CN107793558B - 一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法 - Google Patents

一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法 Download PDF

Info

Publication number
CN107793558B
CN107793558B CN201710952599.2A CN201710952599A CN107793558B CN 107793558 B CN107793558 B CN 107793558B CN 201710952599 A CN201710952599 A CN 201710952599A CN 107793558 B CN107793558 B CN 107793558B
Authority
CN
China
Prior art keywords
ethylenedioxythiophene
gold
shape
poly
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710952599.2A
Other languages
English (en)
Other versions
CN107793558A (zh
Inventor
蒋妮娜
王士斌
马丽娟
梁丽丽
陈爱政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN201710952599.2A priority Critical patent/CN107793558B/zh
Publication of CN107793558A publication Critical patent/CN107793558A/zh
Application granted granted Critical
Publication of CN107793558B publication Critical patent/CN107793558B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种形状可控的金纳米晶/聚(3,4‑乙撑二氧噻吩)核壳纳米材料的制备方法,包括如下步骤:(1)将3,4‑乙撑二氧噻吩单体溶解于阴离子表面活性剂的水溶液中,并加入适量异丙醇,在室温下搅拌1~5h;(2)将具有特定形状和大小的金纳米晶加入并分散于步骤(1)所得的物料中,混合振荡10~30min;(3)将氧化剂溶解于质子酸中,然后与步骤(2)所得的物料混合振荡3~10min后,在室温下反应5~8h后即得。本发明利用3,4‑乙撑二氧噻吩分子中的硫原子与金纳米晶的良好亲和性,使3,4‑乙撑二氧噻吩在金纳米晶表面发生原位聚合,进而在阴离子表面活性剂的稳定作用下形成nm壳层结构。

Description

一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米 材料的制备方法
技术领域
本发明属于贵金属/导电高分子复合纳米材料技术领域,具体涉及一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法。
背景技术
金纳米晶是近年来备受科学家关注的一种贵金属纳米材料。它由于具有独特的局域表面等离激元共振性质,在纳米生物、催化、光学、电学等领域表现出了广阔的应用前景。局域表面等离激元共振性质依赖于金纳米晶的形状和大小。相比于球状的金纳米晶,棒状、板状和双锥状的金纳米晶表现出更高波长的局域表面等离激元共振吸收峰,进而能对近红外光产生强烈的吸收和散射。这使得这些形状的金纳米晶在光热治疗和光催化领域具有独特的优势。除了形状和大小外,金纳米晶的周围环境介质的介电性能也会影响其表面等离激元性质。因此,在金纳米晶周围构建功能性材料,将改变金纳米晶的环境介质,从而实现对局域表面等离激元共振性质的调控,以满足实践应用的需求。例如,Pavel A.Kossyrev等人(Nano Letters 2005,5,1978-1981)通过将电致响应的液晶材料覆盖于金纳米晶体表面,获得了电致可调的局域表面等离激元共振性质。该复合材料可用于制作主动型表面等离激元元件,实现在纳米尺度上对外界光场的实时调控。
聚(3,4-乙撑二氧噻吩)(poly(3,4-ethylenedioxythiophene),PEDOT)是一种导电高分子材料,在抗静电涂层、固体电解电容器及有机光电子领域得到了广泛的应用(Journal of Materials Chemistry2005,15,2077-2088)。在电化学手段的调控下,聚(3,4-乙撑二氧噻吩)的导电率和介电函数可发生可逆变化。(Langmuir 2003,19,9058-9064)基于这一特性,聚(3,4-乙撑二氧噻吩)可作为金纳米晶表面的功能性壳层材料,实现对金纳米晶所承载的局域表面等离激元共振性质的调控。CN103242512A公开了在阳离子表面活性剂的作用下,以氯金酸为氧化剂,以3,4-乙撑二氧噻吩为单体一步合成金纳米粒子/聚(3,4-乙撑二氧噻吩)核壳纳米结构。在此合成方法中,氯金酸氧化3,4-乙撑二氧噻吩形成聚(3,4-乙撑二氧噻吩),而自身还原形成类球状的金纳米粒子。然而,这种一步合成法所得到的金纳米粒子的形状无法被调控,且所得到的核壳纳米结构的尺寸无法小于150nm。到目前为止,在非球状的金纳米晶表面构建聚(3,4-乙撑二氧噻吩)壳层结构的制备尚未见诸报道。
发明内容
本发明的目的在于提供一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法。
本发明的技术方案如下:
一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法,上述金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的尺寸为40~400nm,且壳层厚度为3~80nm,具体包括如下步骤:
(1)将3,4-乙撑二氧噻吩单体溶解于阴离子表面活性剂的水溶液中,并加入适量异丙醇,在室温下搅拌1~5h;
(2)将具有特定形状和大小的金纳米晶加入并分散于步骤(1)所得的物料中,混合振荡10~30min;
(3)将氧化剂溶解于质子酸中,然后与步骤(2)所得的物料混合振荡3~10min后,在室温下反应5~8h后即得;
上述氧化剂与3,4-乙撑二氧噻吩单体的摩尔比为0.5~2∶1,上述金纳米晶颗粒与3,4-乙撑二氧噻吩单体的最终摩尔浓度比为:3×1012~2×1014∶1,上述阴离子表面活性剂的水溶液的溶度为0.2~1.2倍的临界胶束浓度,上述异丙醇与阴离子表面活性剂水溶液的体积比为0.001~0.1∶1。
在本发明的一个优选实施方案中,所述金纳米晶的形状包括球状、圆柱状、椭球状、圆锥状和多面体状(包括双锥状、板状和星状)。
在本发明的一个优选实施方案中,所述阴离子表面活性剂为硫酸酯盐或磺酸盐类阴离子表面活性剂。
进一步优选的,所述阴离子表面活性剂为十二烷基硫酸钠和/或十二烷基苯磺酸钠。
在本发明的一个优选实施方案中,所述氧化剂为过硫酸铵、过硫酸钾或三氯化铁。
在本发明的一个优选实施方案中,所述质子酸包括盐酸、硫酸和高氯酸。
在本发明的一个优选实施方案中,将步骤(3)所得的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料代替步骤(2)中的金纳米晶,重复步骤(1)至(3)即可增加所述壳层的厚度。
本发明的有益效果:
1、本发明利用3,4-乙撑二氧噻吩分子中的硫原子与金纳米晶的良好亲和性,使3,4-乙撑二氧噻吩在金纳米晶表面发生原位聚合,进而在阴离子表面活性剂的稳定作用下形成nm壳层结构。
2、本发明的制备方法简单,生产效率高,可在不同形状和大小的金纳米晶表面准确地构筑了聚(3,4-乙撑二氧噻吩)壳层nm结构,无有害溶剂,可在实际中进行大规模的生产。
附图说明
图1为本发明实施例1制得的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的表征图,其中,a为所制得的棒状金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的透射电镜照片,b为棒状金纳米晶被聚(3,4-乙撑二氧噻吩)包覆前后的紫外可见吸收光谱图。
图2为本发明实施例1制得的双锥状金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的表征图,其中,a为所制得的双锥状金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的透射电镜图,b为双锥状金纳米晶被聚(3,4-乙撑二氧噻吩)包覆前后的紫外可见吸收光谱图。
具体实施方式
以下通过具体实施方式结合附图对本发明的技术方案进行进一步的说明和描述。
实施例1
将4mg的3,4-乙撑二氧噻吩单体溶解于1.8mL,7mmol/L的十二烷基硫酸钠水溶液中,再加入0.018mL的异丙醇,在室温下搅拌30min,将棒状金纳米晶(平均长度为88±5nm,平均直径为45±3nm)加入并分散于步上述溶液中,棒状金纳米晶与3,4-乙撑二氧噻吩单体在此溶液中的摩尔浓度比为9×1013,混合振荡15min后,将7.6mg过硫酸钾溶解于1.5mL盐酸并与上述溶液混合振荡7min后,在室温下反应8h后即得到棒状金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料。该材料的微观结构如图1a所示,可以清楚地看出聚(3,4-乙撑二氧噻吩)在棒状金纳米晶表面形成了均一的壳层结构,该壳层厚度约为9nm。聚(3,4-乙撑二氧噻吩)的包覆将改变棒状金纳米晶所承载的纵向局域表面等离激元共振。从核壳纳米结构的紫外可见吸收光谱图(如图1b所示)中,可以看出对应于纵向局域表面等离激元共振的吸收峰发生了红移,且强度减弱。
实施例2
将5mg的3,4-乙撑二氧噻吩单体溶解于1.8mL,7mmol/L的十二烷基苯磺酸钠水溶液中,再加入0.18mL的异丙醇,在室温下搅拌30min,将双锥状金纳米晶(平均直径为165±5nm,56±1nm)加入并分散于步上述溶液中,双锥状金纳米晶与3,4-乙撑二氧噻吩单体单体在此溶液中的摩尔浓度比为1×1013,混合振荡15min后,将8.03mg过硫酸铵溶解于1.5mL盐酸并与上述溶液混合振荡7min后,在室温下反应8h后即得到双锥状金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料。所制备的核壳纳米材料的微观结构如图2a所示,由图可以清楚地看出聚(3,4-乙撑二氧噻吩)在双锥状金纳米晶表面形成了均一的壳层结构,该壳层厚度约为11nm。从核壳纳米结构的紫外可见吸收光谱图(如图2b所示)中,可以看出对应于纵向局域表面等离激元共振的吸收峰发生了红移,且强度减弱。
实施例3
将10mg的3,4-乙撑二氧噻吩单体溶解于1.8mL,0.042mol/L的十二烷基硫酸钠水溶液中,再加入0.036mL的异丙醇,在室温下搅拌30min,将球状金纳米晶(平均直径为84±5nm)加入并分散于步上述溶液中,球状金纳米晶与3,4-乙撑二氧噻吩单体单体在此溶液中的摩尔浓度比为1×1013,混合振荡15min后,将16.06mg过硫酸铵溶解于1.5mL盐酸并与上述溶液混合振荡7min后,在室温下反应8h后即得到双锥状金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料。聚(3,4-乙撑二氧噻吩)在双锥状金纳米晶表面形成了均一的壳层结构,该壳层厚度约为28nm。核壳纳米结构的纵向局域表面等离激元共振的吸收峰发生了红移,且强度减弱。
本领域普通技术人员可知,本发明的技术方案在下述范围内变化时,仍然能够得到与上述实施例相同或相近的技术效果,仍然属于本发明的保护范围:
一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法,上述金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的尺寸为40~400nm,且壳层厚度为3~80nm,具体包括如下步骤:
(1)将3,4-乙撑二氧噻吩单体溶解于阴离子表面活性剂的水溶液中,并加入适量异丙醇,在室温下搅拌1~5h;
(2)将具有特定形状和大小的金纳米晶加入并分散于步骤(1)所得的物料中,混合振荡10~30min;
(3)将氧化剂溶解于质子酸中,然后与步骤(2)所得的物料混合振荡3~10min后,在室温下反应5~8h后即得;
上述氧化剂与3,4-乙撑二氧噻吩单体的摩尔比为0.5~2∶1,上述金纳米晶颗粒与3,4-乙撑二氧噻吩单体的最终摩尔浓度比为:3×1012~2×1014∶1,上述阴离子表面活性剂的水溶液的溶度为0.2~1.2倍的临界胶束浓度,上述异丙醇与阴离子表面活性剂水溶液的体积比为0.001~0.1∶1;
将步骤(3)所得的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料代替步骤(2)中的金纳米晶,重复步骤(1)至(3)即可增加所述壳层的厚度。
所述金纳米晶的形状包括球状、圆柱状、椭球状、圆锥状和多面体状。所述阴离子表面活性剂为硫酸酯盐或磺酸盐类阴离子表面活性剂,进一步优选的,所述阴离子表面活性剂为十二烷基硫酸钠和/或十二烷基苯磺酸钠。所述氧化剂为过硫酸铵、过硫酸钾或三氯化铁。所述质子酸包括盐酸、硫酸和高氯酸。
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。

Claims (2)

1.一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法,其特征在于:上述金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的尺寸为40~400nm,且壳层厚度为3~80nm,具体包括如下步骤:
(1)将3,4-乙撑二氧噻吩单体溶解于阴离子表面活性剂的水溶液中,并加入适量异丙醇,在室温下搅拌1~5h;上述阴离子表面活性剂为十二烷基硫酸钠和/或十二烷基苯磺酸钠;
(2)将具有特定形状和大小的金纳米晶加入并分散于步骤(1)所得的物料中,混合振荡10~30min;
(3)将氧化剂溶解于质子酸中,然后与步骤(2)所得的物料混合振荡3~10min后,在室温下反应5~8h后即得;上述氧化剂为过硫酸铵、过硫酸钾或三氯化铁,上述质子酸包括盐酸、硫酸和高氯酸;
将步骤(3)所得的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料代替步骤(2)中的金纳米晶,重复步骤(1)至(3)即可增加所述壳层的厚度;
上述氧化剂与3,4-乙撑二氧噻吩单体的摩尔比为0.5~2:1,上述金纳米晶颗粒与3,4-乙撑二氧噻吩单体的最终摩尔浓度比为:3×1012~2×1014:1,上述阴离子表面活性剂的水溶液的溶度为0.2~1.2倍的临界胶束浓度,上述异丙醇与阴离子表面活性剂水溶液的体积比为0.001~0.1:1。
2.如权利要求1所述的制备方法,其特征在于:所述金纳米晶的形状包括球状、圆柱状、椭球状、圆锥状和多面体状。
CN201710952599.2A 2017-10-13 2017-10-13 一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法 Expired - Fee Related CN107793558B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710952599.2A CN107793558B (zh) 2017-10-13 2017-10-13 一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710952599.2A CN107793558B (zh) 2017-10-13 2017-10-13 一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN107793558A CN107793558A (zh) 2018-03-13
CN107793558B true CN107793558B (zh) 2020-06-09

Family

ID=61533076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710952599.2A Expired - Fee Related CN107793558B (zh) 2017-10-13 2017-10-13 一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN107793558B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109232863B (zh) * 2018-07-19 2021-04-30 华侨大学 一种银纳米棒/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025462A (en) * 1997-03-06 2000-02-15 Eic Laboratories, Inc. Reflective and conductive star polymers
CN103242512A (zh) * 2012-02-08 2013-08-14 中国科学院理化技术研究所 Au/聚(3,4-二氧乙基)噻吩核壳结构的复合纳米粒子的制备方法
CN105860115A (zh) * 2015-12-02 2016-08-17 香港中文大学深圳研究院 表面等离激元开关及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025462A (en) * 1997-03-06 2000-02-15 Eic Laboratories, Inc. Reflective and conductive star polymers
CN103242512A (zh) * 2012-02-08 2013-08-14 中国科学院理化技术研究所 Au/聚(3,4-二氧乙基)噻吩核壳结构的复合纳米粒子的制备方法
CN105860115A (zh) * 2015-12-02 2016-08-17 香港中文大学深圳研究院 表面等离激元开关及其制造方法

Also Published As

Publication number Publication date
CN107793558A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
Han et al. Conducting polymer-noble metal nanoparticle hybrids: Synthesis mechanism application
Feng et al. Self‐templating approaches to hollow nanostructures
Bogdanovic et al. Interfacial synthesis of gold–polyaniline nanocomposite and its electrocatalytic application
Tang et al. Functionalization of cellulose nanocrystals for advanced applications
Tang et al. Poly (N-vinyl-2-pyrrolidone)(PVP)-capped dendritic gold nanoparticles by a one-step hydrothermal route and their high SERS effect
Shang et al. Improving dispersion stability of hydrochloric acid hydrolyzed cellulose nano-crystals
Qi et al. Synthesis and characterization of CdS nanoparticles stabilized by double-hydrophilic block copolymers
Li et al. Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance
Selvan et al. Block copolymer mediated synthesis of gold quantum dots and novel gold− polypyrrole nanocomposites
Peng et al. Micelle-assisted one-pot synthesis of water-soluble polyaniline− gold composite particles
Wallace et al. Inherently conducting polymer nanostructures
Yang et al. Dextran-controlled crystallization of silver microcrystals with novel morphologies
Liu et al. Hollow nanostructured polyaniline: preparation, properties and applications
Karim et al. Conducting polyaniline‐titanium dioxide nanocomposites prepared by inverted emulsion polymerization
Yang et al. Fabrication of conducting polymer/noble metal composite nanorings and their enhanced catalytic properties
CN102600907A (zh) 一种聚吡咯敏化的中空状二氧化钛纳米光催化剂及其制备方法
CN103242512B (zh) Au/聚(3,4-二氧乙基)噻吩核壳结构的复合纳米粒子的制备方法
Tang et al. Facile synthesis of Ag@ AgCl-contained cellulose hydrogels and their application
Bamoharram Role of polyoxometalates as green compounds in recent developments of nanoscience
CN107793558B (zh) 一种形状可控的金纳米晶/聚(3,4-乙撑二氧噻吩)核壳纳米材料的制备方法
Jeong et al. One-step green synthesis of 2D Ag-dendrite-embedded biopolymer hydrogel beads as a catalytic reactor
Park et al. Fabrication of hollow silver spheres by MPTMS-functionalized hollow silica spheres as templates
Lu et al. Dendrimer-mediated synthesis of water-dispersible carbon-nanotube-supported oxide nanoparticles
Wang et al. Nanocomposites of anatase− polyaniline prepared via self-assembly
Yang et al. Polyaniline/carbon nanotube multi-layered hollow microspheres with sandwich structure and their electrochemical performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200609