CN107784149A - A kind of parameter identification method and device of BCJ constitutive models - Google Patents

A kind of parameter identification method and device of BCJ constitutive models Download PDF

Info

Publication number
CN107784149A
CN107784149A CN201610835881.8A CN201610835881A CN107784149A CN 107784149 A CN107784149 A CN 107784149A CN 201610835881 A CN201610835881 A CN 201610835881A CN 107784149 A CN107784149 A CN 107784149A
Authority
CN
China
Prior art keywords
mrow
mover
msub
epsiv
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610835881.8A
Other languages
Chinese (zh)
Other versions
CN107784149B (en
Inventor
王罡
周婷婷
杨洋
帅茂兵
融亦鸣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Publication of CN107784149A publication Critical patent/CN107784149A/en
Application granted granted Critical
Publication of CN107784149B publication Critical patent/CN107784149B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

This application discloses a kind of parameter identification method and device of BCJ constitutive models, after the application to BCJ constitutive equations by being developed and carrying out decoupling separation to each parameter, tested using quasistatic compression, SHPB is tested and nonlinear fitting, the each scalar parameter and material constant of BCJ constitutive models are determined, realizes the purpose for the parameter for fast and accurately identifying BCJ constitutive models.

Description

A kind of parameter identification method and device of BCJ constitutive models
This application claims submit Patent Office of the People's Republic of China, Application No. 201610804776.8, invention name within 5th in September in 2016 Referred to as the priority of the Chinese patent application of " a kind of parameter identification method and device of BCJ constitutive models ", entire contents are led to Reference is crossed to be incorporated in the present application.
Technical field
The application is related to mechanics of materials technical field, more specifically to a kind of parameter identification side of BCJ constitutive models Method and device.
Background technology
Constitutive relation is the objective law that must comply with material deformation process.In mechanical processing process, workpiece material Influence of the situations such as temperature, deflection and the strain rate that are subjected to materials microstructure is always the focus of research, therefore comprehensive The influence for considering each factor to material flow stress is closed, structure can truly reflect the material constitutive mould of machined material feature Type, it is basis and the premise for ensureing process dynamic numeric simulation result correctness and reliability.
BCJ (Bammann-Chiesa-Johnson) constitutive model is to be based on the dynamic (dynamical) physical visco-plasticity mould of dislocation Type, flow stress and strain rate, temperature, the coupling effect of strain under the conditions of different strain rate can be described, and consider strain rate, Temperature history effect.The model includes the internal variable that reflection material microstructure contacts with corresponding macro-mechanical property, covers Two aspects of macro-stress and microstructure, can describe dynamic mechanical response and quiet dynamic recovery, recrystallization behavior, moreover it is possible to catch Adiabatic temperature rise effect.BCJ constitutive models gradually embody the characteristic more superior than classical mechanics this structure in engineer applied.
But the parameter of BCJ constitutive models is numerous, 9 scalar parameters and 18 material constants are included.Its numerous parameter Identify extremely difficult, constrain the application of BCJ constitutive models.
The content of the invention
In view of this, it is existing for solving this application provides a kind of parameter identification method and device of BCJ constitutive models The problem of parameter identification of the technology to BCJ constitutive models is difficult.
To achieve these goals, it is proposed that scheme it is as follows:
A kind of parameter identification method of BCJ constitutive models, including:
BCJ constitutive equations are developed, the BCJ constitutive equations after being developed:
Wherein, β represents material initial yield stress;
According to setting extreme value temperature TrAnd ThUnder, set low strain dynamic rateUnder, institute is tested to the quasistatic compression that material is carried out Obtain, material true stress-true stain curve, determine TrAnd ThThe unrelated limitation Y of rate of lower yield stress;
According to TrAnd ThUnder, one group of high strain-rate of settingUnder, to the split hopkinson press bar SHPB of material progress What experiment obtained, material true stress-true stain curve, it is determined that the initial yield stress β per strip material true stress-true stain curve;
According to the initial yield stress β of each strip material true stress-true stain curve, and the T determinedrAnd ThLower surrender The unrelated limitation Y of rate of stress, carries out curve fitting to the expression formula of β in the BCJ constitutive equations after evolution, obtains TrAnd ThUnder, bend Take the rate dependence size V of point, and strain rate f during the unrelated relevant transition to rate of rate;
According to TrAnd ThUnder, one group of high strain-rate of settingUnder, to the split hopkinson press bar SHPB of material progress What experiment obtained, each high strain-rateCorresponding stress value σ, and described Y, V, the f determined, to the BCJ constitutive equations after evolution In σ expression formula carry out curve fitting, obtain TrAnd ThUnder, isotropic hardening modulus H, anisotropy hardening modulus h, with The related static or hot reply parameter R of isotropic hardening internal variables, related to kinematic hardening internal variable static or hot reply Parameter rs, related to isotropic hardening internal variable dynamic recovery parameter Rd, related to kinematic hardening internal variable dynamic recovery Parameter rd
According to described Y, V, f, H, h, R of determinations、rs、Rd、rd, and the expression formula of C1-C18 material constants, determine C1- C18 material constants.
A kind of parameter identification device of BCJ constitutive models, including:
Constitutive equation evolution unit, for developing to BCJ constitutive equations, the BCJ constitutive equations after being developed:
Wherein, β represents material initial yield stress;
First scalar parameter determining unit, for according to setting extreme value temperature TrAnd ThUnder, set low strain dynamic rateUnder, to material What the quasistatic compression experiment that material is carried out was obtained, material true stress-true stain curve, determine TrAnd ThThe rate of lower yield stress without Close limitation Y;
Initial yield stress determining unit, for according to TrAnd ThUnder, one group of high strain-rate of settingUnder, material is carried out Split hopkinson press bar SHPB experiments obtain, material true stress-true stain curve, it is determined that true per strip material trus stress The initial yield stress β of strain curve;
Second scalar parameter determining unit, for the initial yield stress β according to each strip material true stress-true stain curve, And the T determinedrAnd ThThe unrelated limitation Y of rate of lower yield stress, enters to the expression formula of β in the BCJ constitutive equations after evolution Row curve matching, obtains TrAnd ThUnder, the rate dependence size V of yield point, and strain rate during the unrelated relevant transition to rate of rate f;
3rd scalar parameter determining unit, for according to TrAnd ThUnder, one group of high strain-rate of settingUnder, material is entered What capable split hopkinson press bar SHPB experiments obtained, each high strain-rateCorresponding stress value σ, and determine described Y, V, f, the expression formula of the σ in the BCJ constitutive equations after evolution is carried out curve fitting, obtains TrAnd ThUnder, isotropic hardening Modulus H, anisotropy hardening modulus h, the static or hot reply parameter R related to isotropic hardening internal variablesIt is and servo-actuated hard Change the related static or hot reply parameter r of internal variables, related to isotropic hardening internal variable dynamic recovery parameter RdAnd with The related dynamic recovery parameter r of dynamic hardening internal variabled
Material constant determining unit, for described Y, V, f, H, h, R according to determinations、rs、Rd、rd, and C1-C18 materials Expect the expression formula of constant, determine C1-C18 material constants.
It can be seen from the above technical scheme that the parameter identification method for the BCJ constitutive models that the embodiment of the present application provides, BCJ constitutive equations are developed, the BCJ constitutive equations after being developed;According to setting extreme value temperature TrAnd ThUnder, setting is low Strain rateUnder, what is obtained is tested to the quasistatic compression that material is carried out, material true stress-true stain curve, determines TrAnd Th The unrelated limitation Y of rate of lower yield stress;According to TrAnd ThUnder, one group of high strain-rate of settingUnder, to the separate type of material progress Hopkinson pressure bar SHPB experiments obtain, material true stress-true stain curve, it is determined that per strip material true stress-true stain curve Initial yield stress β;According to the initial yield stress β of each strip material true stress-true stain curve, and the T determinedr And ThThe unrelated limitation Y of rate of lower yield stress, carries out curve fitting to the expression formula of β in the BCJ constitutive equations after evolution, obtains TrAnd ThUnder, the rate dependence size V of yield point, and strain rate f during the unrelated relevant transition to rate of rate;According to TrAnd ThUnder, One group of high strain-rate of settingUnder, what is obtained is tested to the split hopkinson press bar SHPB that material is carried out, each high strain-rateCorresponding stress value σ, and described Y, V, the f determined, curve is carried out to the expression formula of the σ in the BCJ constitutive equations after evolution Fitting, obtains TrAnd ThUnder, it is isotropic hardening modulus H, anisotropy hardening modulus h, related to isotropic hardening internal variable Static or hot reply parameter Rs, related to kinematic hardening internal variable static or hot reply parameter rsAnd in isotropic hardening The related dynamic recovery parameter R of variabled, related to kinematic hardening internal variable dynamic recovery parameter rd;According to the Y of determination, V、f、H、h、Rs、rs、Rd、rd, and the expression formula of C1-C18 material constants, determine C1-C18 material constants.The present processes The parameter of BCJ constitutive equations can fast and accurately be identified.
Brief description of the drawings
, below will be to embodiment or existing in order to illustrate more clearly of the embodiment of the present application or technical scheme of the prior art There is the required accompanying drawing used in technology description to be briefly described, it should be apparent that, drawings in the following description are only this The embodiment of application, for those of ordinary skill in the art, on the premise of not paying creative work, can also basis The accompanying drawing of offer obtains other accompanying drawings.
Fig. 1 is a kind of parameter identification method flow chart of BCJ constitutive models disclosed in the embodiment of the present application;
Fig. 2 is a kind of parameter identification device structural representation of BCJ constitutive models disclosed in the embodiment of the present application.
Embodiment
Below in conjunction with the accompanying drawing in the embodiment of the present application, the technical scheme in the embodiment of the present application is carried out clear, complete Site preparation describes, it is clear that described embodiment is only some embodiments of the present application, rather than whole embodiments.It is based on Embodiment in the application, those of ordinary skill in the art are obtained every other under the premise of creative work is not made Embodiment, belong to the scope of the application protection.
In order to identify the parameter of BCJ constitutive equations, the application is developed to constitutive equation.Equation was developed first Journey is introduced.
Initial BCJ constitutive equations such as following formula 1-5:
De =D-Din …(2)
α°=h (T)Din -(rd(T)||Din||+rs(T))||α||α…(4)
Wherein, the implication of each physical quantity is as shown in table 1 below:
Table 1
Wherein, C1-C18 has the relation such as table 2 below of 18 material constants and 9 scalar parameters altogether:
Table 2
In upper table 2, TrAnd ThFor the extreme value temperature of setting, wherein TrFor minimum temperature, ThFor maximum temperature.
In order to more fully understand the physical significance of BCJ parameters, assume formula 1-5 can be reduced to based on single shaft:
Further, formula 6 is inverted, obtains formula 9;In constant strain-rate, warm deformation is waited to be integrated under assuming to formula 7 and 8, and WithReplace(overall strain speed can be rationally approximate with plastic strain rate after constant strain-rate tests medium and small dependent variable), obtains Formula 10 and 11:
Bring formula 10,11 into formula 9:
Wherein, β represents material initial yield stress,
Above is the evolution to BCJ constitutive equations.
Next, based on the BCJ constitutive equations after evolution, parameter identification process is introduced.
First, determine Y value:
According to setting extreme value temperature TrAnd ThUnder, set low strain dynamic rateUnder, institute is tested to the quasistatic compression that material is carried out Obtain, material true stress-true stain curve, determine TrAnd ThUnder each bar curve yield stress, as correspond to required rate without Close limitation Y:Y(Tr) and Y (Th)。
Second, determine V, f values:
1), according to TrAnd ThUnder, one group of high strain-rate of settingUnder, to the split hopkinson press bar of material progress SHPB experiments obtain, material true stress-true stain curve, it is determined that the initial yield per strip material true stress-true stain curve should Power β;
2), according to the initial yield stress β of each strip material true stress-true stain curve, and the T determinedrAnd ThUnder The unrelated limitation Y of rate of yield stress, carries out curve fitting to the expression formula of β in the BCJ constitutive equations after evolution, obtains TrAnd Th Under, the rate dependence size V of yield point, and strain rate f during the unrelated relevant transition to rate of rate.
Specifically, influence of the high strain-rate to material yield stress, SHPB dynamic loads, the Section 2 pair of equation 13 above are considered β value has main contributions.Then, T is chosenrUnder one group of high strain-rate corresponding to true stress-true stain curve, try to achieve every curve Initial yield stress β, and combine previous step determine Y (Tr), formula 12 is carried out curve fitting, fitting result is TrUnder V, f values.
Optionally, when being carried out curve fitting to formula 12, curve plan can be carried out from matlab cftool tool boxes Close.
Similarly, T is takenhUnder one group of high strain-rate corresponding to true stress-true stain curve, try to achieve initial yield stress β, and Y (the T determined with reference to previous steph), formula 12 is carried out curve fitting, fitting result is ThUnder V, f values.
3rd, H, h, R are determineds、rs、Rd、rdValue:
Y, V, f that the first two steps are obtained bring formula 12 into, then formula 12 is left 6 scalar parameters to be determined, i.e.,:H、 h、Rs、rs、Rd、rd
According to TrAnd ThUnder, one group of high strain-rate of settingUnder, to the split hopkinson press bar SHPB of material progress What experiment obtained, each high strain-rateCorresponding stress value σ, and described Y, V, the f determined, to the BCJ constitutive equations after evolution In σ expression formula carry out curve fitting, obtain TrAnd ThUnder, H, h, Rs、rs、Rd、rd
Optionally, due in the step it needs to be determined that parameter it is too many, if directly entered using matlab particle cluster algorithms Row fitting, easily there is the problem of needs constantly conversion input initial value and long operation time.Therefore, the application first with 1stOpt particle cluster algorithms carry out curve fitting to formula 12, obtain initial H, h, Rs、rs、Rd、rd.Further, it is first by what is obtained H, h, R of beginnings、rs、Rd、rdAs the initial value of matlab particle cluster algorithms, formula 12 is carried out using matlab particle cluster algorithms non- Linear fit, obtain final H, h, Rs、rs、Rd、rd
According to the processing mode of the application, the accuracy of fitting result is improved, reduces the time that fit procedure is consumed.
So far, identified all scalar parameters.
4th, C1-C18 material constants are determined:
According to described Y, V, f, H, h, R of determinations、rs、Rd、rd, and the expression formula of C1-C18 material constants, determine C1- C18 material constants.
Specifically,, can with reference to 9 scalar parameters having determined with reference to the expression way of each material constant in upper table 2 To determine C1-C18 value.
The application knows with the true stress-true stain test data under quasistatic and dynamic load to BCJ constitutive parameters Not.Present document relates to quasi-static test data source in the compression test of domestic hot modeling test machine.Specimen size isCylinder sample;Dynamic loading test data source is tested in split hopkinson press bar (SHPB), examination Sample ruler is very little to beCylinder sample.Set strain rate and temperature need to according to material self performance parameter and Deformation parameter to be simulated designs.The strain rate and temperature levels of the quasi-static experiment set herein such as table 3, SHPB experiments Strain rate and temperature levels are as shown in table 4.
Table 3
Factor It is horizontal
Deformation temperature/DEG C 25,100,200,300,400,500
Strain rate/s-1 1600,3000,5000,8000,10000,16000
Table 4
Referring to Fig. 1, Fig. 1 is a kind of parameter identification method flow chart of BCJ constitutive models disclosed in the embodiment of the present application.
With reference to the introduction of above-described embodiment, and with reference to figure 1, the parameter identification process progress to BCJ constitutive models is simple total Knot:
Step S100, Y is determined, each one group at a temperature of two extreme values;
Step S110, the yield stress of high strain-rate curve is determined, determines at a temperature of V, f, two extreme values each one group;
Step S120, H, h, R are determineds、rs、Rd、rd, each one group at a temperature of two extreme values;
Step S130, according to the expression formula of each material constant, C1-C18 is determined.
Wherein, the expression formula of each material constant is referred to table 2.
The parameter identification device of the BCJ constitutive models provided below the embodiment of the present application is described, described below The parameter identification method of the parameter identification device of BCJ constitutive models and above-described BCJ constitutive models can be mutually to should refer to.
Wherein, the introduction of the undocumented details reference method item embodiment of device item embodiment.
Referring to Fig. 2, Fig. 2 is a kind of parameter identification device structural representation of BCJ constitutive models disclosed in the embodiment of the present application Figure.
As shown in Fig. 2 the device includes:
Constitutive equation evolution unit 21, for developing to BCJ constitutive equations, the BCJ constitutive equations after being developed:
Wherein, β represents material initial yield stress;
First scalar parameter determining unit 22, for according to setting extreme value temperature TrAnd ThUnder, set low strain dynamic rateUnder, What the quasistatic compression experiment carried out to material was obtained, material true stress-true stain curve, determine TrAnd ThLower yield stress The unrelated limitation Y of rate;
Initial yield stress determining unit 23, for according to TrAnd ThUnder, one group of high strain-rate of settingUnder, to material What the split hopkinson press bar SHPB experiments of progress obtained, material true stress-true stain curve, it is determined that very should per strip material The initial yield stress β of power true strain curve;
Second scalar parameter determining unit 24, for the initial yield stress according to each strip material true stress-true stain curve β, and the T determinedrAnd ThThe unrelated limitation Y of rate of lower yield stress, to the expression formula of β in the BCJ constitutive equations after evolution Carry out curve fitting, obtain TrAnd ThUnder, the rate dependence size V of yield point, and strain during the unrelated relevant transition to rate of rate Rate f;
3rd scalar parameter determining unit 25, for according to TrAnd ThUnder, one group of high strain-rate of settingUnder, to material What the split hopkinson press bar SHPB experiments of progress obtained, each high strain-rateCorresponding stress value σ, and the institute determined Y, V, f are stated, the expression formula of the σ in the BCJ constitutive equations after evolution is carried out curve fitting, obtains TrAnd ThUnder, isotropism is hard Change modulus H, anisotropy hardening modulus h, the static or hot reply parameter R related to isotropic hardening internal variablesIt is and servo-actuated Harden the related static or hot reply parameter r of internal variables, related to isotropic hardening internal variable dynamic recovery parameter RdAnd The related dynamic recovery parameter r of kinematic hardening internal variabled
Material constant determining unit 26, for described Y, V, f, H, h, R according to determinations、rs、Rd、rd, and C1-C18 The expression formula of material constant, determine C1-C18 material constants.
The device of the application can rapidly and accurately identify the parameter of BCJ constitutive equations.
Optionally, the constitutive equation evolution unit can include:
First constitutive equation evolution subelement, for based on simple stress it is assumed that BCJ constitutive equations are reduced to:
Second constitutive equation evolution subelement, for pairExpression formula invert, and in constant strain-rate, wait warm deformation to assume Lower pairWithExpression formula integrated, be used in combinationReplaceObtain equation below:
3rd constitutive equation evolution subelement, three formula for being obtained to the second constitutive equation evolution subelement are carried out Integrate, the BCJ constitutive equations after being developed:
Wherein, β represents material initial yield stress.
Optionally, the 3rd scalar parameter determining unit can include:
Initial fitting unit, for utilizing expression of the 1stOpt particle cluster algorithms to the σ in the BCJ constitutive equations after evolution Formula carries out curve fitting, and obtains initial H, h, Rs、rs、Rd、rd
Quadratic fit unit, for initial H, h, the R for obtaining initial fitting units、rs、Rd、rdAs matlab grains The initial value of swarm optimization, nonlinear fitting is carried out to σ expression formula using matlab particle cluster algorithms, obtain final H, h, Rs、rs、Rd、rd
Optionally, the material constant determining unit can include:
C1 and C2 determining units, for according to TrAnd ThUnder V, and the expression formula of C1 and C2 material constants:V (T)= C1exp (- C2/T), determines C1 and C2;
C3 and C4 determining units, for according to TrAnd ThUnder Y, and the expression formula of C3 and C4 material constants:Y (T)= C3exp (C4/T), determines C3 and C4;
C5 and C6 determining units, for according to TrAnd ThUnder f, and the expression formula of C5 and C6 material constants:F (T)= C5exp (- C6/T), determines C5 and C6;
C7 and C8 determining units, for according to TrAnd ThUnder rdAnd the expression formula of C7 and C8 material constants:rd(T)= C7exp (- C8/T), determines C7 and C8;
C9 and C10 determining units, for according to TrAnd ThUnder h and C9 and C10 material constants expression formula:H (T)= C9exp (C10/T), determines C9 and C10;
C11 and C12 determining units, for according to TrAnd ThUnder rsAnd the expression formula of C11 and C12 material constants:rs (T)=C11exp (- C12/T), determines C11 and C12;
C13 and C14 determining units, for according to TrAnd ThUnder RdAnd the expression formula of C13 and C14 material constants:Rd (T)=C13exp (- C14/T), determines C13 and C14;
C15 and C16 determining units, for according to TrAnd ThUnder H and C15 and C16 material constants expression formula:H(T) =C15exp (C16/T), determines C15 and C16;
C17 and C18 determining units, for according to TrAnd ThUnder RsAnd the expression formula of C17 and C18 material constants:Rs (T)=C17exp (- C18/T), determines C17 and C18.
Finally, it is to be noted that, herein, such as first and second or the like relational terms be used merely to by One entity or operation make a distinction with another entity or operation, and not necessarily require or imply these entities or operation Between any this actual relation or order be present.Moreover, term " comprising ", "comprising" or its any other variant meaning Covering including for nonexcludability, so that process, method, article or equipment including a series of elements not only include that A little key elements, but also the other element including being not expressly set out, or also include for this process, method, article or The intrinsic key element of equipment.In the absence of more restrictions, the key element limited by sentence "including a ...", is not arranged Except other identical element in the process including the key element, method, article or equipment being also present.
Each embodiment is described by the way of progressive in this specification, what each embodiment stressed be and other The difference of embodiment, between each embodiment identical similar portion mutually referring to.
The foregoing description of the disclosed embodiments, professional and technical personnel in the field are enable to realize or using the application. A variety of modifications to these embodiments will be apparent for those skilled in the art, as defined herein General Principle can be realized in other embodiments in the case where not departing from spirit herein or scope.Therefore, the application The embodiments shown herein is not intended to be limited to, and is to fit to and principles disclosed herein and features of novelty phase one The most wide scope caused.

Claims (8)

  1. A kind of 1. parameter identification method of BCJ constitutive models, it is characterised in that including:
    BCJ constitutive equations are developed, the BCJ constitutive equations after being developed:
    <mrow> <mi>&amp;sigma;</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>h</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <mfrac> <mrow> <mi>H</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> </mrow>
    <mrow> <mi>&amp;beta;</mi> <mo>=</mo> <mi>Y</mi> <mo>+</mo> <msup> <mi>Vsinh</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </mfrac> <mo>)</mo> </mrow> </mrow>
    Wherein, β represents material initial yield stress;
    According to setting extreme value temperature TrAnd ThUnder, set low strain dynamic rateUnder, the quasistatic compression experiment carried out to material is obtained , material true stress-true stain curve, determine TrAnd ThThe unrelated limitation Y of rate of lower yield stress;
    According to TrAnd ThUnder, one group of high strain-rate of settingUnder, the split hopkinson press bar SHPB that material is carried out is tested Obtain, material true stress-true stain curve, it is determined that the initial yield stress β per strip material true stress-true stain curve;
    According to the initial yield stress β of each strip material true stress-true stain curve, and the T determinedrAnd ThLower yield stress The unrelated limitation Y of rate, the expression formula of β in the BCJ constitutive equations after evolution is carried out curve fitting, obtains TrAnd ThUnder, yield point Rate dependence size V, and strain rate f during the unrelated relevant transition to rate of rate;
    According to TrAnd ThUnder, one group of high strain-rate of settingUnder, the split hopkinson press bar SHPB that material is carried out is tested Obtain, each high strain-rateCorresponding stress value σ, and described Y, V, the f determined, in the BCJ constitutive equations after evolution σ expression formula carries out curve fitting, and obtains TrAnd ThUnder, isotropic hardening modulus H, anisotropy hardening modulus h, with it is each to The related static or hot reply parameter R of same sex hardening internal variables, related to kinematic hardening internal variable static or hot reply parameter rs, related to isotropic hardening internal variable dynamic recovery parameter Rd, related to kinematic hardening internal variable dynamic recovery parameter rd
    According to described Y, V, f, H, h, R of determinations、rs、Rd、rd, and the expression formula of C1-C18 material constants, determine C1-C18 materials Expect constant.
  2. 2. according to the method for claim 1, it is characterised in that it is described that BCJ constitutive equations are developed, developed BCJ constitutive equations, including:
    Based on simple stress it is assumed that BCJ constitutive equations are reduced to:
    <mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>h</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mi>&amp;sigma;</mi> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>|</mo> <mo>-</mo> <mo>{</mo> <mi>R</mi> <mo>+</mo> <mi>Y</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <mrow> <mi>V</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>|</mo> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>|</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>)</mo> </mrow> <msup> <mi>&amp;alpha;</mi> <mn>2</mn> </msup> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>H</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>|</mo> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>|</mo> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>)</mo> </mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow>
    It is rightExpression formula invert, and in constant strain-rate, wait warm deformation to assume lower pairWithExpression formula integrated, be used in combination ReplaceObtain equation below:
    <mrow> <mi>&amp;sigma;</mi> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>-</mo> <mi>R</mi> <mo>=</mo> <mi>Y</mi> <mo>+</mo> <msup> <mi>Vsinh</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </mfrac> <mo>)</mo> </mrow> </mrow>
    <mrow> <mi>a</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>h</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> </mrow>
    <mrow> <mi>R</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>H</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> </mrow>
    Further above three formula is integrated, the BCJ constitutive equations after being developed:
    <mrow> <mi>&amp;sigma;</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>h</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <mfrac> <mrow> <mi>H</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> </mrow>
    <mrow> <mi>&amp;beta;</mi> <mo>=</mo> <mi>Y</mi> <mo>+</mo> <msup> <mi>Vsinh</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </mfrac> <mo>)</mo> </mrow> </mrow>
    Wherein, β represents material initial yield stress.
  3. 3. according to the method for claim 1, it is characterised in that the expression of the σ in BCJ constitutive equations after described pair of evolution Formula carries out curve fitting, including:
    The expression formula of the σ in the BCJ constitutive equations after evolution is carried out curve fitting using 1stOpt particle cluster algorithms, obtained just H, h, R of beginnings、rs、Rd、rd
    Initial H, h, the R that will be obtaineds、rs、Rd、rdAs the initial value of matlab particle cluster algorithms, calculated using matlab populations Method carries out nonlinear fitting to σ expression formula, obtains final H, h, Rs、rs、Rd、rd
  4. 4. according to the method for claim 1, it is characterised in that described described Y, V, f, H, h, R according to determinations、rs、Rd、 rd, and the expression formula of C1-C18 material constants, C1-C18 material constants are determined, including:
    According to TrAnd ThUnder V, and the expression formula of C1 and C2 material constants:V (T)=C1exp (- C2/T), determines C1 and C2;
    According to TrAnd ThUnder Y, and the expression formula of C3 and C4 material constants:Y (T)=C3exp (C4/T), determines C3 and C4;
    According to TrAnd ThUnder f, and the expression formula of C5 and C6 material constants:F (T)=C5exp (- C6/T), determines C5 and C6;
    According to TrAnd ThUnder rdAnd the expression formula of C7 and C8 material constants:rd(T)=C7exp (- C8/T), determines C7 and C8;
    According to TrAnd ThUnder h and C9 and C10 material constants expression formula:H (T)=C9exp (C10/T), determines C9 and C10;
    According to TrAnd ThUnder rsAnd the expression formula of C11 and C12 material constants:rs(T)=C11exp (- C12/T), determines C11 And C12;
    According to TrAnd ThUnder RdAnd the expression formula of C13 and C14 material constants:Rd(T)=C13exp (- C14/T), determines C13 And C14;
    According to TrAnd ThUnder H and C15 and C16 material constants expression formula:H (T)=C15exp (C16/T), determine C15 and C16;
    According to TrAnd ThUnder RsAnd the expression formula of C17 and C18 material constants:Rs(T)=C17exp (- C18/T), determines C17 And C18.
  5. A kind of 5. parameter identification device of BCJ constitutive models, it is characterised in that including:
    Constitutive equation evolution unit, for developing to BCJ constitutive equations, the BCJ constitutive equations after being developed:
    <mrow> <mi>&amp;sigma;</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>h</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <mfrac> <mrow> <mi>H</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> </mrow>
    <mrow> <mi>&amp;beta;</mi> <mo>=</mo> <mi>Y</mi> <mo>+</mo> <msup> <mi>Vsinh</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </mfrac> <mo>)</mo> </mrow> </mrow>
    Wherein, β represents material initial yield stress;
    First scalar parameter determining unit, for according to setting extreme value temperature TrAnd ThUnder, set low strain dynamic rateUnder, material is entered What capable quasistatic compression experiment was obtained, material true stress-true stain curve, determine TrAnd ThThe unrelated limit of rate of lower yield stress Y processed;
    Initial yield stress determining unit, for according to TrAnd ThUnder, one group of high strain-rate of settingUnder, material is divided Obtained from formula Hopkinson pressure bar SHPB experiments, material true stress-true stain curve, it is determined that per strip material true stress-true stain The initial yield stress β of curve;
    Second scalar parameter determining unit, for each strip material trus stress determined according to the initial yield stress determining unit The initial yield stress β of true strain curve, and the T determinedrAnd ThThe unrelated limitation Y of rate of lower yield stress, after evolution BCJ constitutive equations in β expression formula carry out curve fitting, obtain TrAnd ThUnder, the rate dependence size V of yield point, and rate Strain rate f during unrelated from the relevant transition to rate;
    3rd scalar parameter determining unit, for according to TrAnd ThUnder, one group of high strain-rate of settingUnder, material is divided Obtained from formula Hopkinson pressure bar SHPB experiments, each high strain-rateCorresponding stress value σ, and described Y, V, the f determined, The expression formula of σ in BCJ constitutive equations after evolution is carried out curve fitting, obtains TrAnd ThUnder, isotropic hardening modulus H, Anisotropy hardening modulus h, the static or hot reply parameter R related to isotropic hardening internal variablesAnd become in kinematic hardening Measure related static or hot reply parameter rs, related to isotropic hardening internal variable dynamic recovery parameter RdWith kinematic hardening The related dynamic recovery parameter r of internal variabled
    Material constant determining unit, for described Y, V, f, H, h, R according to determinations、rs、Rd、rd, and C1-C18 material constants Expression formula, determine C1-C18 material constants.
  6. 6. device according to claim 5, it is characterised in that the constitutive equation evolution unit includes:
    First constitutive equation evolution subelement, for based on simple stress it is assumed that BCJ constitutive equations are reduced to:
    <mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>h</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mi>&amp;sigma;</mi> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>|</mo> <mo>-</mo> <mo>{</mo> <mi>R</mi> <mo>+</mo> <mi>Y</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <mo>}</mo> </mrow> <mrow> <mi>V</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>h</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>|</mo> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>|</mo> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>)</mo> </mrow> <msup> <mi>&amp;alpha;</mi> <mn>2</mn> </msup> <mi>sgn</mi> <mrow> <mo>(</mo> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow>
    <mrow> <mover> <mi>R</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>H</mi> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>|</mo> <msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>p</mi> </msub> <mo>|</mo> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>(</mo> <mi>T</mi> <mo>)</mo> <mo>)</mo> </mrow> <msup> <mi>R</mi> <mn>2</mn> </msup> </mrow>
    Second constitutive equation evolution subelement, for pairExpression formula invert, and in constant strain-rate, wait warm deformation to assume lower pairWithExpression formula integrated, be used in combinationReplaceObtain equation below:
    <mrow> <mi>&amp;sigma;</mi> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>-</mo> <mi>R</mi> <mo>=</mo> <mi>Y</mi> <mo>+</mo> <msup> <mi>Vsinh</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </mfrac> <mo>)</mo> </mrow> </mrow>
    <mrow> <mi>a</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>h</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> </mrow>
    <mrow> <mi>R</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>H</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> </mrow>
    3rd constitutive equation evolution subelement, three formula for being obtained to the second constitutive equation evolution subelement carry out whole Close, the BCJ constitutive equations after being developed:
    <mrow> <mi>&amp;sigma;</mi> <mo>=</mo> <msqrt> <mfrac> <mrow> <mi>h</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>r</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>r</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <msqrt> <mfrac> <mrow> <mi>H</mi> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mrow> <mrow> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> </mrow> </mfrac> </msqrt> <mi>tanh</mi> <mrow> <mo>(</mo> <mi>&amp;epsiv;</mi> <msqrt> <mfrac> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>d</mi> </msub> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>+</mo> <msub> <mi>R</mi> <mi>s</mi> </msub> <mo>)</mo> </mrow> </mrow> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> </mfrac> </msqrt> <mo>)</mo> </mrow> <mo>+</mo> <mi>&amp;beta;</mi> </mrow>
    <mrow> <mi>&amp;beta;</mi> <mo>=</mo> <mi>Y</mi> <mo>+</mo> <msup> <mi>Vsinh</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mover> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>f</mi> </mfrac> <mo>)</mo> </mrow> </mrow>
    Wherein, β represents material initial yield stress.
  7. 7. device according to claim 5, it is characterised in that the 3rd scalar parameter determining unit includes:
    Initial fitting unit, for being entered using 1stOpt particle cluster algorithms to the expression formula of the σ in the BCJ constitutive equations after evolution Row curve matching, obtain initial H, h, Rs、rs、Rd、rd
    Quadratic fit unit, for initial H, h, the R for obtaining initial fitting units、rs、Rd、rdAs matlab populations The initial value of algorithm, nonlinear fitting is carried out to σ expression formula using matlab particle cluster algorithms, obtains final H, h, Rs、rs、 Rd、rd
  8. 8. according to the method for claim 5, it is characterised in that the material constant determining unit includes:
    C1 and C2 determining units, for according to TrAnd ThUnder V, and the expression formula of C1 and C2 material constants:V (T)=C1exp (- C2/T), determine C1 and C2;
    C3 and C4 determining units, for according to TrAnd ThUnder Y, and the expression formula of C3 and C4 material constants:Y (T)=C3exp (C4/T) C3 and C4, are determined;
    C5 and C6 determining units, for according to TrAnd ThUnder f, and the expression formula of C5 and C6 material constants:Determine C5 and C6;
    C7 and C8 determining units, for according to TrAnd ThUnder rdAnd the expression formula of C7 and C8 material constants:Determine C7 and C8;
    C9 and C10 determining units, for according to TrAnd ThUnder h and C9 and C10 material constants expression formula:H (T)=C9exp (C10/T) C9 and C10, are determined;
    C11 and C12 determining units, for according to TrAnd ThUnder rsAnd the expression formula of C11 and C12 material constants:rs(T)= C11exp (- C12/T), determines C11 and C12;
    C13 and C14 determining units, for according to TrAnd ThUnder RdAnd the expression formula of C13 and C14 material constants:Rd(T)= C13exp (- C14/T), determines C13 and C14;
    C15 and C16 determining units, for according to TrAnd ThUnder H and C15 and C16 material constants expression formula:H (T)= C15exp (C16/T), determines C15 and C16;
    C17 and C18 determining units, for according to TrAnd ThUnder RsAnd the expression formula of C17 and C18 material constants:Rs(T)= C17exp (- C18/T), determines C17 and C18.
CN201610835881.8A 2016-09-05 2016-09-20 Parameter identification method and device for BCJ constitutive model Active CN107784149B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2016108047768 2016-09-05
CN201610804776 2016-09-05

Publications (2)

Publication Number Publication Date
CN107784149A true CN107784149A (en) 2018-03-09
CN107784149B CN107784149B (en) 2023-08-08

Family

ID=61438081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610835881.8A Active CN107784149B (en) 2016-09-05 2016-09-20 Parameter identification method and device for BCJ constitutive model

Country Status (1)

Country Link
CN (1) CN107784149B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110858255A (en) * 2018-08-06 2020-03-03 上海汽车集团股份有限公司 Method and device for analyzing constitutive performance of vehicle chassis rubber bushing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020077795A1 (en) * 2000-09-21 2002-06-20 Woods Joseph Thomas System, method and storage medium for predicting impact performance of thermoplastic
CN104156590A (en) * 2014-08-06 2014-11-19 南昌大学 Method for establishing magnesium-based nanocomposite thixotropic plastic-forming constitutive model
CN104928605A (en) * 2015-07-20 2015-09-23 中南大学 Method for predicting nickel base alloy high temperature flow stress and dynamic recrystallization behavior
CN105259035A (en) * 2015-10-26 2016-01-20 中国石油大学(华东) Method for establishing rock material ageing and elastic-plastic mechanics constitutive model
CN105426595A (en) * 2015-11-05 2016-03-23 内蒙古工业大学 Method for establishing constitutive model for aluminum alloy thermal elastoplastic deformation simulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020077795A1 (en) * 2000-09-21 2002-06-20 Woods Joseph Thomas System, method and storage medium for predicting impact performance of thermoplastic
CN104156590A (en) * 2014-08-06 2014-11-19 南昌大学 Method for establishing magnesium-based nanocomposite thixotropic plastic-forming constitutive model
CN104928605A (en) * 2015-07-20 2015-09-23 中南大学 Method for predicting nickel base alloy high temperature flow stress and dynamic recrystallization behavior
CN105259035A (en) * 2015-10-26 2016-01-20 中国石油大学(华东) Method for establishing rock material ageing and elastic-plastic mechanics constitutive model
CN105426595A (en) * 2015-11-05 2016-03-23 内蒙古工业大学 Method for establishing constitutive model for aluminum alloy thermal elastoplastic deformation simulation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周婷婷等: "Bammann-Chiesa-Johnson粘塑性本构模型的参数识别方法与验证", 《材料导报》 *
胡绪腾等: "TC4钛合金三种动态本构模型的对比分析", 《兵器材料科学与工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110858255A (en) * 2018-08-06 2020-03-03 上海汽车集团股份有限公司 Method and device for analyzing constitutive performance of vehicle chassis rubber bushing
CN110858255B (en) * 2018-08-06 2024-01-30 上海汽车集团股份有限公司 Analysis method and device for constitutive performance of rubber bushing of vehicle chassis

Also Published As

Publication number Publication date
CN107784149B (en) 2023-08-08

Similar Documents

Publication Publication Date Title
Joun et al. A new method for acquiring true stress–strain curves over a large range of strains using a tensile test and finite element method
Hussaini et al. Development of experimental and theoretical forming limit diagrams for warm forming of austenitic stainless steel 316
Tu et al. Vibration analysis of functionally graded plates using the eight-unknown higher order shear deformation theory in thermal environments
CN103745114B (en) Method for computing stress relaxation numerical values and resilience of titanium alloy
CN103852384A (en) Numeralization evaluation method for crack resistance of concrete
Dehgolan et al. Obtaining constants of Johnson-Cook material model using a combined experimental, numerical simulation and optimization method
Mapar et al. A differential-exponential hardening law for non-Schmid crystal plasticity finite element modeling of ferrite single crystals
Peters Yield functions taking into account anisotropic hardening effects for an improved virtual representation of deep drawing processes
Ding et al. Solutions of the second elastic–plastic fracture mechanics parameter in test specimens under biaxial loading
Zhao et al. Generation of cyclic stress-strain curves for sheet metals
Li et al. Experimental and numerical investigation of laminated steel sheet in V-bending process considering nonlinear visco-elasticity of polymer layer
CN107784149A (en) A kind of parameter identification method and device of BCJ constitutive models
Li et al. Identification of material parameters from punch stretch test
Satošek et al. Study of influential parameters of the sphere indentation used for the control function of material properties in forming operations
De-Carvalho et al. On the objective function evaluation in parameter identification of material constitutive models-single-point or FE analysis
Abbasnejad Dizaji et al. Effect of hardening models on different ductile fracture criteria in sheet metal forming
O’Connor et al. Computational modeling of viscoplastic polymeric material response during micro-indentation tests
He et al. Estimation of J-R J-R Curves for Small-Sized COEC Specimens and Its Application Considering Crack-Tip Constraints
Mkaddem et al. Experimental and numerical optimisation of the sheet products geometry using response surface methodology
Li et al. Multi-objective optimization for laminated steel sheet forming process based on desirability function approach and reliability analysis
Itani Modelling and evaluation of the methods for compression testing of thermoplastics
Dal Santo et al. Cold forming by stretching of aeronautic sheet metal parts
Wang et al. Sectional finite element analysis of coupled deformation between elastoplastic sheet metal and visco-elastoplastic body
Grilo et al. On the development and computational implementation of complex constitutive models and parameters’ identification procedures
Zhai et al. Evaluation on small punch creep test by finite element method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant