CN107749434A - 一种石墨烯基光电探测器 - Google Patents

一种石墨烯基光电探测器 Download PDF

Info

Publication number
CN107749434A
CN107749434A CN201710948702.6A CN201710948702A CN107749434A CN 107749434 A CN107749434 A CN 107749434A CN 201710948702 A CN201710948702 A CN 201710948702A CN 107749434 A CN107749434 A CN 107749434A
Authority
CN
China
Prior art keywords
layer
graphene
sulfur doping
based photodetector
preformed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710948702.6A
Other languages
English (en)
Other versions
CN107749434B (zh
Inventor
黄晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurige Technology Co., Ltd.
Original Assignee
黄晓敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄晓敏 filed Critical 黄晓敏
Priority to CN201710948702.6A priority Critical patent/CN107749434B/zh
Publication of CN107749434A publication Critical patent/CN107749434A/zh
Application granted granted Critical
Publication of CN107749434B publication Critical patent/CN107749434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供一种石墨烯基光电探测器,包括硅基板、硫掺杂石墨烯层以及硫掺杂石墨烯层上的铜铟镓硒硫功能层,是一种新的材料和材料之间的配合方式下形成的光电探测器,通过硫掺杂石墨烯层结合成分渐变的铜铟镓硒硫功能层,给出了一种新结构的石墨烯基光电探测器。

Description

一种石墨烯基光电探测器
技术领域
本发明涉及一种传感器,具体涉及一种石墨烯基光电探测器。
背景技术
光电探测技术在紫外线辐射检测、环境监测、化学成分分析、污水检测与处理、灾害预警、食品卫生、医疗健康、无线加密通信等方面具有广泛的应用。由于宽禁带半导体(WBG,如氮化镓、碳化硅、氧化锌等)具有不吸收可见光的特性,在紫外探测领域得到广泛的关注,并展开了大量的研究与应用。然而,目前制备大面积高质量单晶WBG材料的工艺复杂且还未完全成熟,材料表面存在大量缺陷态,导致光电传感器响应时间较低。另一方面,制备大面积高质量单晶硅的工艺则已经非常成熟,半导体硅在可见光探测领域是最理想的材料之一,也是紫外光电传感的常用材料。然而,硅材料对紫外光的响应度较低,这是由于紫外光在硅材料中的透射深度极浅(波长370纳米以下,透射深度大于20纳米),光生载流子主要集中在硅的表面,而传统硅基P-N或P-I-N结型光电探测器件的结深一般大于200nm,载流子复合效应导致光学响应随入射光波长的减小而迅速降低。超浅P-N或P-I-N结(深度大于20纳米)的制备相当困难,传统方法是采用离子注入和精确控制热扩散工艺来制备浅结,但是在硅表面附近易形成P+N结,高掺杂的P+区域会增加载流子的表面复合,降低光电传感器的响应度。一些新开发的浅结技术(比如δ-掺杂技术或激光掺杂技术)制备工艺相当复杂,导致硅基光电传感器价格变得昂贵。
石墨烯是一种由碳原子形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。它的厚度大约为0.335μm,根据制备方式的不同而存在不同的起伏,通常在垂直方向的高度大约1μm左右,是除金刚石以外所有碳晶体的基本结构单元。石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体分子也无法穿透。这些特征使得它非常适合作为透明电子产品的原料。
CIGS电池具有性能稳定、抗辐射能力强,光电转换效率目前是各种薄膜太阳电池之首,接近于目前市场主流产品晶体硅太阳电池转换效率,成本却是其1/3。正是因为其性能优异被国际上称为下一代的廉价太阳电池,无论是在地面阳光发电还是在空间微小卫星动力电源的应用上具有广阔的市场前景。CIGS电池具有与多晶硅太阳能电池接近的效率,具有低成本和高稳定性的优势,并且产业化瓶颈已经突破,在晶体硅太阳能电池原材料短缺的不断加剧和价格的不断上涨背景下,很多公司投入巨资,CIGS产业呈现出蓬勃发展的态势。
目前石墨烯在光电传感器上的应用已经被广泛研究,但其中的潜力并没有被完全挖掘出来,因此基于石墨烯的光电传感器,尤其是与其它材料相结合的光电传感器还有很大的开发空间,在该领域还有很多值得发现和寻找的各种结构或结构与材料组合的气体传感器。
发明内容
本发明提供一种新型结构的基于多层石墨烯光电传感器,它能够加速载流子的收集,充分利用光使得传感器的灵敏度得到很大的提升。本发明提供一种石墨烯基光电探测器,包含:
硅基板;
硫掺杂石墨烯层,所述硫掺杂石墨烯层形成在所述硅基板层上;石墨烯作为一种新型的碳材料,因其独特的二维平面结构、巨大的比表面积以及优良的导电性能使其在燃料电池等领域表现出良好的应用前景。理论计算和大量实验证明对石墨烯进行掺杂修饰,可以有效的调节其电子性能和化学活性。本发明中使用硫掺石墨烯配合铜铟镓硒硫功能层,发现能够较好地提升光电效率。
在硫掺杂石墨烯层上形成铜铟镓硒硫功能层,所述铜铟镓硒硫功能层中硫含量从下至上逐渐减小,硒含量从下至上逐渐增大;
所述铜铟镓硒硫功能层上的透明导电氧化物层;
所述铜铟镓硒硫功能层的制备方法为:先在所述硫掺杂石墨烯层上形成一层铜铟镓硫预制层,在所述铜铟镓硫预制层上形成一层铜铟镓预制层,然后在所述铜铟镓预制层上形成一层铜铟镓硒预制层,形成三次预制层后在硒蒸气氛围下进行退火。
进一步地,所述透明导电氧化物层替换为石墨烯层。
进一步地,所述铜铟镓预制层的厚度占三层预制层厚度的比例在45-75%。
进一步地,所述硫掺杂石墨烯层的层数是1-5层。
进一步地,所述硫掺杂石墨烯层的表面还形成有碳量子点。
进一步地,所述硅基板和所述硫掺杂石墨层之间还形成有氟化镁层。
进一步地,所述铜铟镓硒硫功能层最上表面的成分为铜铟镓硒。
进一步地,所述铜铟镓硒硫功能层最底层表面的成分为铜铟镓硫。
本发明的有益效果在于:本发明提供一种石墨烯基光电探测器,包括硅基板、硫掺杂石墨烯层以及硫掺杂石墨烯层上的铜铟镓硒硫功能层,是一种新的材料和材料之间的配合方式下形成的光电探测器,通过硫掺杂石墨烯层结合成分渐变的铜铟镓硒硫功能层,给出了一种新结构的石墨烯基光电探测器。
附图说明
图1为本发明石墨烯基光电探测器的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳的实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
下面将结合附图及具体实施例对本发明作进一步详细说明。
参见图1,本发明提供一种石墨烯基光电探测器,其特征在于,包含:
硅基板1;
硫掺杂石墨烯层2,所述硫掺杂石墨烯层2形成在所述硅基板1层上;
在硫掺杂石墨烯层2上形成铜铟镓硒硫功能层3,所述铜铟镓硒硫功能层3中硫含量从下至上逐渐减小,硒含量从下至上逐渐增大;
所述铜铟镓硒硫功能层3上的透明导电氧化物层4;
所述铜铟镓硒硫功能层3的制备方法为:先在所述硫掺杂石墨烯层2上形成一层铜铟镓硫预制层,在所述铜铟镓硫预制层上形成一层铜铟镓预制层,然后在所述铜铟镓预制层上形成一层铜铟镓硒预制层,形成三次预制层后在硒蒸气氛围下进行退火。
进一步地,所述透明导电氧化物层4替换为石墨烯层。
进一步地,所述铜铟镓预制层的厚度占三层预制层厚度的比例在45-75%。
进一步地,所述硫掺杂石墨烯层2的层数是1-5层。
进一步地,所述硫掺杂石墨烯层2的表面还形成有碳量子点。
进一步地,所述硅基板1和所述硫掺杂石墨层之间还形成有氟化镁层。
进一步地,所述铜铟镓硒硫功能层3最上表面的成分为铜铟镓硒。
进一步地,所述铜铟镓硒硫功能层3最底层表面的成分为铜铟镓硫。
本发明提供一种石墨烯基光电探测器,包括硅基板、硫掺杂石墨烯层以及硫掺杂石墨烯层上的铜铟镓硒硫功能层,是一种新的材料和材料之间的配合方式下形成的光电探测器,通过硫掺杂石墨烯层结合成分渐变的铜铟镓硒硫功能层,给出了一种新结构的石墨烯基光电探测器。
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制,显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (8)

1.一种石墨烯基光电探测器,其特征在于,包含:
硅基板;
硫掺杂石墨烯层,所述硫掺杂石墨烯层形成在所述硅基板层上;
在硫掺杂石墨烯层上形成铜铟镓硒硫功能层,所述铜铟镓硒硫功能层中硫含量从下至上逐渐减小,硒含量从下至上逐渐增大;
所述铜铟镓硒硫功能层上的透明导电氧化物层;
所述铜铟镓硒硫功能层的制备方法为:先在所述硫掺杂石墨烯层上形成一层铜铟镓硫预制层,在所述铜铟镓硫预制层上形成一层铜铟镓预制层,然后在所述铜铟镓预制层上形成一层铜铟镓硒预制层,形成三次预制层后在硒蒸气氛围下进行退火。
2.如权利要求1所述的石墨烯基光电探测器,其特征在于,所述透明导电氧化物层替换为石墨烯层。
3.如权利要求1所述的石墨烯基光电探测器,其特征在于,所述铜铟镓预制层的厚度占三层预制层厚度的比例在45-75%。
4.如权利要求1所述的石墨烯基光电探测器,其特征在于,所述硫掺杂石墨烯层的层数是1-5层。
5.如权利要求1-4任一项权利要求所述的石墨烯基光电探测器,其特征在于,所述硫掺杂石墨烯层的表面还形成有碳量子点。
6.如权利要求1所述的石墨烯基光电探测器,其特征在于,所述硅基板和所述硫掺杂石墨层之间还形成有氟化镁层。
7.如权利要求1所述的石墨烯基光电探测器,其特征在于,所述铜铟镓硒硫功能层最上表面的成分为铜铟镓硒。
8.如权利要求8所述的石墨烯基光电探测器,其特征在于,所述铜铟镓硒硫功能层最底层表面的成分为铜铟镓硫。
CN201710948702.6A 2017-10-12 2017-10-12 一种石墨烯基光电探测器 Active CN107749434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710948702.6A CN107749434B (zh) 2017-10-12 2017-10-12 一种石墨烯基光电探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710948702.6A CN107749434B (zh) 2017-10-12 2017-10-12 一种石墨烯基光电探测器

Publications (2)

Publication Number Publication Date
CN107749434A true CN107749434A (zh) 2018-03-02
CN107749434B CN107749434B (zh) 2019-05-03

Family

ID=61252586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710948702.6A Active CN107749434B (zh) 2017-10-12 2017-10-12 一种石墨烯基光电探测器

Country Status (1)

Country Link
CN (1) CN107749434B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808298A (zh) * 2019-11-14 2020-02-18 中国电子科技集团公司第四十四研究所 一种分级势垒低暗电流台面型光电二极管及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN103531664A (zh) * 2013-10-28 2014-01-22 苏州大学 柔性衬底上制备石墨烯基光电晶体管的方法
CN107068785A (zh) * 2017-05-11 2017-08-18 山东大学 一种光电探测器及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN103531664A (zh) * 2013-10-28 2014-01-22 苏州大学 柔性衬底上制备石墨烯基光电晶体管的方法
CN107068785A (zh) * 2017-05-11 2017-08-18 山东大学 一种光电探测器及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110808298A (zh) * 2019-11-14 2020-02-18 中国电子科技集团公司第四十四研究所 一种分级势垒低暗电流台面型光电二极管及其制作方法
CN110808298B (zh) * 2019-11-14 2021-07-06 中国电子科技集团公司第四十四研究所 一种分级势垒低暗电流台面型光电二极管及其制作方法

Also Published As

Publication number Publication date
CN107749434B (zh) 2019-05-03

Similar Documents

Publication Publication Date Title
Qin et al. Review of deep ultraviolet photodetector based on gallium oxide
Wang et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector
Ahn et al. Ultrahigh deep-ultraviolet responsivity of a β-Ga2O3/MgO heterostructure-based phototransistor
Cheng et al. A high open-circuit voltage gallium nitride betavoltaic microbattery
Nichterwitz et al. Numerical simulation of cross section electron-beam induced current in thin-film solar-cells for low and high injection conditions
Salem et al. Performance enhancement of a proposed solar cell microstructure based on heavily doped silicon wafers
Raj et al. High-efficiency solar cells from extremely low minority carrier lifetime substrates using radial junction nanowire architecture
US20110049379A1 (en) Neutron detectors made of inorganic materials and their method of fabrication
Hu et al. Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation
Liang et al. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure
Kavalakkatt et al. Electron-beam-induced current at absorber back surfaces of Cu (In, Ga) Se2 thin-film solar cells
Yan et al. A spiro-MeOTAD/Ga2O3/Si pin junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers
Wang et al. Designing CdS/Se heterojunction as high-performance self-powered UV-visible broadband photodetector
Liu et al. Enhancement of photoemission capability and electron collection efficiency of field-assisted GaN nanowire array photocathode
Hsueh et al. Crystalline-Si photovoltaic devices with ZnO nanowires
Mohamed et al. Theoretical study of ZnS/CdS bi-layer for thin-film CdTe solar cell
Kulakci et al. Silicon nanowire–silver indium selenide heterojunction photodiodes
Zhao et al. Germanium quantum dot infrared photodetectors addressed by self-aligned silicon nanowire electrodes
Qiao et al. Large lateral photovoltaic effect in a-Si: H/c-Si p–i–n structure with the aid of bias voltage
Jia et al. All-silicon tandem solar cells: Practical limits for energy conversion and possible routes for improvement
Yin et al. Improved photoresponse performance of a self-powered Si/ZnO heterojunction ultraviolet and visible photodetector by the piezo-phototronic effect
Hussain et al. Design and analysis of an ultra‐thin crystalline silicon heterostructure solar cell featuring SiGe absorber layer
CN107749434B (zh) 一种石墨烯基光电探测器
CN209626234U (zh) 一种高性能真空紫外光电探测器
CN209447826U (zh) 一种低暗电流台面型雪崩单光子探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190404

Address after: 266000 No. 468 Tailiu Road, North District, Qingdao City, Shandong Province

Applicant after: Qingdao Australia Liqi Polytron Technologies Inc

Address before: 528000 No. 6, Valentine's block, Times Square, Leping Town, Sanshui District, Foshan, Guangdong, China 8

Applicant before: Huang Xiaomin

GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: No. 859, Hefei Road, Laoshan District, Qingdao, Shandong Province

Patentee after: Aurige Technology Co., Ltd.

Address before: 266000 No. 468 Tailiu Road, North District, Qingdao City, Shandong Province

Patentee before: Qingdao Australia Liqi Polytron Technologies Inc