CN107786296A - A kind of reconstructing method for GOLD sequences - Google Patents

A kind of reconstructing method for GOLD sequences Download PDF

Info

Publication number
CN107786296A
CN107786296A CN201711314674.9A CN201711314674A CN107786296A CN 107786296 A CN107786296 A CN 107786296A CN 201711314674 A CN201711314674 A CN 201711314674A CN 107786296 A CN107786296 A CN 107786296A
Authority
CN
China
Prior art keywords
mrow
msub
msubsup
gold sequence
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711314674.9A
Other languages
Chinese (zh)
Inventor
曾辉
张花国
尤少钦
刘莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201711314674.9A priority Critical patent/CN107786296A/en
Publication of CN107786296A publication Critical patent/CN107786296A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0022PN, e.g. Kronecker
    • H04J13/0029Gold

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

The invention belongs to blind estimate technical field, particularly relates to a kind of reconstructing method for GOLD sequences.The method of the present invention includes the DSSS signals received carrying out pre- blind despread, obtain the GOLD sequence spread spectrum codes in M cycle, M GOLD sequence is solved generator polynomial and counted respectively again and obtains final correct generator polynomial, check matrix and block code generator matrix are solved again, changed again by Walsh and solve initial state, so as to complete the reconstruct of GOLD sequences.The GOLD series finally obtained using reconstruct completes the blind despread of DSSS signals., can be consistent with despreading performance during cooperative communication so as to strengthen the performance of blind despread because reconstructing obtained GOLD sequences and the GOLD sequences that transmitting terminal is sent being completely the same.

Description

一种用于GOLD序列的重构方法A Reconstruction Method for GOLD Sequences

技术领域个technical field

本发明属于DSSS(Direct-Sequence Spread Spectrum,直接序列扩频)的盲估计技术领域,具体的说是涉及一种用于GOLD序列的重构方法。The invention belongs to the technical field of blind estimation of DSSS (Direct-Sequence Spread Spectrum, Direct-Sequence Spread Spectrum), and in particular relates to a reconstruction method for GOLD sequences.

背景技术Background technique

直接序列扩频(DSSS)技术是现代通信系统中最常用的通信技术之一。该技术的特点在于:在信号的发送端将信息码序列与扩频序列相乘,由于该扩频码的码速率高,使得信号频谱扩展,可降低传输信号的功率谱密度,具有低截获概率特性。Direct Sequence Spread Spectrum (DSSS) technology is one of the most commonly used communication technologies in modern communication systems. The feature of this technology is that the information code sequence is multiplied by the spread spectrum sequence at the sending end of the signal. Due to the high code rate of the spread spectrum code, the signal spectrum is expanded, which can reduce the power spectral density of the transmitted signal and has a low intercept probability. characteristic.

DSSS通信系统合作接收方,利用已知的扩频序列对接收信号合作解扩,可抑制干扰并恢复出传输信息。但对于非合作接收方则需要对接收的信号进行处理,从中提取出信号扩频码,然后用估计得到的扩频码解扩得到传输信息码序列。The DSSS communication system cooperates with the receiver to use the known spread spectrum sequence to despread the received signal cooperatively, which can suppress interference and recover the transmitted information. But for the non-cooperative receiver, it is necessary to process the received signal, extract the signal spreading code from it, and then use the estimated spreading code to despread to obtain the transmission information code sequence.

用于扩展频谱的码序列为伪随机码,通常采用M序列与GOLD序列。而它们有固定的生成规则。针对GOLD序列来说,其产生是采用两个M序列模二加来得到需要的GOLD序列。在扩频通信的盲解扩中,非合作接收方往往先从接收信号中估计得到扩频码。由于噪声或信道条件的影响,估计得到的扩频码往往含有错误的码元。因此在盲解扩中利用估计得到的扩频码以及扩频码的生成规则可以重构出与发送端相同的伪随机序列,从而可以使盲解扩估计得到的信息码序列的误码率进一步降低,甚至可以使其性能与合作通信媲美。因此对于DSSS信号扩频码的重构研究更有意义。The code sequence used to spread the spectrum is a pseudo-random code, usually M sequence and GOLD sequence. And they have fixed generation rules. For the GOLD sequence, it is generated by adding two M sequences modulo two to obtain the required GOLD sequence. In the blind despreading of spread spectrum communication, the non-cooperative receiver usually estimates the spreading code from the received signal first. Due to the influence of noise or channel conditions, the estimated spreading code often contains wrong symbols. Therefore, in blind despreading, the estimated spreading code and the generation rule of spreading code can be used to reconstruct the same pseudo-random sequence as that of the sending end, so that the bit error rate of the information code sequence estimated by blind despreading can be further improved. Reduced, it can even make its performance comparable to that of cooperative communication. Therefore, the research on the reconstruction of DSSS signal spreading code is more meaningful.

发明内容Contents of the invention

本发明的目的,就是为了克服上述不足,提供一种含错GOLD序列的快速重构方法。The object of the present invention is to provide a fast reconstruction method of an error-containing GOLD sequence in order to overcome the above disadvantages.

本发明的技术方案是,一种用于GOLD序列的重构方法,该方法用于扩频码为GOLD序列的直接序列扩频通信,其特征在于,包括以下步骤:The technical scheme of the present invention is, a kind of reconstruction method that is used for GOLD sequence, and this method is used for the direct sequence spread spectrum communication that spreading code is GOLD sequence, it is characterized in that, comprises the following steps:

a、设定GOLD序列的长度以及阶数已知或已被估计得到,且已经通过盲解扩粗略估计出M个周期的GOLD序列,则采用BM算法对M个周期的GOLD序列求解生成多项式,即按照BM算法对每段GOLD序列求解生成多项式f(m)(x):可以写为并按阶数N归纳出其中n=0,1,2,...,N-1;具体方法为:a. It is set that the length and order of the GOLD sequence are known or estimated, and the GOLD sequence of M periods has been roughly estimated through blind despreading, then the BM algorithm is used to solve the generator polynomial for the GOLD sequence of M periods, That is, according to the BM algorithm for each segment of the GOLD sequence Solve the generator polynomial f (m) (x): can be written as And inductively by order N Where n=0,1,2,...,N-1; the specific method is:

a1、初始化状态,令: a1, initialization state, make:

a2、假设已求得,且l0≤l1≤…≤ln,其中:计算第n步差值dna2. Assumption has been obtained, and l 0 ≤l 1 ≤…≤l n , where: Calculate the nth step difference d n :

其中mod(A,2)表示对除2的余数;Where mod(A,2) represents the remainder of division by 2;

a3、根据第n步差值dn的值,有以下两种情况:a3. According to the value of the nth step difference d n , there are two situations as follows:

(1)当dn=0,则:(1) When d n =0, then:

(2)等dn=1,则:(2) Etc. d n =1, then:

①当:l0=l1=…=ln=0时,取:①When: l 0 =l 1 =...=l n =0, take:

②当有k(0≤k<n),使:lk<lk+1=lk+2=…=ln,则:②When there is k (0≤k<n), make: l k <l k+1 =l k+2 =...=l n , then:

a4、最后得到的就是产生GOLD序列的最短线性移位寄存器,的生成多项式;a4, the last obtained is to generate the GOLD sequence The shortest linear shift register of , for The generator polynomial;

b、求出M个GOLD码的生成多项式后,通过统计得到正确的待重构的GOLD序列c的生成多项式;b. After obtaining the generator polynomials of the M GOLD codes, obtain the correct generator polynomials of the GOLD sequence c to be reconstructed through statistics;

c、利用得到的GOLD序列与码长N和阶数r估计出GOLD序列的校验矩阵H;c. Estimate the check matrix H of the GOLD sequence by using the obtained GOLD sequence, code length N and order r;

d、利用校验矩阵H与码长N和阶数r,估计出分组码生成矩阵G;d. Estimate the block code generation matrix G by using the parity check matrix H, the code length N and the order r;

e、已知分组码生成矩阵G、阶数r和估计得到的GOLD序列的情况下,利用Walsh变换求解初态;e. Known block code generation matrix G, order r and estimated GOLD sequence In the case of , use the Walsh transform to solve the initial state;

f、利用求解出的初态和生成多项式以及已知的码长重构出发送端的扩频采用的GOLD序列。f. Using the solved initial state and generating polynomial and the known code length to reconstruct the GOLD sequence used by the transmitting end for spreading.

最后,用重构出的GOLD序列对接收到的DSSS信号进行解扩,得到发送端的信息码序列,从而完成盲解扩。Finally, the reconstructed GOLD sequence is used to despread the received DSSS signal to obtain the information code sequence at the sending end, thus completing blind despreading.

本发明的有益效果是,因为重构得到的GOLD序列与发送端发出的GOLD序列完全一致,从而能增强盲解扩的性能,使其能和合作通信时的解扩性能一致。The beneficial effect of the present invention is that, because the reconstructed GOLD sequence is completely consistent with the GOLD sequence sent by the sending end, the performance of blind despreading can be enhanced so that it can be consistent with the despreading performance during cooperative communication.

附图说明Description of drawings

图1是本发明快速重构DSSS通信中GOLD序列方法的一种具体实施方式流程图;Fig. 1 is a kind of specific implementation flow chart of the GOLD sequence method in the fast reconstruction DSSS communication of the present invention;

图2是本发明具体实施中,重构算法的性能图。Fig. 2 is a performance diagram of the reconstruction algorithm in the specific implementation of the present invention.

具体实施方式Detailed ways

下面结合附图和实施例对本发明进行说明。The present invention will be described below in conjunction with the accompanying drawings and embodiments.

实施例Example

本例中,信噪比从-12dB到-8dB,产生两个m序列的移位寄存器的阶数为5,其抽头系数分别为:[0 0 1 0 1]、[1 1 1 0 1],信息码个数为100,蒙特卡罗仿真次数为10。采用如图1所示的方法进行GOLD序列重构,将产生的GOLD序列和估计重构得到的GOLD序列做比较,找出他们不同的码元个数。最终产生的曲线图如图2所示。根据图2可得,本发明构得到的GOLD序列与发送端发出的GOLD序列完全一致。In this example, the signal-to-noise ratio is from -12dB to -8dB, and the order of the shift register that generates two m-sequences is 5, and their tap coefficients are: [0 0 1 0 1], [1 1 1 0 1] , the number of information codes is 100, and the number of Monte Carlo simulations is 10. Use the method shown in Figure 1 to reconstruct the GOLD sequence, compare the generated GOLD sequence with the estimated reconstructed GOLD sequence, and find out the number of different symbols between them. The resulting graph is shown in Figure 2. According to Fig. 2, it can be seen that the GOLD sequence constructed by the present invention is completely consistent with the GOLD sequence sent by the sending end.

Claims (1)

1.一种用于GOLD序列的重构方法,该方法用于扩频码为GOLD序列的直接序列扩频通信,其特征在于,包括以下步骤:1. a kind of reconstruction method for GOLD sequence, the method is used for the direct sequence spread spectrum communication that spreading code is GOLD sequence, it is characterized in that, comprises the following steps: a、设定GOLD序列的长度以及阶数已知或已被估计得到,且已经通过盲解扩粗略估计出M个周期的GOLD序列,则采用BM算法对M个周期的GOLD序列求解生成多项式,即按照BM算法对每段GOLD序列求解生成多项式f(m)(x):可以写为并按阶数N归纳出其中n=0,1,2,...,N-1;具体方法为:a. It is set that the length and order of the GOLD sequence are known or estimated, and the GOLD sequence of M periods has been roughly estimated through blind despreading, then the BM algorithm is used to solve the generator polynomial for the GOLD sequence of M periods, That is, according to the BM algorithm for each segment of the GOLD sequence Solve the generator polynomial f (m) (x): can be written as And inductively by order N Where n=0,1,2,...,N-1; the specific method is: a1、初始化状态,令: a1, initialization state, make: a2、假设0≤n<N,已求得,且l0≤l1≤…≤ln,其中:计算第n步差值dna2. Assumption 0≤n<N, obtained, and l 0 ≤l 1 ≤…≤l n , where: Calculate the nth step difference d n : <mrow> <msub> <mi>d</mi> <mi>n</mi> </msub> <mo>=</mo> <mi>mod</mi> <mrow> <mo>(</mo> <msubsup> <mi>a</mi> <mn>0</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mover> <mi>c</mi> <mo>~</mo> </mover> <mi>n</mi> </msub> <mo>+</mo> <msubsup> <mi>a</mi> <mn>1</mn> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mover> <mi>c</mi> <mo>~</mo> </mover> <mrow> <mi>n</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>...</mn> <mo>+</mo> <msubsup> <mi>a</mi> <msub> <mi>l</mi> <mi>n</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> </msubsup> <msub> <mover> <mi>c</mi> <mo>~</mo> </mover> <mrow> <mi>n</mi> <mo>-</mo> <msub> <mi>l</mi> <mi>n</mi> </msub> </mrow> </msub> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>d</mi><mi>n</mi></msub><mo>=</mo><mi>mod</mi><mrow><mo>(</mo><msubsup><mi>a</mi><mn>0</mn><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><msub><mover><mi>c</mi><mo>~</mo></mover><mi>n</mi></msub><mo>+</mo><msubsup><mi>a</mi><mn>1</mn><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><msub><mover><mi>c</mi><mo>~</mo></mover><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></msub><mo>+</mo><mn>...</mn><mo>+</mo><msubsup><mi>a</mi><msub><mi>l</mi><mi>n</mi></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></msubsup><msub><mover><mi>c</mi><mo>~</mo></mover><mrow><mi>n</mi><mo>-</mo><msub><mi>l</mi><mi>n</mi></msub></mrow></msub><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow> 其中mod(A,2)表示对除2的余数;Where mod(A,2) represents the remainder of division by 2; a3、根据第n步差值dn的值,有以下两种情况:a3. According to the value of the nth step difference d n , there are two situations as follows: (1)当dn=0,则:(1) When d n =0, then: <mrow> <msubsup> <mi>f</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>f</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>l</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>l</mi> <mi>n</mi> </msub> </mrow> <mrow><msubsup><mi>f</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mi>f</mi><mi>n</mi><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>l</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><msub><mi>l</mi><mi>n</mi></msub></mrow> (2)等dn=1,则:(2) Etc. d n =1, then: ①当:l0=l1=…=ln=0时,取:①When: l 0 =l 1 =...=l n =0, take: <mrow> <msubsup> <mi>f</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>x</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> <msub> <mi>l</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow><msubsup><mi>f</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>+</mo><msup><mi>x</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>,</mo><msub><mi>l</mi><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>n</mi><mo>+</mo><mn>1</mn></mrow> ②当有k(0≤k<n),使:lk<lk+1=lk+2=…=ln,则:②When there is k (0≤k<n), make: l k <l k+1 =l k+2 =...=l n , then: ln+1=max{ln,n+1-ln} l n+1 =max{l n ,n+1-l n } a4、最后得到的就是产生GOLD序列的最短线性移位寄存器,的生成多项式;a4, the last obtained is to generate the GOLD sequence The shortest linear shift register of , for The generator polynomial; b、求出M个GOLD码的生成多项式后,通过统计得到正确的待重构的GOLD序列c的生成多项式;b. After obtaining the generator polynomials of the M GOLD codes, obtain the correct generator polynomials of the GOLD sequence c to be reconstructed through statistics; c、利用得到的GOLD序列与码长N和阶数r估计出GOLD序列的校验矩阵H;c. Estimate the check matrix H of the GOLD sequence by using the obtained GOLD sequence, code length N and order r; d、利用校验矩阵H与码长N和阶数r,估计出分组码生成矩阵G;d. Estimate the block code generation matrix G by using the parity check matrix H, the code length N and the order r; e、已知分组码生成矩阵G、阶数r和估计得到的GOLD序列的情况下,利用Walsh变换求解初态;e. Known block code generation matrix G, order r and estimated GOLD sequence In the case of , use the Walsh transform to solve the initial state; f、利用求解出的初态和生成多项式以及已知的码长重构出发送端的扩频采用的GOLD序列。f. Using the solved initial state and generating polynomial and the known code length to reconstruct the GOLD sequence used by the transmitting end for spreading.
CN201711314674.9A 2017-12-12 2017-12-12 A kind of reconstructing method for GOLD sequences Pending CN107786296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711314674.9A CN107786296A (en) 2017-12-12 2017-12-12 A kind of reconstructing method for GOLD sequences

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711314674.9A CN107786296A (en) 2017-12-12 2017-12-12 A kind of reconstructing method for GOLD sequences

Publications (1)

Publication Number Publication Date
CN107786296A true CN107786296A (en) 2018-03-09

Family

ID=61430458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711314674.9A Pending CN107786296A (en) 2017-12-12 2017-12-12 A kind of reconstructing method for GOLD sequences

Country Status (1)

Country Link
CN (1) CN107786296A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048976A (en) * 2019-03-06 2019-07-23 中国人民解放军战略支援部队信息工程大学 Short code direct sequence signal array blind despread method and device towards intermediate frequency
CN112799721A (en) * 2021-02-05 2021-05-14 北京科电航宇空间技术有限公司 Efficient reconstruction method, electronic equipment and system of error code-containing m sequence and Gold sequence
CN113366890A (en) * 2019-03-29 2021-09-07 华为技术有限公司 Wake-up signal sending method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168233A (en) * 2014-08-12 2014-11-26 重庆邮电大学 DSSS/UQPSK signal pseudo code sequence estimation method based on characteristic decomposition and Messay algorithm
CN104539310A (en) * 2014-12-31 2015-04-22 电子科技大学 Direct sequence spread spectrum signal hiding method
WO2016206721A1 (en) * 2015-06-23 2016-12-29 Huawei Technologies Co., Ltd. Controller, access node and aggregation node in a radio communication network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104168233A (en) * 2014-08-12 2014-11-26 重庆邮电大学 DSSS/UQPSK signal pseudo code sequence estimation method based on characteristic decomposition and Messay algorithm
CN104539310A (en) * 2014-12-31 2015-04-22 电子科技大学 Direct sequence spread spectrum signal hiding method
WO2016206721A1 (en) * 2015-06-23 2016-12-29 Huawei Technologies Co., Ltd. Controller, access node and aggregation node in a radio communication network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊伟杰: "直扩信号盲估计技术研究", 《电子科技大学硕士学位论文》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110048976A (en) * 2019-03-06 2019-07-23 中国人民解放军战略支援部队信息工程大学 Short code direct sequence signal array blind despread method and device towards intermediate frequency
CN110048976B (en) * 2019-03-06 2021-07-02 中国人民解放军战略支援部队信息工程大学 Method and device for blind despreading of short code direct spread signal array oriented to intermediate frequency
CN113366890A (en) * 2019-03-29 2021-09-07 华为技术有限公司 Wake-up signal sending method and device
CN113366890B (en) * 2019-03-29 2022-09-23 华为技术有限公司 Wake-up signal sending method and device
CN112799721A (en) * 2021-02-05 2021-05-14 北京科电航宇空间技术有限公司 Efficient reconstruction method, electronic equipment and system of error code-containing m sequence and Gold sequence

Similar Documents

Publication Publication Date Title
CN104753561B (en) Direct sequence spread spectrum modulation method for suppressing multipath interference in underwater acoustic communication
CN102739322B (en) Remote underwater acoustic communication method based on soft-demodulation soft-decoding joint iteration
CN103490860B (en) A kind of high performance shortwave orthogonal spectrum expansion iterative demodulation and interpretation method
JP7209540B2 (en) Safe channel sounding
CN107786296A (en) A kind of reconstructing method for GOLD sequences
CN104158557B (en) Gold sequence parameter estimation method
CN104038249B (en) Cycle long code direct sequence signal pseudo-random code estimation method
CN109936520B (en) A low-complexity GMSK demodulation timing synchronization method in burst communication
CN102035770A (en) Method for estimating channel by means of correlation
CN103957026B (en) A kind of frame hopping spread spectrum communication system based on chaos sequence
CN102664839B (en) Channel estimation methods and device
CN105706406A (en) Method and system for selecting spreading sequences with variable spreading factors
CN106443718A (en) Measurement zero value non-error tracking system and method based on correlation peak correction under non-ideal channel
CN102742233B (en) Method, device, and system for frequency offset estimation and channel estimation
CN102882654A (en) Encoding constraint and probability calculation based encoding and decoding synchronization method
CN102710564B (en) Channel time domain impulse response filter method and device
CN102694568A (en) Spread spectrum communication method by using multi-system pseudorandom sequence
CN105635026A (en) Location modulation and soft demodulation method in spread spectrum communication
Zhao et al. Blind Estimation of PN Codes in Multi-user LSC-DSSS Signals.
CN102111178A (en) Synchronous capturing based on sequence correlation property under very low signal-to-noise ratio
CN105429670A (en) A digital communication method based on the combination of DSSS despreading operation and LDPC decoding
James et al. Application of residue number system in the generation of PN-sequences for CDMA systems
Priyanjali et al. Performance of MC-CDMA system with various orthogonal spreading codes in multipath Rayleigh fading channel
CN114666191B (en) A communication method for orthogonal multi-user shift noise reduction DCSK chaotic communication system
CN113784381B (en) Ultra-wideband communication system measurement matrix design method based on chaotic compressed sensing

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180309