/酒精清洗手指(食指与中指),并等待3~5分钟。
采集的样本数据具体包括心率、血氧、辐射温度和血糖数据。其中心率、血氧、辐射 温度三个参数是通过检测装置获取的,血糖是通过有创的生化仪器采集的。对于S101中的 四个分段,每个分段都采集30组数据。采集后的样本数据用于训练关系模型,从而得到不同 分段区间对应的
Figure 527199DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)与
Figure 724963DEST_PATH_IMAGE017
这十个系数。
S103,根据采集的所述用户生理参数数据,分别获取心率、血氧、辐射温度三个参 数和血糖的对应概率分布关系,即分别计算不同R、S、H值范围对应于G值的概率分布,并计 算出各个分段区间对应的关系模型中的
Figure 272619DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)与
Figure 505017DEST_PATH_IMAGE017
十个系数。
S104,按照S102中的特定条件要求,利用检测装置获取待测者的心率、血氧、辐射温度三个参数值,根据S103中计算的对应概率分布关系,将三个参数值在各个血糖分段区间上的概率值分别相加,计算出(R,S,H)对应的各个分段的G值概率,G值概率最大值所处的分段即为待测者血糖所处的分段区间,然后将此分段区间对应的系数值代入关系模型计算血糖。
如图2所示,本发明实施例提供了一种基于代谢法的血糖数据处理装置,包括:
关系模型建立模块201,用于建立心率、血氧、辐射温度三个参数和血糖的关系模型,采用多次三参数来设计模型,这样可以提升系数的精细度,避免一次模型所具有的精细程度不够的缺点。同时三参数模型更为紧凑,避免了参数过多带来的较大不确定性。最终设计的关系模型如下:
Figure 745505DEST_PATH_IMAGE014
Figure 368248DEST_PATH_IMAGE015
Figure 719594DEST_PATH_IMAGE016
其中,其中R,S,H分别表示心率、血氧饱和度、辐射温度,G为血糖,
Figure 806499DEST_PATH_IMAGE017
为修正参数,
Figure 686731DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)是九个系数。通过该模型,只需要计算出
Figure 796769DEST_PATH_IMAGE018
(p=1,2,3;q=1,2,3)与
Figure 155069DEST_PATH_IMAGE017
这十个系数,在输入R、S、H这三个参数后,就能获得对应的血糖。
同时需要将血糖的取值范围按照预设区间进行分段,将血糖分为(0,6.5],(6,9.5],(9,12],(11, ∞)共四段,相邻段有局部交叉重叠。
样本数据采集模块202,用于在所述分段后获得的各个分段区间上,分别采集预设 数量的用户生理参数数据。采集的用户生理参数数据具体包括心率、血氧、辐射温度和血糖 数据。其中心率、血氧、辐射温度三个参数是通过检测装置获取的,血糖是通过有创的生化 仪器采集的。对于关系模型建立模块201中的四个分段,每个分段都采集30组数据。采集后 的生理参数数据用于训练计算关系模型,从而得到不同分段区间对应的
Figure 362060DEST_PATH_IMAGE018
(p=1,2,3;q= 1,2,3)与
Figure 944351DEST_PATH_IMAGE017
这十个系数。
模型系数计算模块203,用于根据采集的用户生理参数数据,分别获取心率、血氧、辐射温度三个参数和血糖的对应概率分布关系,并计算各个分段区间对应的关系模型系数。
血糖计算模块204,用于获取待测者的心率、血氧、辐射温度三个参数值,根据这三个参数值和模型系数计算模块203中的对应的概率分布关系,将三个参数值在各个血糖分段区间上的概率值分别相加,计算出(R,S,H)对应的各个分段的G值概率,G值概率最大值所处的分段即为待测者血糖所处的分段区间,然后将此分段区间对应的系数值代入关系模型计算血糖。
本发明提供了一种基于代谢法的血糖数据处理方法,该方法设计了三参数血糖计算模型,利用获取的心率、血氧、辐射温度作为输入的三个参数,解决了过多的输入参数会导致的模型系数不收敛、模型不稳定等问题;同时该方法采用了多次方计算模型,克服了传统的一次模型精细度不足的缺点,提高了血糖测量的精度。另一方面,该方法提出了分段概率分布模型,解决了宽波段血糖范围下,参数系数通用性不够好的问题,使得计算模型在不同波段的回归性都很好。本发明提供的血糖数据处理方法极大地提高了血糖检测精度,保证了血糖检测的准确性以及稳定性。

Claims (10)

1.一种基于代谢法的血糖数据处理方法,其特征在于,包括以下步骤:
建立心率、血氧、辐射温度三个参数和血糖的关系模型,并将血糖的取值范围按照预设的区间进行分段;
在所述分段后获得的各个分段区间上,分别采集预设数量的样本数据,所述样本数据包括心率、血氧、辐射温度和血糖数据;
根据采集的所述样本数据,分别获取心率、血氧、辐射温度三个参数和血糖的对应概率分布关系,以及各个分段区间对应的关系模型的系数;
获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数值和所述对应概率分布关系,判断待测者血糖所处的分段区间,根据所述分段区间对应的关系模型系数计算血糖。
2.如权利要求1所述的一种基于代谢法的血糖数据处理方法,其特征在于,所述心率、血氧、辐射温度三个参数和血糖的关系模型为:
G=α33×R332×R231×R1
23×S322×S221×S1
13×H312×H211×H1
其中R,S,H分别表示心率、血氧饱和度、辐射温度,G为血糖,δ为修正参数,αpq(p=1,2,3;q=1,2,3)表示九个系数。
3.如权利要求1所述的一种基于代谢法的血糖数据处理方法,其特征在于,所述分段区间之间存在交叉重叠。
4.如权利要求1所述的一种基于代谢法的血糖数据处理方法,其特征在于,所述获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数的值和所述对应概率分布关系,判断待测者血糖所处的分段区间,具体为:
获取待测者的心率、血氧和辐射温度三个参数值,然后获取三个参数值在各个血糖分段区间上对应的概率值,对各个血糖分段区间上的概率值分别相加,概率值的和为最大值的所在区间就是待测者的血糖所处的区间。
5.如权利要求2所述的一种基于代谢法的血糖数据处理方法,其特征在于,所述获取各个分段区间对应的关系模型的系数包括αpq(p=1,2,3;q=1,2,3)与δ这十个系数。
6.一种基于代谢法的血糖数据处理装置,其特征在于,包括:
关系模型建立模块,用于建立心率、血氧、辐射温度三个参数和血糖的关系模型,并将血糖的取值范围按照预设的区间进行分段;
样本数据采集模块,用于在所述分段后获得的各个分段区间上,分别采集预设数量的样本数据,所述样本数据包括心率、血氧、辐射温度和血糖数据;
模型系数计算模块,用于根据采集的所述样本数据,分别获取心率、血氧、辐射温度三个参数和血糖的对应概率分布关系,以及各个分段区间对应的关系模型的系数;
血糖计算模块,用于获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数的值和所述对应概率分布关系,判断待测者血糖所处的分段区间,根据所述分段区间对应的关系模型系数计算血糖。
7.如权利要求6所述的一种基于代谢法的血糖数据处理装置,其特征在于,所述关系模型建立模块建立的模型为:
G=α33×R332×R231×R1
23×S322×S221×S1
13×H312×H211×H1
其中R,S,H分别表示心率、血氧饱和度、辐射温度,G为血糖,δ为修正参数,αpq(p=1,2,3;q=1,2,3)表示九个系数。
8.如权利要求6所述的一种基于代谢法的血糖数据处理装置,其特征在于,所述关系模型建立模块对血糖的取值范围进行分段后的区间之间存在交叉重叠。
9.如权利要求6所述的一种基于代谢法的血糖数据处理装置,其特征在于,所述血糖计算模块用于获取待测者的心率、血氧和辐射温度三个参数值,根据所述三个参数的值和所述对应概率分布关系,判断待测者血糖所处的分段区间,具体为:
获取待测者的心率、血氧和辐射温度三个参数值,然后获取三个参数值在各个血糖分段区间上对应的概率值,对各个血糖分段区间上的概率值分别相加,概率值的和为最大值的所在区间就是待测者的血糖所处的区间。
10.如权利要求7所述的一种基于代谢法的血糖数据处理装置,其特征在于,所述模型系数计算模块计算的关系模型系数包括αpq(p=1,2,3;q=1,2,3)与δ这十个系数。
CN201711241120.0A 2017-11-30 2017-11-30 一种基于代谢法的血糖数据处理方法及装置 Active CN107802255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711241120.0A CN107802255B (zh) 2017-11-30 2017-11-30 一种基于代谢法的血糖数据处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711241120.0A CN107802255B (zh) 2017-11-30 2017-11-30 一种基于代谢法的血糖数据处理方法及装置

Publications (2)

Publication Number Publication Date
CN107802255A CN107802255A (zh) 2018-03-16
CN107802255B true CN107802255B (zh) 2021-01-29

Family

ID=61590837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711241120.0A Active CN107802255B (zh) 2017-11-30 2017-11-30 一种基于代谢法的血糖数据处理方法及装置

Country Status (1)

Country Link
CN (1) CN107802255B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111700628A (zh) * 2020-07-24 2020-09-25 合肥铭源鸿医疗科技有限公司 基于红外透射光路的无创血糖检测系统
CN113171086A (zh) * 2021-03-31 2021-07-27 合肥铭源鸿医疗科技有限公司 一种血糖监测装置
CN113367692B (zh) * 2021-06-08 2023-09-29 广东科谷智能科技有限公司 一种可调节用户血糖的调节方法、调节系统及存储介质
CN114098724B (zh) * 2021-11-22 2024-03-26 乐普(北京)医疗器械股份有限公司 基于光学信号特征及代谢热特征的血糖预测方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102258363A (zh) * 2011-04-19 2011-11-30 何宗彦 代谢热参数测量设备和方法
CN204995483U (zh) * 2015-07-10 2016-01-27 杭州电子科技大学 一种兼具血糖检测的胰岛素冷藏装置
CN105962949A (zh) * 2016-06-14 2016-09-28 上海理工大学 一种基于近红外光能量守恒法的无创血糖计算方法以及信号采集装置
US20160375264A1 (en) * 2015-06-24 2016-12-29 Edgar Dan Laperriere Light wave treatment instrument and methods of use
WO2017187212A1 (en) * 2016-04-28 2017-11-02 77 Elektronika Müszeripari Kft. Data processing method for blood glucose measuring, blood glucose meter, blood glucose measurement system, and computer program and data carrier therefor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6424847B1 (en) * 1999-02-25 2002-07-23 Medtronic Minimed, Inc. Glucose monitor calibration methods
CN101866387B (zh) * 2009-04-17 2012-09-26 上海市杨浦区中心医院 糖尿病人个体化胰岛素治疗指南仪及其使用方法
CN104665840B (zh) * 2015-03-02 2017-11-21 桂林麦迪胜电子科技有限公司 无创血糖测量方法及指端测量探头
CN106338597A (zh) * 2016-10-18 2017-01-18 哈尔滨工业大学深圳研究生院 呼吸气体测量的方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102258363A (zh) * 2011-04-19 2011-11-30 何宗彦 代谢热参数测量设备和方法
US20160375264A1 (en) * 2015-06-24 2016-12-29 Edgar Dan Laperriere Light wave treatment instrument and methods of use
CN204995483U (zh) * 2015-07-10 2016-01-27 杭州电子科技大学 一种兼具血糖检测的胰岛素冷藏装置
WO2017187212A1 (en) * 2016-04-28 2017-11-02 77 Elektronika Müszeripari Kft. Data processing method for blood glucose measuring, blood glucose meter, blood glucose measurement system, and computer program and data carrier therefor
CN105962949A (zh) * 2016-06-14 2016-09-28 上海理工大学 一种基于近红外光能量守恒法的无创血糖计算方法以及信号采集装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Non-invasive blood glucose detection system based on conservation of energy method;Zhang, Yang; Zhu, Jian-ming; Liang, Yong-bo;《PHYSIOLOGICAL MEASUREMENT 》;20170120;第38卷(第2期);325-342 *
能量代谢守恒法无创血糖检测算法研究;朱健铭,陈真诚;《传感技术学报》;20130731;第26卷(第7期);第917-921页 *

Also Published As

Publication number Publication date
CN107802255A (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
CN107802255B (zh) 一种基于代谢法的血糖数据处理方法及装置
CN109758160B (zh) 一种基于lstm-rnn模型的无创血糖预测方法
CN108185996B (zh) 动脉血管年龄估算模型构建方法和装置
CN107788976A (zh) 基于振幅整合脑电图的睡眠监测系统
US11406304B2 (en) Systems and methods for physiological sign analysis
CN104887215B (zh) 一种心率测量中的信号处理方法
CN103876723A (zh) 无创桡动脉波计算脉搏波传导时间获取血压值的方法
CN111887847A (zh) 基于人体成分仪的内脏脂肪测量方法、装置、计算机设备和存储介质
CN108392176A (zh) 一种基于心冲击信号采集的睡眠结构检测方法
Badnjević et al. Diagnostic of asthma using fuzzy rules implemented in accordance with international guidelines and physicians experience
CN107995981B (zh) 一种用于血压测量装置的数据处理方法
CN103315732B (zh) 人体穴位生物电信号的采集专用穴位电图仪
CN111658931B (zh) 一种智能经鼻高流量湿化氧疗系统
Li et al. Detection of muscle fatigue by fusion of agonist and synergistic muscle semg signals
CN114557691A (zh) 基于多波长的ppg信号的无创血脂检测方法及系统
CN111755127A (zh) 一种基于代谢混合法的血糖估算方法
Sun et al. Adaptive low-power wrist SpO2 monitoring system design using a multi-filtering scheme
Ren et al. Experimental evaluation of ECG signal denoising methods based on HRV indices and their application in indoor thermal comfort study under different temperatures
CN111973188A (zh) 一种基于神经网络估算呼吸力学参数的方法
Ionescu et al. A recurrent parameter model to characterize the high-frequency range of respiratory impedance in healthy subjects
CN203024988U (zh) 一种用于无创呼吸机开发实验测试的平台
CN114343664A (zh) 一种基于心率刺激-恢复趋势的心肺耐力评估方法与装置
CN201453268U (zh) 远程呼吸监护医疗系统
CN111436938B (zh) 一种肢体肿胀监测装置及方法
Sahool et al. Patient monitoring system for cardiovascular patient with body temperature using lab VIEW

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant