CN107782760B - 高炉料熔炼性能匹配度的测试方法 - Google Patents

高炉料熔炼性能匹配度的测试方法 Download PDF

Info

Publication number
CN107782760B
CN107782760B CN201710984622.6A CN201710984622A CN107782760B CN 107782760 B CN107782760 B CN 107782760B CN 201710984622 A CN201710984622 A CN 201710984622A CN 107782760 B CN107782760 B CN 107782760B
Authority
CN
China
Prior art keywords
sample
tested
coke
sinter
pellet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710984622.6A
Other languages
English (en)
Other versions
CN107782760A (zh
Inventor
肖志新
陈令坤
卢正东
余珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Iron and Steel Co Ltd
Original Assignee
Wuhan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Iron and Steel Co Ltd filed Critical Wuhan Iron and Steel Co Ltd
Priority to CN201710984622.6A priority Critical patent/CN107782760B/zh
Publication of CN107782760A publication Critical patent/CN107782760A/zh
Application granted granted Critical
Publication of CN107782760B publication Critical patent/CN107782760B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means

Abstract

本发明公开了一种高炉料熔炼性能匹配度的测试方法,属于高炉炼钢技术领域。该测试方法为将焦炭试样与烧结矿试样、球团矿试样进行组合,得到的待测试样中,焦炭与烧结矿、焦炭与球团矿及烧结矿与球团矿在熔炼时能面面接触,待熔炼结束后,切开待测试样并观察焦碳‑烧结矿结合面,焦炭‑球团矿结合面和烧结矿‑球团矿结合面的熔炼度,并以此来分析焦、矿熔炼性能的匹配情况。该测定方法操作简单,测定结果准确,为高炉配料提供科学和有效的依据,有效的指导了高炉的顺利推行。

Description

高炉料熔炼性能匹配度的测试方法
技术领域
本发明涉及高炉原料的选择,属于高炉炼钢技术领域,具体地涉及一种高炉料熔炼性能匹配度的测试方法。
背景技术
高炉布料在保证高炉顺利进行过程中起至关重要的作用,炼铁学基本理论和高炉生产实践均证明,优化高炉炼铁原燃料质量和冶金性能既是高炉实现高效化、大型化、长寿化、节能减排的前提条件,也是提高喷煤比、降低焦比和燃料比的基础条件。所谓优化炉料质量即是提高炉料质量:入炉矿品位高,渣量少和改善原燃料性能等。大高炉炉料做到入炉矿品位≥58%、炉料含低SiO2、低Al2O3、低MgO,高炉渣比在300kg/t铁以下,焦炭的反应性(CRI)≤25%,反应后的强度在≥65%等,这是保证大高炉生产稳定顺行、高效、低耗和大喷煤的必要条件。
然而,高炉入炉铁原料和焦炭在高温下会发生还原反应,并随温度升高,铁原料会熔融软化,由于铁原料的软熔性能会受到其成分、结构和矿物组成的影响,因此,炉料还原性能、软熔温度差异较大时,高炉会受原料性能匹配度差的影响,使高炉的粉化区域和融滴区域变化,粉化区域变宽会使料柱透气性变差,影响高炉顺行,融滴区域变宽不仅会使高炉透气性变差,还会使炉壁粘接,这对设备和产能损害很大。因此,设计一种测试高炉料熔炼性匹配度的方法,可为高炉配料提供科学和有效的数据,是指导高炉配料的一项重要手段。
目前,关于铁矿软熔性能试样的制作和测试方法为:选取10~12.5mm的铁矿石和焦炭,按照一层焦和一层矿铺入坩埚,然后进行高温性能测试,这样的测试结果只能反映单种矿的熔炼性,由于每次试验的条件和原料的会有波动,因此,该试验不能同时反映不同铁矿原料的熔炼程度和软熔性能的匹配效果。
发明内容
为解决上述技术问题,本发明公开了一种高炉料熔炼性能匹配度的测试方法。该测试方法通过对试样进行加工和组合,达到了在相同条件下同时进行焦炭、烧结矿和球团矿接触面之间两两相互反应的目的,只需在测试结束后切开试样,并测试内部焦炭-烧结矿、焦炭-球团矿及烧结矿-球团矿之间的反应程度和差异,即可分析不同铁矿原料熔炼性能的差异和匹配程度。
为实现上述目的,本发明公开了一种高炉料熔炼性能匹配度的测试方法,它包括如下步骤:
1)制备待测试样:所述待测试样为焦炭试样与铁矿试样的组合试样,所述焦炭试样为实心立方体结构,沿实心立方体的一侧开设凹槽,所述凹槽的内侧面均为波纹面;所述铁矿试样由形状相同、体积相同的烧结矿与球团矿组成,所述烧结矿与球团矿沿所述铁矿试样的中心轴线方向对称设置,所述烧结矿与球团矿组成所述铁矿试样的顶部与端部,所述铁矿试样的顶部插入焦炭试样的凹槽中;
2)熔炼待测试样:取所述步骤1)制备的待测试样置于带透气底板的石墨坩埚中,保证待测试样中铁矿试样的端部与透气底板相接触,在待测试样与石墨坩埚的四周空隙中填充焦炭粉,再在待测试样中焦炭试样的顶面放置一个带测温热电偶的增压杆,由石墨坩埚底部通入还原气体,所述还原气体由CO、CO2和N2组成;设置熔炼温度为900~1300℃,熔炼反应2~3h后降温、冷却,取出待测试样;
3)分析待测试样的熔炼性能匹配度:取所述步骤2)熔炼后的待测试样并沿纵向截面剖切,测量并计算焦炭-烧结矿接合面处焦炭减少的最大厚度,焦炭-球团矿接合面处焦炭减少的最大厚度,烧结矿-球团矿接合面处烧结矿一侧生成的海绵铁层最大厚度,球团矿一侧生成的海绵铁层最大厚度。
进一步地,所述步骤1)中,所述焦炭试样的高度为40~60mm,所述铁矿试样的高度为13~17mm。
再进一步地,所述步骤1)中,所述凹槽为开口朝外的V型凹槽,所述V型凹槽的深度为8~12mm。
更进一步地,所述步骤2)中,对待测试样进行加热,当待测试样的温度>450℃,由石墨坩埚底部通入还原气体,在30~60min之间将待测试样的温度升至900℃,对待测试样进行加热,当待测试样的温度>450℃,由石墨坩埚底部通入还原气体,在30~60min之间将待测试样的温度升至900℃,再经过1.0h后温度由900℃升至1300℃,该温度段为熔炼阶段,然后在1300℃保持5.0min,最后让试样自然冷却到常温。
更进一步地,所述步骤2)中,所述还原气体中CO、CO2和N2的体积比为20%:20%:60%。
更进一步地,所述步骤2)中,所述焦炭粉的粒度为2~5mm。
作为本发明的一种技术方案的优选,焦炭试样为正方体结构,沿正方体的一侧开设V型凹槽,V型凹槽的中心线与正方体的中心线在同一条直线,且V型凹槽的深度低于正方体的高度,V型凹槽的内侧面为波纹面,保证焦炭试样与铁矿试样进行表面接触时,表面之间留有可供气体穿过的空隙;本发明的铁矿试样为球团矿与烧结矿的组合,本发明优选球团矿与烧结矿均为相同形状、相同体积的直角梯形体,分别取一个球团矿和一个烧结矿进行对称组合,得到的铁矿试样的顶部为正三棱柱,正好完全插入V型凹槽中,且球团矿与烧结矿的接合面之间还留有空隙;铁矿试样的端部为立方体结构。
有益效果:
本发明制备的组合试样,在控制相同的实验条件下,能同时反映球团矿、烧结矿的熔炼性,进一步的反应不同铁矿原料与焦炭的熔炼程度及软熔性能的匹配效果,本发明的测定方法操作简单,测定结果准确,为高炉配料提供科学和有效的依据,有效的指导了高炉的顺利推行。
附图说明
图1为本发明待测试样与测试装置的位置关系示意图;
图2为图1的待测试样A-A向的剖视图;
上述图中各部件标号如下:
焦炭试样1、烧结矿试样2、球团矿试样3、矿-矿气隙4、焦-矿气隙5、焦炭粉6、石墨坩埚7、透气底板7.1、热电偶8、增压杆9;
具体实施方式
为了更好地解释本发明,以下结合具体实施例进一步阐明本发明的主要内容,但本发明的内容不仅仅局限于以下实施例。
本发明公开了一种高炉料熔炼性能匹配度的测试方法,它包括如下步骤:
1)制备待测试样:所述待测试样为高度为40~60mm的焦炭试样1与高度为13~17mm的铁矿试样的组合试样,所述焦炭试样1为实心立方体结构,如图1所示,立方体结构优选为正方体结构,且正方体结构的高度优选为50mm,沿正方体的一侧开设凹槽,所述凹槽的内侧面均为波纹面,保证了焦炭试样1与铁矿试样进行表面接触时,面与面之间形成焦-矿气隙5;本发明实施例优选凹槽为开口朝外的V型凹槽,所述V型凹槽的两个相邻侧面之间的夹角为90°,所述V型凹槽的中心线与正方体的中心线在同一直线上,
所述V型凹槽的深度可设置为8~12mm之间,本实施例优选V型凹槽的深度为10mm;
再次如图1所示,所述铁矿试样由形状相同、体积相同的烧结矿试样2与球团矿试样3组成,所述烧结矿试样2与球团矿试样3沿所述铁矿试样的中心轴线方向对称设置,且在烧结矿试样2与球团矿试样3的接合面之间留有矿-矿气隙4,所述烧结矿试样与球团矿试样组成所述铁矿试样的顶部与端部,所述铁矿试样的顶部完全的插入焦炭试样的V型凹槽中,如图1所示,保证熔炼时,焦炭试样1的表面与烧结矿试样2的表面接触,焦炭试样1的表面与球团矿试样3的表面接触,烧结矿试样2的表面与球团矿试样3的表面接触;同时,所述铁矿试样的端部为立方体端部;
2)熔炼待测试样:取所述步骤1)制备的待测试样置于带透气底板7.1的石墨坩埚7中,保证待测试样中铁矿试样的端部与透气底板7.1相接触,在待测试样与石墨坩埚7的四周空隙中填充粒度为2~5mm的焦炭粉6,保证待测试样受热均匀,再在待测试样中焦炭试样1的顶面放置一个带测温热电偶8的增压杆9,所述增压杆9能够对待测试样施加1.5kg左右的压力;对待测试样进行加热,当待测试样的温度>450℃,由石墨坩埚7底部通入还原气体,所述还原气体由CO、CO2和N2组成,本实施例优选还原气体中CO、CO2和N2的体积百分比分别为20%、20%和60%,在30~60min之间将待测试样的温度升至900℃,熔炼反应1.0h后再升温至1300℃,在焦炭试样1分别与烧结矿试样2、球团矿试样3熔炼的过程中,还原气体流经烧结矿试样2与球团矿试样3的接合面之间的矿-矿气隙4,再由两侧分别进入焦炭试样1与烧结矿试样2的接合面、焦炭试样1与球团矿试样3的接合面之间的焦-矿气隙5,保证了还原气体在组合试样的焦炭与铁矿之间进行充分的还原反应,还原后的气流沿焦炭粉6的间隙流出石墨坩埚5;在1300℃保持5.0min左右,最后让试样自然冷却到常温。
3)分析待测试样的熔炼性能匹配度:取所述步骤2)熔炼后的冷却试样沿图1所示的A-A向剖切,如图2所示,测量并计算焦炭-烧结矿接合面处焦炭减少的最大厚度,焦炭-球团矿接合面处焦炭减少的最大厚度,烧结矿-球团矿接合面处烧结矿一侧生成的海绵铁层最大厚度,球团矿一侧生成的海绵铁层最大厚度,得到了表1;
表1熔炼后待测试样各组成的反应情况列表
上述表1中的数据分别为在900℃、1000℃、1100℃,取待测试样冷却到常温后进行剖切测定得到的。
由上述表1可知,烧结矿的熔炼温度要低于球团矿的熔炼温度,且烧结矿的熔炼速度要高于球团矿的熔炼速度,因此,若将烧结矿与球团矿混合使用用于高炉炼铁,会造成高炉软融带变宽,引起高炉透气性差及炉壁粘接的问题,不利于高炉顺利推行,为保证高炉顺利推行,需改用其它的炉矿。
以上实施例仅为最佳举例,而并非是对本发明的实施方式的限定。除上述实施例外,本发明还有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (6)

1.一种高炉料熔炼性能匹配度的测试方法,其特征在于:它包括如下步骤:
1)制备待测试样:所述待测试样为焦炭试样与铁矿试样的组合试样,所述焦炭试样为实心立方体结构,沿实心立方体的一侧开设凹槽,所述凹槽的内侧面均为波纹面;所述铁矿试样由形状相同、体积相同的烧结矿与球团矿组成,所述烧结矿与球团矿沿所述铁矿试样的中心轴线方向对称设置,所述烧结矿与球团矿组成所述铁矿试样的顶部与端部,所述铁矿试样的顶部插入焦炭试样的凹槽中;
2)熔炼待测试样:取所述步骤1)制备的待测试样置于带透气底板的石墨坩埚中,保证待测试样中铁矿试样的端部与透气底板相接触,在待测试样与石墨坩埚的四周空隙中填充焦炭粉,再在待测试样中焦炭试样的顶面放置一个带测温热电偶的增压杆,由石墨坩埚底部通入还原气体,所述还原气体由CO、CO2和N2组成;设置熔炼温度为900~1300℃,熔炼反应2~3h后降温、冷却,取出待测试样;
3)分析待测试样的熔炼性能匹配度:取所述步骤2)熔炼后的待测试样并沿纵向截面剖切,测量并计算焦炭-烧结矿接合面处焦炭减少的最大厚度,焦炭-球团矿接合面处焦炭减少的最大厚度,烧结矿-球团矿接合面处烧结矿一侧生成的海绵铁层最大厚度,球团矿一侧生成的海绵铁层最大厚度。
2.根据权利要求1所述高炉料熔炼性能匹配度的测试方法,其特征在于:所述步骤1)中,所述焦炭试样的高度为40~60mm,所述铁矿试样的高度为13~17mm。
3.根据权利要求2所述高炉料熔炼性能匹配度的测试方法,其特征在于:所述步骤1)中,所述凹槽为开口朝外的V型凹槽,所述V型凹槽的深度为8~12mm。
4.根据权利要求1所述高炉料熔炼性能匹配度的测试方法,其特征在于:所述步骤2)中,对待测试样进行加热,当待测试样的温度>450℃,由石墨坩埚底部通入还原气体,在30~60min之间将待测试样的温度升至900℃,再经过1.0h后温度由900℃升至1300℃,该温度段为熔炼阶段,然后在1300℃保持5.0min,最后让试样自然冷却到常温。
5.根据权利要求1或2或3或4所述高炉料熔炼性能匹配度的测试方法,其特征在于:所述步骤2)中,所述还原气体中CO、CO2和N2的体积比为20%:20%:60%。
6.根据权利要求1或2或3或4所述高炉料熔炼性能匹配度的测试方法,其特征在于:所述步骤2)中,所述焦炭粉的粒度为2~5mm。
CN201710984622.6A 2017-10-20 2017-10-20 高炉料熔炼性能匹配度的测试方法 Active CN107782760B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710984622.6A CN107782760B (zh) 2017-10-20 2017-10-20 高炉料熔炼性能匹配度的测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710984622.6A CN107782760B (zh) 2017-10-20 2017-10-20 高炉料熔炼性能匹配度的测试方法

Publications (2)

Publication Number Publication Date
CN107782760A CN107782760A (zh) 2018-03-09
CN107782760B true CN107782760B (zh) 2019-09-24

Family

ID=61435051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710984622.6A Active CN107782760B (zh) 2017-10-20 2017-10-20 高炉料熔炼性能匹配度的测试方法

Country Status (1)

Country Link
CN (1) CN107782760B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763298A (zh) * 2020-12-07 2021-05-07 攀钢集团攀枝花钢铁研究院有限公司 检测铁矿石软熔性能的坩埚装料结构和检测铁矿石软熔性能的方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106397A (zh) * 1987-09-22 1988-04-27 鞍山钢铁学院 料钟式高炉高配比球团矿布料方法
CN101285108A (zh) * 2008-05-30 2008-10-15 重庆钢铁(集团)有限责任公司 高炉无钟炉顶布料方法
CN101701770A (zh) * 2009-11-19 2010-05-05 武汉钢铁(集团)公司 高炉初渣实验方法及初渣实验炉
CN101928823A (zh) * 2009-06-22 2010-12-29 鞍钢股份有限公司 含高结晶水铁矿粉的烧结方法
CN102816879A (zh) * 2012-08-03 2012-12-12 燕山大学 一种串罐式无料钟高炉布料方法
CN102912047A (zh) * 2012-10-16 2013-02-06 南京钢铁股份有限公司 一种能够提高高炉产量的优选方法
CN103675002A (zh) * 2013-12-13 2014-03-26 武汉钢铁(集团)公司 一种铁矿石载负荷低温还原粉化试验装置及其试验方法
CN104789720A (zh) * 2015-04-14 2015-07-22 山西太钢不锈钢股份有限公司 一种高炉球团的布料方法
CN105018661A (zh) * 2015-05-04 2015-11-04 南京钢铁股份有限公司 一种球团矿与高炉入炉块矿配矿比例的确定方法
CN105543432A (zh) * 2016-01-26 2016-05-04 莱芜钢铁集团电子有限公司 一种高炉布料控制方法
CN106929619A (zh) * 2017-03-09 2017-07-07 江苏省沙钢钢铁研究院有限公司 一种提高高炉圆周方向工作均匀性的布料方法
CN107119163A (zh) * 2017-06-08 2017-09-01 唐山钢铁集团有限责任公司 一种高比例球团的高炉布料方法
CN107190114A (zh) * 2017-06-19 2017-09-22 攀钢集团攀枝花钢铁研究院有限公司 一种改善高钛型炉渣流动性的方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87106397A (zh) * 1987-09-22 1988-04-27 鞍山钢铁学院 料钟式高炉高配比球团矿布料方法
CN101285108A (zh) * 2008-05-30 2008-10-15 重庆钢铁(集团)有限责任公司 高炉无钟炉顶布料方法
CN101928823A (zh) * 2009-06-22 2010-12-29 鞍钢股份有限公司 含高结晶水铁矿粉的烧结方法
CN101701770A (zh) * 2009-11-19 2010-05-05 武汉钢铁(集团)公司 高炉初渣实验方法及初渣实验炉
CN102816879A (zh) * 2012-08-03 2012-12-12 燕山大学 一种串罐式无料钟高炉布料方法
CN102912047A (zh) * 2012-10-16 2013-02-06 南京钢铁股份有限公司 一种能够提高高炉产量的优选方法
CN103675002A (zh) * 2013-12-13 2014-03-26 武汉钢铁(集团)公司 一种铁矿石载负荷低温还原粉化试验装置及其试验方法
CN104789720A (zh) * 2015-04-14 2015-07-22 山西太钢不锈钢股份有限公司 一种高炉球团的布料方法
CN105018661A (zh) * 2015-05-04 2015-11-04 南京钢铁股份有限公司 一种球团矿与高炉入炉块矿配矿比例的确定方法
CN105543432A (zh) * 2016-01-26 2016-05-04 莱芜钢铁集团电子有限公司 一种高炉布料控制方法
CN106929619A (zh) * 2017-03-09 2017-07-07 江苏省沙钢钢铁研究院有限公司 一种提高高炉圆周方向工作均匀性的布料方法
CN107119163A (zh) * 2017-06-08 2017-09-01 唐山钢铁集团有限责任公司 一种高比例球团的高炉布料方法
CN107190114A (zh) * 2017-06-19 2017-09-22 攀钢集团攀枝花钢铁研究院有限公司 一种改善高钛型炉渣流动性的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
21世纪的高炉生产;先越蓉;《世界金属导报》;20110802;第1-4页 *
宝钢3号高炉低烧结矿比例生产实践;高峰 等;《炼铁》;20170430;第36卷(第2期);第43-46页 *
改善武钢铁矿粉烧结强度的配矿试验;肖志新 等;《钢铁研究学报》;20140930;第26卷(第9期);第27-32页 *

Also Published As

Publication number Publication date
CN107782760A (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
Dwarapudi et al. Effect of pellet basicity and MgO content on the quality and microstructure of hematite pellets
Jiao et al. Analysis of blast furnace hearth sidewall erosion and protective layer formation
Dwarapudi et al. Effect of pyroxenite flux on the quality and microstructure of hematite pellets
CN103436772B (zh) -60℃低温韧性铁素体球墨铸铁及其制备方法
BR112012003786B1 (pt) Aglomerado contendo carbono não queimado para altos fornos e seu processo de produção
CN104263917B (zh) 带式机生产镁质球团矿原料及其镁质球团矿生产方法
Pal et al. Development of pellet-sinter composite agglomerate for blast furnace
CN107782760B (zh) 高炉料熔炼性能匹配度的测试方法
Bai et al. Analysis of vanadium-bearing titanomagnetite sintering process by dissection of sintering bed
Umadevi et al. Influence of magnesia on iron ore sinter properties and productivity
CN104388612B (zh) 一种高炉低成本钛矿护炉方法
Kaushik et al. Mixed burden softening and melting phenomena in blast furnace operation Part 2–Mechanism of softening and melting and impact on cohesive zone
Wang et al. Characteristics of combustion zone and evolution of mineral phases along bed height in ore sintering
CN110156352A (zh) 一种气淬冶金渣微珠的制备方法
Umadevi et al. Influence of magnesia on iron ore sinter properties and productivity–use of dolomite and dunite
Yamaguchi et al. Influence of Al2O3 on reduction-meltdown behavior of sinter in blast furnace
Iwami et al. Effect of oxygen enrichment on mineral texture in sintered ore with gaseous fuel injection
CN107188584A (zh) 一种以硅酸二钙为结合相的电熔镁砂及其制备工艺
US20230313328A1 (en) Production method of pig iron
Zuo Softening and melting characteristics of self-fluxed pellets with and without the addition of BOF-slag to the pellet bed
JP6885238B2 (ja) 高炉の操業方法
Hessien et al. Characterisation of iron ore sinter and its behaviour during non-isothermal reduction conditions
Garbers-Craig, AM, Geldenhuis, JMA, Jordaan WJ & Pistorius The influence of increased air flow on the spatial variation of iron sinter quality
Ökvist et al. Influence of basic fluxes on slag formation in a blast furnace using LKAB pellets
Zhao et al. Microstructures and softening behaviours of lead sinters and their correlation to sintering temperatures in Mount Isa lead smelter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant