CN107784174A - A kind of screw support bearings wear-out life computational methods - Google Patents

A kind of screw support bearings wear-out life computational methods Download PDF

Info

Publication number
CN107784174A
CN107784174A CN201711020623.5A CN201711020623A CN107784174A CN 107784174 A CN107784174 A CN 107784174A CN 201711020623 A CN201711020623 A CN 201711020623A CN 107784174 A CN107784174 A CN 107784174A
Authority
CN
China
Prior art keywords
mrow
msub
msup
msubsup
steel ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711020623.5A
Other languages
Chinese (zh)
Inventor
倪艳光
牛荣军
谢建军
华显伟
王光斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Science and Technology
Original Assignee
Henan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Science and Technology filed Critical Henan University of Science and Technology
Priority to CN201711020623.5A priority Critical patent/CN107784174A/en
Publication of CN107784174A publication Critical patent/CN107784174A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/04Ageing analysis or optimisation against ageing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

A kind of screw support bearings wear-out life computational methods, it is related to bearing life computing technique field, including:The analysis of bearing quasi-static testing, bearing wear analysis, obtain the steps such as bearing wear life-span.Beneficial effect of the present invention:Continuous process is carried out sliding-model control by the present invention, the dynamic problem of complexity is converted into simple quasi-static problem, relative to traditional test method, using the abrasion accuracy life of technology of numerical simulation research ball-screw bearing, with research cycle is short, cost is low, and it is very convenient when studying influence of the change of bearing structure parameter to bearing wear accuracy life, it may be repeated, can effectively reduce the R&D cycle of ball-screw bearing.

Description

A kind of screw support bearings wear-out life computational methods
Technical field
The present invention relates to bearing life computing technique field, specifically a kind of screw support bearings wear-out life calculates Method.
Background technology
Because abrasion has complexity and multifarious feature so that traditional experimental study method and classical calculus meter Calculation method can not solve the problems, such as actual wear well, although test method(s) closer to reality, it require that expending a large amount of Human and material resources, and research cycle is long, cost is high.
With intelligent simulation going deep into tribological field, technology of numerical simulation, which has become, solves the problems, such as Dynamic wear One of important method.
The content of the invention
The technical problems to be solved by the invention are to provide a kind of ball-screw bearing wear-out life computational methods, solve mesh Preceding ball-screw bearing wear-out life calculates the problems such as inaccurate.
The present invention is that technical scheme is used by solving above-mentioned technical problem:A kind of screw support bearings wear-out life meter Calculation method, comprises the following steps:
Step 1: bearing is set in conventional coordinates { o;X, y, z } in when inner ring, outer ring, the spin velocity of retainer and steel ball Respectively ωi、ωo、ωmAnd ωb, then by the rotational velocity of steel ball in coordinate system { o';Obtained in x', y', z'} to coordinate axial projection To three component ωx', ωy'And ωz', wherein coordinate system { o';X', y', the z'} origin of coordinates are located at the steel ball centre of sphere, x' axles and x Axle is parallel, and radially, the coordinate system is rotated z' axles with the revolution speed of steel ball around x-axis;
Step 2: analyzing the motion state of screw support bearings, outer ring raceway is fixed, and inner ring raceway is with ωiRotation, steel The ball centre of sphere is with angular velocity omegamRevolved round the sun around fixed coordinate system origin o, thus according to inner ring raceway absolute angular velocities ωiIn can obtaining, Outer ring relative to retainer relative angular velocity omegaim、ωomAnd the autobiography angular velocity omega of steel ballb
Step 3: according to the contact relation of steel ball and interior raceway, in rotating direction, sliding or cunning of the inner ring raceway relative to steel ball Dynamic speed uyiDetermined by the linear differential of raceway and steel ball, thus obtain uyiAnd steel ball is perpendicular to the sliding speed of rotating direction uxi
Step 4: similarly, sliding or cunning of the outer ring raceway relative to steel ball can obtain by the contact relation of steel ball and outer ring raceway Dynamic speed uyoAnd steel ball is perpendicular to the sliding speed u of rotating directionxo
Step 5: the wear-out life t of bearing is:
Wherein,ux、uy Value be uxi、uyiOr uxo、uyo, Qu taken ux、uyObtained maximum is substituted into after calculating, and a, b grow for Elliptical Contacts region Semi-minor axis length;QmaxRepresent the maximum of instantaneous normal direction load, ωsAutomatic rotary component for steel ball relative to raceway;X, y is to connect Region any point is touched,A values are aiOr ao, α values are αiOr αo, p takes A and α is substituted into after calculating obtained minimum value, KsThe coefficient of waste between steel ball and raceway is represented, H represents Vickers hardness, Z tables Show the number of steel ball, eoRepresent end-play increment allowable.
ω is sought in step of the present inventionx', ωy'And ωz'Specific method be:
ωx'bcosβcosβ' (1)
ωy'bcosβsinβ' (2)
ωz'b sinβ (3)
Wherein β is the attitude angle of steel ball rotation axis and the angle, i.e. steel ball of x'o'y' planes;β ' is the steel ball axis of rotation in x'o' Projection and the angle of x' axles in y' planes.
Relative angular velocity omega of the inside and outside circle relative to retainer is sought in step 2 of the present inventionim、ωomAnd steel ball from Pass angular velocity omegabSpecific method be:
In formula, Ti' for outer ring raceway pure rolling point is contacted on major axis with steel ball to the distance of the centre of sphere, To' it is inner ring raceway and steel Pure rolling point is to the distance of the steel ball centre of sphere, α on ball contact major axisoFor steel ball and outer raceway contact angle, αiConnect for steel ball and interior raceway Feeler.
U in step 3 of the present inventionyiAnd uxiCircular be:
Wherein, aiFor the major semiaxis length of elliptic contact surface projection;RiFor the radius of curvature of inner ring Contact Ellipse textured surface;dm For pitch diameter, its value is the half of inside and outside raceway diameter sum;DwFor steel ball size.
Sliding or sliding speed u of the outer ring raceway relative to steel ball in step 4 of the present inventionyoAnd steel ball perpendicular to The sliding speed u of rotating directionxoCircular be:
Wherein, a0For the semi-minor axis length of elliptic contact surface projection;RoFor the radius of curvature of outer ring Contact Ellipse textured surface; ωomIt is the relative retainer in outer ring or relative { o;X, y, z } coordinate system rotating speed.
K of the present inventionsValue be Ks≈1.77×10-8λ-1, wherein λ is film lubrication parameter.
E of the present inventionoTake the 20% of initial play.
The beneficial effects of the invention are as follows:This method is in rolling bearing quasi-static testing analytic approach and bearing wear theoretical foundation Screw support bearings are carried out with wear-out life analysis, screw support bearings wear-out life appraising model is established in innovation, predicts bearing Wear-out life under normal operating conditions.Compared with prior art, continuous process is carried out sliding-model control by the present invention, will be multiple Miscellaneous dynamic problem is converted into simple quasi-static problem, relative to traditional test method, is studied using technology of numerical simulation The abrasion accuracy life of ball-screw bearing, have that research cycle is short, cost is low, and in the change of research bearing structure parameter It is very convenient during influence to bearing wear accuracy life, it may be repeated, can effectively reduce grinding for ball-screw bearing Send out the cycle.
Brief description of the drawings
Fig. 1 is bearing parts rotational angular velocity vector figure of the present invention;
Fig. 2 is local coordinate system reference chart of the present invention;
Fig. 3 is steel ball and interior raceway contact situation schematic diagram.
Marked in figure:1st, outer raceway groove, 2, steel ball, 3, interior raceway groove, 4, axis, 5, steel ball rotation axis, 6, pitch circle.
Embodiment
As illustrated, a kind of screw support bearings wear-out life computational methods, comprise the following steps:
Step 1: bearing is set in conventional coordinates { o;X, y, z } in when inner ring, outer ring, the spin velocity of retainer and steel ball Respectively ωi、ωo、ωmAnd ωb, then by the rotational velocity of steel ball in coordinate system { o';Obtained in x', y', z'} to coordinate axial projection To three component ωx', ωy'And ωz'
ωx'bcosβcosβ' (1)
ωy'bcosβsinβ' (2)
ωz'bsinβ (3)
Wherein coordinate system { o';X', y', the z'} origin of coordinates are located at the steel ball centre of sphere, and x' axles are parallel with x-axis, z' axles radially to Outside, the coordinate system is rotated with the revolution speed of steel ball around x-axis, and β is steel ball rotation axis and the angle of x'o'y' planes, i.e. steel ball Attitude angle;β ' is projection and the angle of x' axle of the steel ball axis of rotation in x'o'y' planes;
Step 2: analyzing the motion state of screw support bearings, outer ring raceway is fixed, and inner ring raceway is with ωiRotation, steel The ball centre of sphere is with angular velocity omegamRevolved round the sun around fixed coordinate system origin o, thus according to inner ring raceway absolute angular velocities ωiFormula can be passed through (4) relative angular velocity omega of the inside and outside circle relative to retainer is obtained in~(6)im、ωomAnd the autobiography angular velocity omega of steel ballb
In formula, Ti' for outer ring raceway pure rolling point is contacted on major axis with steel ball to the distance of the steel ball centre of sphere, To' it is inner ring raceway Pure rolling point is contacted on major axis with steel ball to the distance of the steel ball centre of sphere, αoFor steel ball and outer raceway contact angle, αiFor steel ball and interior rolling Road contact angle;
Step 3: according to the contact relation of steel ball and interior raceway, in rotating direction, sliding or cunning of the inner ring raceway relative to steel ball Dynamic speed uyiDetermined by the linear differential of raceway and steel ball, uyiComputational methods be:
Wherein, aiFor the major semiaxis length of elliptic contact surface projection;RiFor the radius of curvature of inner ring Contact Ellipse textured surface;dm For pitch diameter, its value is the half of inside and outside raceway diameter sum;DwFor steel ball size;
Sliding speed u of the steel ball perpendicular to rotating directionxiComputational methods be:
Step 4: similarly, sliding or cunning of the outer ring raceway relative to steel ball can obtain by the contact relation of steel ball and outer ring raceway Dynamic speed uyoAnd steel ball is perpendicular to the sliding speed u of rotating directionxo
Wherein, a0For the semi-minor axis length of elliptic contact surface projection;RoFor the radius of curvature of outer ring Contact Ellipse textured surface; ωomIt is the relative retainer in outer ring or relative { o;X, y, z } coordinate system rotating speed;
Step 5: the wear-out life t of bearing is:
Wherein,ux、uy Value be uxi、uyiOr uxo、uyo, Qu taken ux、uyObtained maximum is substituted into after calculating, and a, b grow for Elliptical Contacts region Semi-minor axis length;QmaxRepresent the maximum of instantaneous normal direction load, ωsAutomatic rotary component for steel ball relative to raceway;X, y is to connect Region any point is touched,A values are aiOr ao, α values are αiOr αo, p takes A and α is substituted into after calculating obtained minimum value, KsThe coefficient of waste between steel ball and raceway is represented, H represents Vickers hardness, Z tables Show the number of steel ball, eoRepresent end-play increment allowable.
The KsValue be Ks≈1.77×10-8λ-1, wherein λ is film lubrication parameter.
The eoTake the 20% of initial play.
Continuous process is carried out sliding-model control by the present invention, and the dynamic problem of complexity is converted into simple quasistatic asks Topic, relative to traditional test method, the abrasion accuracy life of ball-screw bearing is studied using technology of numerical simulation, has and grinds Study carefully that the cycle is short, cost is low, and it is very square when studying influence of the change of bearing structure parameter to bearing wear accuracy life Just, it may be repeated, can effectively reduce the R&D cycle of ball-screw bearing.

Claims (7)

  1. A kind of 1. screw support bearings wear-out life computational methods, it is characterised in that:Comprise the following steps:
    Step 1: bearing is set in conventional coordinates { o;X, y, z } in when inner ring, outer ring, the spin velocity of retainer and steel ball Respectively ωi、ωo、ωmAnd ωb, then by the rotational velocity of steel ball in coordinate system { o';Obtained in x', y', z'} to coordinate axial projection To three component ωx', ωy'And ωz', wherein coordinate system { o';X', y', the z'} origin of coordinates are located at the steel ball centre of sphere, x' axles and x Axle is parallel, and radially, the coordinate system is rotated z' axles with the revolution speed of steel ball around x-axis;
    Step 2: analyzing the motion state of screw support bearings, outer ring raceway is fixed, and inner ring raceway is with ωiRotation, steel The ball centre of sphere is with angular velocity omegamRevolved round the sun around fixed coordinate system origin o, thus according to inner ring raceway absolute angular velocities ωiIn can obtaining, Outer ring relative to retainer relative angular velocity omegaim、ωomAnd the autobiography angular velocity omega of steel ballb
    Step 3: according to the contact relation of steel ball and interior raceway, in rotating direction, sliding or cunning of the inner ring raceway relative to steel ball Dynamic speed uyiDetermined by the linear differential of raceway and steel ball, thus obtain uyiAnd steel ball is perpendicular to the sliding speed of rotating direction uxi
    Step 4: similarly, sliding or cunning of the outer ring raceway relative to steel ball can obtain by the contact relation of steel ball and outer ring raceway Dynamic speed uyoAnd steel ball is perpendicular to the sliding speed u of rotating directionxo
    Step 5: the wear-out life t of bearing is:
    <mrow> <mi>t</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>pe</mi> <mi>o</mi> </msub> </mrow> <mrow> <mo>(</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>/</mo> <mi>H</mi> <mo>)</mo> <msub> <mi>ZQ</mi> <mi>u</mi> </msub> </mrow> </mfrac> </mrow>
    Wherein,ux、uy's Value is uxi、uyiOr uxo、uyo, Qu taken ux、uyObtained maximum is substituted into after calculating, and a, b are Elliptical Contacts region length Half shaft length;QmaxRepresent the maximum of instantaneous normal direction load, ωsAutomatic rotary component for steel ball relative to raceway;X, y is contact Region any point,A values are aiOr ao, α values are αiOr αo, p taken a Obtained minimum value, K are substituted into after calculating with αsThe coefficient of waste between steel ball and raceway is represented, H represents Vickers hardness, and Z is represented The number of steel ball, eoRepresent end-play increment allowable.
  2. A kind of 2. screw support bearings wear-out life computational methods according to claim 1, it is characterised in that:The step In seek ωx', ωy'And ωz'Specific method be:
    ωx'bcosβcosβ' (1)
    ωy'bcosβsinβ' (2)
    ωz'bsinβ (3)
    Wherein β is the attitude angle of steel ball rotation axis and the angle, i.e. steel ball of x'o'y' planes;β ' is the steel ball axis of rotation in x'o' Projection and the angle of x' axles in y' planes.
  3. A kind of 3. screw support bearings wear-out life computational methods according to claim 1, it is characterised in that:The step Relative angular velocity omega of the inside and outside circle relative to retainer is sought in twoim、ωomAnd the autobiography angular velocity omega of steel ballbSpecific method For:
    <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>T</mi> <mi>o</mi> </msub> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msup> <mi>cos&amp;beta;cos&amp;beta;</mi> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;sin&amp;alpha;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>m</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msup> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msup> <mi>cos&amp;beta;cos&amp;beta;</mi> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;sin&amp;alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>m</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <msup> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mrow> <mn>1</mn> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msup> <mi>cos&amp;beta;cos&amp;beta;</mi> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;sin&amp;alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>m</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msup> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <msup> <msub> <mi>T</mi> <mi>o</mi> </msub> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <msup> <mi>cos&amp;beta;cos&amp;beta;</mi> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;sin&amp;alpha;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>m</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <msup> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>&amp;omega;</mi> <mi>b</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> </mrow> <mrow> <mfrac> <mrow> <msub> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>o</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>cos&amp;beta;cos&amp;beta;</mi> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;sin&amp;alpha;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>m</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> <mo>+</mo> <msub> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>o</mi> </msub> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msup> <mi>cos&amp;beta;cos&amp;beta;</mi> <mo>&amp;prime;</mo> </msup> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>sin&amp;beta;sin&amp;alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>m</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <msup> <mi>T</mi> <mo>&amp;prime;</mo> </msup> <mi>i</mi> </msub> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mfrac> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
    In formula, Ti' for outer ring raceway pure rolling point is contacted on major axis with steel ball to the distance of the centre of sphere, To' it is inner ring raceway and steel ball Pure rolling point is contacted on major axis to the distance of the steel ball centre of sphere, αoFor steel ball and outer raceway contact angle, αiFor steel ball and interior raceway contact Angle.
  4. A kind of 4. screw support bearings wear-out life computational methods according to claim 1, it is characterised in that:The step U in threeyiAnd uxiCircular be:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>y</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>d</mi> <mi>m</mi> </msub> <mn>2</mn> </mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>{</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>a</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>w</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>a</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> </mfrac> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> </mfrac> <msub> <mi>sin&amp;alpha;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>cos&amp;alpha;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mo>{</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>a</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>w</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msubsup> <mi>a</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>}</mo> <mo>&amp;times;</mo> <msub> <mi>&amp;omega;</mi> <msup> <mi>y</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, aiFor the major semiaxis length of elliptic contact surface projection;RiFor the radius of curvature of inner ring Contact Ellipse textured surface;dm For pitch diameter, its value is the half of inside and outside raceway diameter sum;DwFor steel ball size.
  5. A kind of 5. screw support bearings wear-out life computational methods according to claim 1, it is characterised in that:The step Sliding or sliding speed u of the outer ring raceway relative to steel ball in fouryoAnd steel ball is perpendicular to the sliding speed u of rotating directionxo's Circular is:
    <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>y</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mi>d</mi> <mi>m</mi> </msub> <mn>2</mn> </mfrac> <msub> <mi>&amp;omega;</mi> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msub> <mo>+</mo> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>a</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>w</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msubsup> <mi>a</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msub> </mfrac> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>&amp;omega;</mi> <msup> <mi>z</mi> <mo>&amp;prime;</mo> </msup> </msub> <msub> <mi>&amp;omega;</mi> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msub> </mfrac> <msub> <mi>sin&amp;alpha;</mi> <mi>o</mi> </msub> <mo>-</mo> <msub> <mi>cos&amp;alpha;</mi> <mi>o</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;omega;</mi> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
    <mrow> <msub> <mi>u</mi> <mrow> <mi>x</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mo>-</mo> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>x</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msubsup> <mi>R</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>a</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>D</mi> <mi>w</mi> </msub> <mo>/</mo> <mn>2</mn> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msubsup> <mi>a</mi> <mi>o</mi> <mn>2</mn> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>&amp;times;</mo> <msub> <mi>&amp;omega;</mi> <msup> <mi>x</mi> <mo>&amp;prime;</mo> </msup> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
    Wherein, a0For the semi-minor axis length of elliptic contact surface projection;RoFor the radius of curvature of outer ring Contact Ellipse textured surface;ωom It is the relative retainer in outer ring or relative { o;X, y, z } coordinate system rotating speed.
  6. A kind of 6. screw support bearings wear-out life computational methods according to claim 1, it is characterised in that:The Ks's Value is Ks≈1.77×10-8λ-1, wherein λ is film lubrication parameter.
  7. A kind of 7. screw support bearings wear-out life computational methods according to claim 1, it is characterised in that:The eoTake The 20% of initial play.
CN201711020623.5A 2017-10-26 2017-10-26 A kind of screw support bearings wear-out life computational methods Pending CN107784174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711020623.5A CN107784174A (en) 2017-10-26 2017-10-26 A kind of screw support bearings wear-out life computational methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711020623.5A CN107784174A (en) 2017-10-26 2017-10-26 A kind of screw support bearings wear-out life computational methods

Publications (1)

Publication Number Publication Date
CN107784174A true CN107784174A (en) 2018-03-09

Family

ID=61431693

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711020623.5A Pending CN107784174A (en) 2017-10-26 2017-10-26 A kind of screw support bearings wear-out life computational methods

Country Status (1)

Country Link
CN (1) CN107784174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132575A (en) * 2019-05-14 2019-08-16 重庆大学 A kind of test platform of ball screw system wear-out life
CN110821751A (en) * 2019-10-17 2020-02-21 射阳远景能源科技有限公司 Method for changing load of stressed part of variable-pitch bearing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074637A3 (en) * 2003-02-19 2005-07-21 Partick W Hartwick Sleeve piston fluid motor
CN103256908A (en) * 2013-05-22 2013-08-21 河南科技大学 Determination method of radial internal clearance of variable pitch bearing
CN103500268A (en) * 2013-09-06 2014-01-08 西安交通大学 High-speed angular contact ball bearing damage fault dynamic analysis method
CN105930576A (en) * 2016-04-19 2016-09-07 西安交通大学 Kinetic model-based design method for fit clearance of machine tool spindle bearing
CN106560815A (en) * 2016-02-02 2017-04-12 梁明轩 Ball bearing reliability design method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074637A3 (en) * 2003-02-19 2005-07-21 Partick W Hartwick Sleeve piston fluid motor
CN103256908A (en) * 2013-05-22 2013-08-21 河南科技大学 Determination method of radial internal clearance of variable pitch bearing
CN103500268A (en) * 2013-09-06 2014-01-08 西安交通大学 High-speed angular contact ball bearing damage fault dynamic analysis method
CN106560815A (en) * 2016-02-02 2017-04-12 梁明轩 Ball bearing reliability design method
CN105930576A (en) * 2016-04-19 2016-09-07 西安交通大学 Kinetic model-based design method for fit clearance of machine tool spindle bearing

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HIGH-SPEED WEAR LIFETIME ANALYSIS OF INSTRUMENT BALL BEAINGS: "High-speed wear lifetime analysis of instrument ball beaings", 《ENGINEERING TRIBOLOGY》 *
倪艳光,刘玉等: "薄壁深沟球轴承负荷分布及寿命研究", 《机械传动》 *
刘良勇: "动量轮轴承磨损寿命研究", 《中国优秀硕士学位论文全文数据库工程科技II辑》 *
王浩,郭兰中等: "常幅载荷下滑轨与滚轮寿命及可靠性研究", 《轴承》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132575A (en) * 2019-05-14 2019-08-16 重庆大学 A kind of test platform of ball screw system wear-out life
CN110821751A (en) * 2019-10-17 2020-02-21 射阳远景能源科技有限公司 Method for changing load of stressed part of variable-pitch bearing

Similar Documents

Publication Publication Date Title
Liu et al. An analytical calculation method of the load distribution and stiffness of an angular contact ball bearing
Zhang et al. A comparative study and stiffness analysis of angular contact ball bearings under different preload mechanisms
Li et al. A general method for the dynamic modeling of ball bearing–rotor systems
Qin et al. Dynamics modelling for deep groove ball bearings with local faults based on coupled and segmented displacement excitation
Tomović Calculation of the boundary values of rolling bearing deflection in relation to the number of active rolling elements
CN102725545B (en) Torque calculation method for four-point contact ball bearing, calculation device, and calculation program
CN105822661B (en) A kind of design method and device of elliptic roller track ball bearing length semi-axis structure parameter
Yao et al. Multibody dynamics simulation of thin-walled four-point contact ball bearing with interactions of balls, ring raceways and crown-type cage
CN106560815A (en) Ball bearing reliability design method
CN107784174A (en) A kind of screw support bearings wear-out life computational methods
CN106801706A (en) A kind of processing method of the thin-wall bearing for industrial robot
Lin et al. Study of the stiffness matrix of preloaded duplex angular contact ball bearings
Xu et al. Analysis of axial and overturning ultimate load-bearing capacities of deep groove ball bearings under combined loads and arbitrary rotation speed
CN108984936B (en) High speed duplex rolling bearing electro spindle rotor-support-foundation system dynamic design approach
Xu et al. Contact characteristics analysis of deep groove ball bearings under combined angular misalignments and external loads
Cheng et al. Research on the effect of structural and material parameters on vibrations based on quasi-static model of bearings
Chen et al. Effects of cage pocket shapes on dynamics of angular contact ball bearings
Cheng et al. Research on mechanical characteristics of fault-free bearings based on centrifugal force and gyroscopic moment
Rabréau et al. Influence of bearing kinematics hypotheses on ball bearing heat generation
CN105160090A (en) Optimization design method of novel ceramic ball bearing
Yu et al. Investigation on the friction heat generation rate of ball bearings at ultra-high rotation speed
Zeng et al. Model-based low-speed rotation error prediction for the rigid shaft-bearing system considering the assembly deviation
Yang et al. A new method to analyze three-dimensional non-repetitive run-out (3D-NRRO) of angular contact ball bearings
Kosmol ANALYTICAL AND FEM SIMULATION STUDIES ON FRICTION RESISTANCES IN ANGULAR BALL BEARING.
Xu et al. Modeling and analyzing the slipping of the ball screw

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180309