CN107782823A - 一种快速分析开环和超螺旋质粒的检测方法 - Google Patents

一种快速分析开环和超螺旋质粒的检测方法 Download PDF

Info

Publication number
CN107782823A
CN107782823A CN201710975456.3A CN201710975456A CN107782823A CN 107782823 A CN107782823 A CN 107782823A CN 201710975456 A CN201710975456 A CN 201710975456A CN 107782823 A CN107782823 A CN 107782823A
Authority
CN
China
Prior art keywords
plasmid
solution
ammonium sulfate
mobile phase
open loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710975456.3A
Other languages
English (en)
Inventor
潘讴东
韦厚良
陈国泽
由庆睿
贾国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuan Biotechnology (shanghai) Ltd By Share Ltd
Original Assignee
Yuan Biotechnology (shanghai) Ltd By Share Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuan Biotechnology (shanghai) Ltd By Share Ltd filed Critical Yuan Biotechnology (shanghai) Ltd By Share Ltd
Priority to CN201710975456.3A priority Critical patent/CN107782823A/zh
Publication of CN107782823A publication Critical patent/CN107782823A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

本发明提供一种快速分析质粒中开环和超螺旋比例的检测方法,包括以下几个步骤:A)将质粒样品和饱和硫酸铵溶液混合;B)通过亲和层析分析。本发明的方法简单、快速,无需专门的高效液相色谱仪或毛细管电泳仪,特别适合在质检设备体系不够完善、急需相关数据支持的工艺研发初始阶段使用,可以节约资源、提高研发效率。

Description

一种快速分析开环和超螺旋质粒的检测方法
技术领域
本发明涉及生物技术领域,尤其涉及一种快速分析菌体裂解液中开环质粒和超螺旋质粒比例的检测方法。
背景技术
超螺旋质粒在DNA疫苗、基因治疗和细胞治疗有着广泛应用。随着基因治疗和细胞治疗获得越来越多的关注和研究,对质粒DNA进行分析定量、检测其中超螺旋DNA含量在其工业化生产中显得至关重要。传统的分析超螺旋质粒含量的方法有定性的琼脂糖凝胶电泳、定量的毛细管电泳和高效液相色谱法。琼脂糖凝胶电泳是分子生物学中最基本的一项技术,虽然操作简单、对设备要求低,但是分辨率不高,只能定性地检测超螺旋的比例。高效液相色谱法和毛细管电泳法可以更加精准地定量超螺旋质粒和开环质粒的含量,但是昂贵的设备和耗材要求使在工艺研发初始阶段和质检设备体系不够完善的情况下,很难开展相关定量分析。
本发明的目的在于开发一种基于亲硫性亲和填料的分析开环和超螺旋质粒的方法。该分析方法和常规的层析纯化实验类似,无需专门的高效液相色谱仪和毛细管电泳仪,特别适合在质检设备体系不够完善、急需相关数据支持的工艺研发初始阶段使用。
发明内容
本发明提供了一种快速分析开环质粒和超螺旋质粒比例的检测方法,包括以下几个步骤:
步骤A:将待测质粒溶液同饱和硫酸铵溶液混合均匀;
步骤B:通过亲和层析对样品进行分析。
优选地,步骤A中选择0.22 μm或0.45 μm的滤器进行过滤。
优选地,步骤B中的亲和填料的配基为亲硫性疏水基团,例如PlasmidSelectXtra、MEP HyperCel等。
优选地,步骤B所选用的平衡流动相为2.1-2.5 M (NH4)2SO4, 10-100 mM Tris-HCl, pH6.0-9.0。
优选地,步骤B所选用的洗脱流动相为1.0-4.0 M NaCl, 10-100 mM Tris-HCl,pH6.0-9.0。
优选地,步骤B中的上样量为不超过一个柱体积。
优选地,步骤B的操作过程为,先用平衡流动相冲洗层析柱直至电导和紫外吸收基线稳定;然后将步骤A中获得的样品流经层析柱;再用平衡流动相冲洗层析柱直至电导和紫外吸收基线稳定;最后用洗脱流动相以线性洗脱模式洗脱层析柱,监测紫外吸收值。
优选地,步骤B中计算开环质粒和超螺旋质粒比例的方法为,对开环质粒和超螺旋质粒的260 nm吸收峰进行积分,计算峰面积,峰面积之比即为开环质粒和超螺旋的质粒比例。
本发明的分析开环质粒和超螺旋质粒比例的方法简单快速,无需专门的高效液相色谱仪,实验室级别的制备层析仪也可实现,如GE Healthcare的AKTA系列层析系统。
附图说明
图1:4种菌体裂解液中的开环质粒和超螺旋质粒分析的层析图谱。
具体实施方式
下面结合附图,对本发明的较优实施例作进一步的详细说明:
步骤A:取1.0 g大肠杆菌湿菌体,加入10 ml重悬液(50 mM Tris, 10 mM EDTA,pH7.5)重悬后,加入10 ml裂解液(0.2 M NaOH,1%SDS),最后加入10 ml 中和液(3 M 醋酸钾,pH5.5);10000 rpm离心 10 min后,取1.5 ml裂解液与2.5 ml饱和硫酸铵溶液混合。
步骤B:层析分析(图1)
1)将步骤A中的混合液用0.22 μm针头滤器过滤,推入层析仪的上样环;
2)先用25 ml 的平衡缓冲液(2.25 M (NH4)2SO4, 10 mM EDTA, 100 mM Tris-HCl,pH7.5)平衡5 ml HiTrap PlasmidSelect Xtra层析柱,流速5 ml/min;
3)上样2 ml,流速2 ml/min;
4)上样结束后,用20 ml的平衡缓冲液(2.25 M (NH4)2SO4, 10 mM EDTA, 100 mMTris-HCl, pH7.5)冲洗层析柱,流速2 ml/min,洗去没有结合以及结合较弱的杂质;
5)用2 M NaCl, 10 mM EDTA, 100 mM Tris-HCl, pH7.5溶液作洗脱B相,设置线性梯度0->40%B, 20 ml,流速2 ml/min,当梯度达到21%B时的峰为开环质粒,达到27%B时的峰为超螺旋质粒;
6)用超纯水再生层析柱;
7)层析结束后,对开环质粒峰和超螺旋质粒峰进行积分,得到开环质粒和超螺旋质粒的比例。
结果表明,本发明的开环质粒和超螺旋质粒比例的分析方法具有快速简单的特点,一个样品的分析时间在30 min以内。
以上所述仅为本发明的较佳实施案例,并不用以限制本发明,不能认为具体实施只局限于这些说明。对于本发明的原则之内所做的任何修改、替换或改进等,均应包含在本发明的保护范围内。

Claims (10)

1.一种快速分析质粒中开环和超螺旋比例的检测方法,其特征在于包括以下步骤:
步骤A:将待测质粒溶液和饱和硫酸铵溶液混合均匀;
步骤B:通过亲和层析对样品进行分析。
2.权利要求1的方法,其特征在于所述步骤A中采用的质粒溶液可以是含有杂质较多的质粒溶液,如菌体裂解液,也可以是纯度较高的质粒溶液。
3.权利要求1的方法,其特征在于所述步骤A中,质粒溶液和饱和硫酸铵溶液的混合体积比小于或等于0.6。
4.权利要求1的方法,其特征在于所述步骤A中,质粒溶液和饱和硫酸铵溶液混合后,再用0.22或0.45 μm过滤。
5.权利要求1的方法,其特征在于所述步骤B中,亲和层析介质的配基为亲硫性疏水基团。
6.权利要求1的方法,其特征在于所述步骤B中,平衡流动相为含有硫酸铵的缓冲液。
7.权利要求1的方法,其特征在于所述步骤B中,洗脱流动相为含有氯化钠的缓冲液。
8.权利要求1的方法,其特征在于所述步骤B中,流动相的pH在6.0-9.0范围内。
9.权利要求1的方法,其特征在于所述步骤B中,平衡流动相的硫酸铵浓度大于或等于2.0 mol/L。
10.权利要求1的方法,其特征在于所述步骤B中,洗脱流动相的氯化钠浓度大于或等于1.0 mol/L。
CN201710975456.3A 2017-10-19 2017-10-19 一种快速分析开环和超螺旋质粒的检测方法 Withdrawn CN107782823A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710975456.3A CN107782823A (zh) 2017-10-19 2017-10-19 一种快速分析开环和超螺旋质粒的检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710975456.3A CN107782823A (zh) 2017-10-19 2017-10-19 一种快速分析开环和超螺旋质粒的检测方法

Publications (1)

Publication Number Publication Date
CN107782823A true CN107782823A (zh) 2018-03-09

Family

ID=61434715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710975456.3A Withdrawn CN107782823A (zh) 2017-10-19 2017-10-19 一种快速分析开环和超螺旋质粒的检测方法

Country Status (1)

Country Link
CN (1) CN107782823A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721871A (zh) * 2020-06-24 2020-09-29 南京济群生物科技有限公司 一种质粒超螺旋dna含量的高分离度检测方法
CN112798697A (zh) * 2020-11-16 2021-05-14 武汉波睿达生物科技有限公司 一种慢病毒包装系统辅助质粒的超螺旋结构纯度的检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111721871A (zh) * 2020-06-24 2020-09-29 南京济群生物科技有限公司 一种质粒超螺旋dna含量的高分离度检测方法
CN112798697A (zh) * 2020-11-16 2021-05-14 武汉波睿达生物科技有限公司 一种慢病毒包装系统辅助质粒的超螺旋结构纯度的检测方法

Similar Documents

Publication Publication Date Title
Breadmore et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010)
Jarvas et al. Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices
Kataoka New trends in sample preparation for clinical and pharmaceutical analysis
Quirino et al. On-line preconcentration in capillary electrochromatography using a porous monolith together with solvent gradient and sample stacking
Xiong et al. Base stacking: pH-mediated on-column sample concentration for capillary DNA sequencing
Ramautar et al. Developments in coupled solid‐phase extraction–capillary electrophoresis 2009–2011
US5453382A (en) Electrochromatographic preconcentration method
Mei et al. Magnetism-enhanced monolith-based in-tube solid phase microextraction
Schaller et al. Separation of antidepressants by capillary electrophoresis with in-line solid-phase extraction using a novel monolithic adsorbent
Puig et al. Recent advances in coupling solid-phase extraction and capillary electrophoresis (SPE–CE)
JP2009540274A5 (zh)
Ramautar et al. Recent developments in coupled SPE‐CE
Pereira et al. Microextraction by packed sorbent: an emerging, selective and high‐throughput extraction technique in bioanalysis
Wang et al. Sulfoalkylbetaine‐based monolithic column with mixed‐mode of hydrophilic interaction and strong anion‐exchange stationary phase for capillary electrochromatography
CN104049025A (zh) 微量注射泵驱动液流的毛细管电泳分析系统
Wouters et al. System design and emerging hardware technology for ion chromatography
Thabano et al. Capillary electrophoresis of neurotransmitters using in-line solid-phase extraction and preconcentration using a methacrylate-based weak cation-exchange monolithic stationary phase and a pH step gradient
Fan et al. Determination of piperidinium ionic liquid cations in environmental water samples by solid phase extraction and hydrophilic interaction liquid chromatography
Moein et al. Fabrication of a novel electrospun molecularly imprinted nanomembrane coupled with high‐performance liquid chromatography for the selective separation and determination of acesulfame
Guo et al. Sensitive determination of four tetracycline antibiotics in pig plasma by field-amplified sample stacking open-tubular capillary electrochromatography with dimethylethanolamine aminated polychloromethyl styrene nano-latex coated capillary column
CN107782823A (zh) 一种快速分析开环和超螺旋质粒的检测方法
Shukla et al. Purification of an antigenic vaccine protein by selective displacement chromatography
Augustin et al. Online preconcentration using monoliths in electrochromatography capillary format and microchips
Huang Open tubular ion chromatography: A state-of-the-Art review
Zhu et al. Integrated bare narrow capillary–hydrodynamic chromatographic system for free-solution DNA separation at the single-molecule level

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20180309

WW01 Invention patent application withdrawn after publication