CN107784079A - A kind of magnanimity static object management method under space coordinates - Google Patents

A kind of magnanimity static object management method under space coordinates Download PDF

Info

Publication number
CN107784079A
CN107784079A CN201710895323.5A CN201710895323A CN107784079A CN 107784079 A CN107784079 A CN 107784079A CN 201710895323 A CN201710895323 A CN 201710895323A CN 107784079 A CN107784079 A CN 107784079A
Authority
CN
China
Prior art keywords
node
data
static object
lng
lat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710895323.5A
Other languages
Chinese (zh)
Inventor
李彭伟
李亚钊
王玉珠
吴青松
郑伟
丁及堃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 28 Research Institute
Original Assignee
CETC 28 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 28 Research Institute filed Critical CETC 28 Research Institute
Priority to CN201710895323.5A priority Critical patent/CN107784079A/en
Publication of CN107784079A publication Critical patent/CN107784079A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/29Geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating
    • G06F9/44521Dynamic linking or loading; Link editing at or after load time, e.g. Java class loading
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request
    • G06F9/5011Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
    • G06F9/5016Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals the resource being the memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2209/00Indexing scheme relating to G06F9/00
    • G06F2209/50Indexing scheme relating to G06F9/50
    • G06F2209/5018Thread allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Remote Sensing (AREA)
  • Data Mining & Analysis (AREA)
  • Processing Or Creating Images (AREA)

Abstract

The invention discloses the magnanimity static object management method under a kind of space coordinates, static object of this method based on spatial scene tree management magnanimity, cutting control is carried out to spatial scene tree simultaneously, plus-minus counting processing is carried out to the data in node according to the observability of spatial scene tree node, and dynamic plus unloading are carried out to data by multithreading offline access technology.This method has higher recall precision, solve the problems, such as in plane scene to object height, bounding box processing it is difficult, effectively solve the problems such as magnanimity static object EMS memory occupation is big, display management is difficult, efficiency is low under space coordinates.

Description

A kind of magnanimity static object management method under space coordinates
Technical field
The present invention relates to the magnanimity target display management method under CyberSpace coordinate system, more particularly to a kind of space to sit Magnanimity static object management method under mark system.
Background technology
Current various GIS-Geographic Information System with emulation platform, the use to static object engender capacity it is big, when Effect is high, the requirement that delay is small, EMS memory occupation is low.As the landmark data in GIS-Geographic Information System is ten hundreds of, space galaxy management In it is even more hundreds of millions of.The static object data of these magnanimity how are efficiently managed, have become the key of measurement system Technology, traditional linear regulation control, two dimensional surface scene management etc. is all increasingly unable to meet demand, such as travel time in linear regulation control It is long, serious image efficiency;Two dimensional surface scene management can not then solve the height problem of target.
The content of the invention
Goal of the invention:For problem above, the present invention proposes the magnanimity static object manager under a kind of space coordinates Method, it is effective to solve the problems such as magnanimity static object EMS memory occupation is big, display management is difficult, efficiency is low under space coordinates.
Technical scheme:To realize the purpose of the present invention, the technical solution adopted in the present invention is:Under a kind of space coordinates Magnanimity static object management method, comprise the following steps:
(1) the static object point of input is standardized, forms the static object data of standard;
(2) spatial scene tree is created, static object data is traveled through, adds data in suitable node, as node is deposited Data are then being deployed to the node, new node is otherwise being created and data is deployed to the node;
(3) cutting control is carried out according to current observation parameters on space scene tree, the data in invisible node is carried out Subtract reference count operation, the data in visible node are carried out plus reference count operates;
(4) start processed offline thread, the data in spatial scene tree count using multithreading and unloaded with adding Management is carried, data of the reference count in scene less than 0 are discharged, the data quoted in scene more than 0 are loaded.
Beneficial effect:Compared with prior art, method advantage disclosed by the invention is:1st, managed by spatial scene tree The static object data of magnanimity, there is higher recall precision;2nd, solve in plane scene to object height, bounding box processing The problem of difficult;3rd, it is whether visible to object count progress add-subtract control based on scenario node, while realized using multithreading The dynamic of target data adds unloading, and the EMS memory occupation amount of system is effectively reduced on the premise of actual use is not influenceed.
Brief description of the drawings
Fig. 1 is the workflow diagram of the present invention;
Fig. 2 is the spatial scene tree structure schematic diagram of the present invention;
Fig. 3 is that regarding for the present invention cuts body space nodes cutting schematic diagram.
Embodiment
Technical scheme is further described with reference to the accompanying drawings and examples.
As shown in figure 1, the magnanimity static object management method under the space coordinates of the present invention comprises the following steps that:
(1) longitude and latitude, bounding box processing are carried out to the static object of input, forms standard compliant static object data.
N number of static object point is sequentially input, and target point is standardized, major parameter includes longitude and latitude, height Degree, bounding box, visible level etc..Static object data structure expression after note standardization is PointStruct:
PointStructi={ Lng, Lat, Alt, BoxSize, MinLevel, MaxLevel, Ref }
Wherein, PointStructiI-th of target point is represented, Lng represents the longitude of the target, and Lat represents the target Latitude, Alt represent the height of the target, and BoxSize represents the bounding box size of the target, and MinLevel represents minimum visible layer Level, MaxLevel represent the visible level of highest, usually MinLvel >=0, and MaxLevel≤20, Ref represent that the target quotes meter Number, is initially 0.
(2) spatial scene tree is created, travels through magnanimity static object data list, according to position and bounding box by data in sky Between search in scene tree and specify node, add data in suitable node.Data are deployed to the section if node is present Point, otherwise create new node and data are deployed to the node.
First, it is divided into thing two spaces four directions body node from global range by the earth, obtains following two node regions:
The Eastern Hemisphere node:
SpacialNodeEast=Level=0, and 0 °≤Lng≤180 °, -90 °≤Lat≤90 °, NodeSize= WorldRadius}
The Western Hemisphere node:
SpacialNodeEast=Level=0, and -180 °≤Lng≤0 °, -90 °≤Lat≤90 °, NodeSize= WorldRadius}
Above-mentioned formula meaning representation is that the Eastern Hemisphere longitude range arrives 180 degree for 0 at the 0th layer, and latitude scope is -90 to 90 Degree, the Western Hemisphere longitude range are -180 to 0 degree, and latitude is spent to 90 degree for -90, and height of node is earth hemisphere WorldRadius, Typically it is taken as 6378137 meters.
With Level increase, space tetragonal body size of node is the 1/4 of last layer node, and node is still WorldRadius。
Then, i-th of target PointStruct in static data list is traveled throughi, according to its longitude and latitude scope and bounding box Determine which root node it should be deployed to.
Finally, search level number is equal to PointStruct downwards successivelyi.MaxLevel node, will if node is present PointStructiThe node is deployed to, otherwise creates the node.
Establishment process is expressed as:
(a) assume that the 0th layer of the Eastern Hemisphere space tetragonal body range of nodes is 0 °≤Lng≤180 °, -90 °≤Lat≤90 °, NodeSize=WorldRadius.
(b) then the Eastern Hemisphere in the 1st split layer into four spaces four directions body node Node1、Node2、Node3、Node4, it is empty Between region be respectively:
Node1=Level=1, and 0 °≤Lng≤90 °, 0 °≤Lat≤90 °, NodeSize=WorldRadius }
Node2=Level=1, and 90 °≤Lng≤180 °, 0 °≤Lat≤90 °, NodeSize=WorldRadius }
Node3=Level=1, and 0 °≤Lng≤90 °, -90 °≤Lat≤0 °, NodeSize=WorldRadius }
Node4=Level=1, and 90 °≤Lng≤180 °, -90 °≤Lat≤0 °, NodeSize=WorldRadius }
(c) by that analogy, each node continues to be split into 4 nodes in next layer, as shown in Fig. 2 and node size all For earth radius, by the fission process, an incomplete spatial scene tree is finally constructed.
(3) cutting control is carried out according to current observation parameters on space scene tree, the data in invisible node is carried out Subtract reference count operation, the data in visible node are carried out plus reference count operates;
The equal representation space coordinate of definition space data structure GVector3={ X, Y, Z }, X, Y, Z, unit is rice.
Definition space node NodeiBounding box be VexBoxi={ P1、P2、P3、P4、P5、P6、P7、P8, P1~P8It is The data of GVector3 types.
The data structure in definition space face is Plane={ a, b, c, d }, then the four of range of observation section body ViewFrustum It is made up of six faces that type is Plane:
ViewFrustum={ PFront, PBack, PLeft, PRight, PTop, PBottom};
Each point in VexBox is done whether regarding an internal judgement is cut, then and if only if meet following condition when, Pi Internal regarding cutting:
Pfront.a*Pi.x+Pfront.b*Pi.y+Pfront.c*Pi.z+Pfront.d≥0
Pback.a*Pi.x+Pback.b*Pi.y+Pback.c*Pi.z+Pback.d≥0
PLeft.a*Pi.x+PLeft.b*Pi.y+PLeft.c*Pi.z+PLeft.d≥0
PRight.a*Pi.x+PRight.b*Pi.y+PRight.c*Pi.z+PRight.d≥0
PTop.a*Pi.x+PTop.b*Pi.y+PTop.c*Pi.z+PTop.d≥0
PBottom.a*Pi.x+PBottom.b*Pi.y+PBottom.c*Pi.z+PBottom.d≥0
When have in VexBox a point regarding cut it is internal when, then it represents that the node is visible, owns to the intra-node administration Target data carries out plus an operation, otherwise carries out subtracting one operation to all target datas of intra-node administration, as shown in Figure 3.
(4) start processed offline thread, the data in spatial scene tree count using multithreading and unloaded with adding Management is carried, data of the reference count in scene less than 0 are discharged, the data quoted in scene more than 0 are loaded.

Claims (5)

  1. A kind of 1. magnanimity static object management method under space coordinates, it is characterised in that:Comprise the following steps:
    (1) the static object point of input is standardized, forms the static object data of standard;
    (2) spatial scene tree is created, static object data is traveled through, adds data in suitable node, if node is present Data are deployed to the node, new node is otherwise created and data is deployed to the node;
    (3) cutting control is carried out according to current observation parameters on space scene tree, the data in invisible node subtract drawing With counting operation, the data in visible node are carried out plus reference count operates;
    (4) start processed offline thread, the data in spatial scene tree count with adding unloading pipe using multithreading Reason, data of the reference count in scene less than 0 are discharged, the data quoted in scene more than 0 are loaded.
  2. 2. the magnanimity static object management method under space coordinates according to claim 1, it is characterised in that:The step Suddenly in (1), the static object data structure expression formula of standard is:
    PointStructi={ Lng, Lat, Alt, BoxSize, MinLevel, MaxLevel, Ref }
    Wherein, PointStructiI-th of target point is represented, Lng represents the longitude of the target, and Lat represents the latitude of the target, Alt represents the height of the target, and BoxSize represents the bounding box size of the target, and MinLevel represents minimum visible level, MaxLevel represents the visible level of highest, and Ref represents the target reference count.
  3. 3. the magnanimity static object management method under space coordinates according to claim 2, it is characterised in that:The step Suddenly in (2), creating spatial scene tree includes step:
    (1) earth is divided into thing two spaces four directions body node, obtains following two node regions:
    The Eastern Hemisphere node:
    SpacialNodeEast=Level=0, and 0 °≤Lng≤180 °, -90 °≤Lat≤90 °, NodeSize= WorldRadius}
    The Western Hemisphere node:
    SpacialNodeEast=Level=0, and -180 °≤Lng≤0 °, -90 °≤Lat≤90 °, NodeSize= WorldRadius};
    (2) split layer of the Eastern Hemisphere the 1st is into four spaces four directions body node Node1、Node2、Node3、Node4, its area of space point It is not:
    Node1=Level=1, and 0 °≤Lng≤90 °, 0 °≤Lat≤90 °, NodeSize=WorldRadius }
    Node2=Level=1, and 90 °≤Lng≤180 °, 0 °≤Lat≤90 °, NodeSize=WorldRadius }
    Node3=Level=1, and 0 °≤Lng≤90 °, -90 °≤Lat≤0 °, NodeSize=WorldRadius }
    Node4=Level=1, and 90 °≤Lng≤180 °, -90 °≤Lat≤0 °, NodeSize=WorldRadius };
    The Western Hemisphere is by that analogy;
    (3) by that analogy, each node continues to be split into 4 nodes in next layer, and space tetragonal body size of node is upper one The 1/4 of node layer, by the fission process, build spatial scene tree.
  4. 4. the magnanimity static object management method under space coordinates according to claim 3, it is characterised in that:The step Suddenly in (2), static object data are traveled through, according to longitude and latitude scope and bounding box size it is determined that the node being deployed to;Search Level number is equal to PointStructi.MaxLevel node, by PointStruct if node is presentiThe node is deployed to, Otherwise the node is created.
  5. 5. the magnanimity static object management method under space coordinates according to claim 4, it is characterised in that:The step Suddenly spatial scene tree method of cutting out is as follows in (3):
    The equal representation space coordinate of definition space data structure GVector3={ X, Y, Z }, X, Y, Z;
    Definition space node NodeiBounding box be VexBoxi={ P1、P2、P3、P4、P5、P6、P7、P8, P1~P8For The data of GVector3 types;
    The data structure in definition space face is Plane={ a, b, c, d }, then the four of range of observation section body ViewFrustum is by class Six faces that type is Plane are formed:
    ViewFrustum={ PFront, PBack, PLeft, PRight, PTop, PBottom};
    Each point in VexBox is done whether regarding an internal judgement is cut, then and if only if meet following condition when, PiRegarding cut In vivo:
    Pfront.a*Pi.x+Pfront.b*Pi.y+Pfront.c*Pi.z+Pfront.d≥0
    Pback.a*Pi.x+Pback.b*Pi.y+Pback.c*Pi.z+Pback.d≥0
    PLeft.a*Pi.x+PLeft.b*Pi.y+PLeft.c*Pi.z+PLeft.d≥0
    PRight.a*Pi.x+PRight.b*Pi.y+PRight.c*Pi.z+PRight.d≥0
    PTop.a*Pi.x+PTop.b*Pi.y+PTop.c*Pi.z+PTop.d≥0
    PBottom.a*Pi.x+PBottom.b*Pi.y+PBottom.c*Pi.z+PBottom.d≥0
    When have in VexBox a point regarding cut it is internal when, then it represents that the node is visible, to the intra-node administration all targets Data carry out plus an operation, otherwise carry out subtracting one operation to all target datas of intra-node administration.
CN201710895323.5A 2017-09-28 2017-09-28 A kind of magnanimity static object management method under space coordinates Pending CN107784079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710895323.5A CN107784079A (en) 2017-09-28 2017-09-28 A kind of magnanimity static object management method under space coordinates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710895323.5A CN107784079A (en) 2017-09-28 2017-09-28 A kind of magnanimity static object management method under space coordinates

Publications (1)

Publication Number Publication Date
CN107784079A true CN107784079A (en) 2018-03-09

Family

ID=61434178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710895323.5A Pending CN107784079A (en) 2017-09-28 2017-09-28 A kind of magnanimity static object management method under space coordinates

Country Status (1)

Country Link
CN (1) CN107784079A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664975B1 (en) * 2000-05-23 2003-12-16 Microsoft Corporation Cheap well-behaved affine transformation of bounding spheres
CN101145245A (en) * 2007-10-17 2008-03-19 北京航空航天大学 Non-homogeneous space partition based scene visibility cutting method
CN101281654A (en) * 2008-05-20 2008-10-08 上海大学 Method for processing cosmically complex three-dimensional scene based on eight-fork tree

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6664975B1 (en) * 2000-05-23 2003-12-16 Microsoft Corporation Cheap well-behaved affine transformation of bounding spheres
CN101145245A (en) * 2007-10-17 2008-03-19 北京航空航天大学 Non-homogeneous space partition based scene visibility cutting method
CN101281654A (en) * 2008-05-20 2008-10-08 上海大学 Method for processing cosmically complex three-dimensional scene based on eight-fork tree

Similar Documents

Publication Publication Date Title
JP2021520579A (en) Object loading methods and devices, storage media, electronic devices, and computer programs
CN109684428A (en) Spatial data building method, device, equipment and storage medium
CN103700060B (en) A kind of polygonal quick visualization method of magnanimity arbitrary shape
US20230042968A1 (en) High-definition map creation method and device, and electronic device
CN113190515A (en) Heterogeneous parallel computing-based urban mass point cloud coordinate transformation method
CN105787977A (en) Building vector boundary simplification method
CN100483425C (en) Method and program for identifying multimedia data
US9672308B1 (en) Methods, systems, and computer program product for implementing three-dimensional operations for electronic designs
CN103268342A (en) DEM dynamic visualization accelerating system and method based on CUDA
CN114581620A (en) Road virtual elevation generation method and device, computer equipment and storage medium
CN107016147A (en) The installation space searching method of article and the computer-readable recording medium for having the program for it by record
CN110427506A (en) Spatial data boundary processing method, device, computer equipment and storage medium
CN107784079A (en) A kind of magnanimity static object management method under space coordinates
CN107958209A (en) Illegal construction identification method and system and electronic equipment
CN112509042A (en) Real-time positioning method and device based on-satellite control point library and storage medium
CN108510441B (en) Image multi-resolution display method based on staggered grids
CN103675763B (en) A kind of based on hardware-accelerated vector quantization VTS radar video rendering method
CN116308059A (en) Goods lattice position determining method and device and goods picking path optimizing method and device
CN110728006B (en) Automatic power supply unit dividing method based on grid
CN110619675B (en) OsgEarth-based surface vector data loading method
CN114138925A (en) Location point belonging area retrieval method, device, electronic equipment, medium and product
CN102063737A (en) Generation system and method of subway model
CN101908062A (en) Method for judging predicates in GIS (Geographic Information System) space and system thereof
CN104407840B (en) Grid decomposition method and system
CN117407727B (en) Vector similarity determining method and vector searching method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180309

RJ01 Rejection of invention patent application after publication