CN107747122A - A kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method - Google Patents
A kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method Download PDFInfo
- Publication number
- CN107747122A CN107747122A CN201710811360.3A CN201710811360A CN107747122A CN 107747122 A CN107747122 A CN 107747122A CN 201710811360 A CN201710811360 A CN 201710811360A CN 107747122 A CN107747122 A CN 107747122A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- liquid interface
- oxygen concentration
- solid liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/20—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B30/00—Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
- C30B30/04—Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
Claims (9)
- A kind of 1. Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method, it is characterised in that specifically according to Lower step is implemented:Three-dimensional Local physical model needed for step 1, structure crystal for straight drawing monocrystal growth;Step 2, by three-dimensional Local physical model import CFX fluid emulation modules, setting analogue simulation is steady-state simulation, and is set Silicon melt, silicon crystal, the physical parameter and cryogenic magnetic field intensity of graphite crucible and silica crucible;Step 3, solve solid liquid interface radial direction oxygen concentration distribution situation under different superconduction horizontal magnetic intensities;The influence of step 4, analyzing crystal rotating speed to radial temperature profile in solid-liquid interface shape and melt;The influence of step 5, analysis crucible rotation to radial temperature profile in solid-liquid interface shape and melt;Step 6, combining step 3~5, with reference to selected superconduction horizontal magnetic intensity, crystal rotation and crucible rotation three Under collective effect, czochralski silicon monocrystal solid liquid interface oxygen concentration distributed intelligence under superconduction horizontal magnetic field is obtained.
- 2. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 1, its It is characterised by, the step 1 is specifically implemented according to following steps:Step 1.1, the three-dimensional Local physical model using Gambit software mess generation crystal for straight drawing monocrystal growth, include crystalline substance Body, melt, silica crucible and graphite crucible;Step 1.2, to set silica crucible radius be 0.306m, and graphite crucible radius is 0.32m, and melt radius is in crucible 0.3m, crucible rotate counterclockwise, crucible rotation ωc;Crystal radius scope is 0.15m~0.225m, and crystal turns clockwise, Crystal rotation is ωs, melt height is 0.08m~0.22m, and crystal length is 0m~0.6m, inventory 160kg, free interface For silicon melt and gas interface, boundary of the solid liquid interface between crystal and melt.
- 3. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 2, its It is characterised by, crucible rotation ω in the step 1.2cFor 0~10rpm, crystal rotation ωsFor 0~16rpm.
- 4. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 1, its It is characterised by, the step 2 is specifically implemented according to following steps:Step 2.1, setting crucible are rotate counterclockwise, crucible rotation ωc, crystal turns clockwise, crystal rotation ωs;Step 2.2, hypothesis silicon melt are incompressible Newtonian fluid;Assuming that silicon melt meets Boussinesq approximations;Set Solid liquid interface is flat face, and supercooled state does not occur when solid liquid interface crystallizes, and the temperature of solid liquid interface is the melting temperature of silicon 1685K;Melt and argon gas interface are set, i.e. free surface is flat face, and its position height is highly identical with solid liquid interface, and Outwardly atmosphere radiations heat energy;Silica crucible bottom and crucible internal walls meet without slip boundary condition with silicon melt;Melt Interior oxygen transport process is ignored to melt flows with the influence conducted heat.
- 5. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 4, its It is characterised by, in the step 2.2, used boundary condition includes oxygen concentration boundary condition in iteration of simulations solution procedure And temperature boundary condition, wherein oxygen concentration boundary condition are as follows:(1) the oxygen concentration boundary condition of melted silicon and inner wall of quartz crucible intersection:<mrow> <msub> <mi>C</mi> <mi>O</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>0.5</mn> <mo>&times;</mo> <msup> <mn>10</mn> <mn>23</mn> </msup> </mrow> <msub> <mi>N</mi> <mi>A</mi> </msub> </mfrac> <mo>&times;</mo> <msup> <mn>10</mn> <mn>6</mn> </msup> <mo>&times;</mo> <mfrac> <msub> <mi>a</mi> <mi>O</mi> </msub> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>a</mi> <mi>O</mi> </msub> </mrow> </mfrac> <mi>m</mi> <mi>o</mi> <mi>l</mi> <mo>/</mo> <msup> <mi>m</mi> <mn>3</mn> </msup> </mrow><mrow> <msub> <mi>a</mi> <mi>O</mi> </msub> <mo>=</mo> <msqrt> <msub> <mi>P</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> </msqrt> <mo>&CenterDot;</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>-</mo> <msubsup> <mi>&Delta;G</mi> <mn>2</mn> <mn>0</mn> </msubsup> </mrow> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mn>3200</mn> <mo>/</mo> <mi>T</mi> <mo>-</mo> <mn>8.19</mn> <mo>)</mo> </mrow> </mrow><mrow> <msub> <mi>P</mi> <msub> <mi>O</mi> <mn>2</mn> </msub> </msub> <mo>=</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mn>113.826</mn> <mo>/</mo> <mi>T</mi> <mo>+</mo> <mn>24.32</mn> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>&Delta;G</mi> <mn>2</mn> <mn>0</mn> </msubsup> <mo>=</mo> <mo>-</mo> <mn>446570</mn> <mo>+</mo> <mn>169.19</mn> <mi>T</mi> <mo>.</mo> </mrow>Wherein, NAFor Avgadro constant,For partial pressure of oxygen, aoFor oxysome fraction, R is carrier of oxygen mole constant, and T is change Learn reaction temperature,For chemical reactionGibbs free amount.(2) melted silicon and the oxygen concentration boundary condition at argon gas interface:<mrow> <mo>-</mo> <msub> <mi>D</mi> <mi>O</mi> </msub> <mfrac> <mrow> <mo>&part;</mo> <msub> <mi>C</mi> <mi>O</mi> </msub> </mrow> <mrow> <mo>&part;</mo> <mi>n</mi> </mrow> </mfrac> <mo>=</mo> <mfrac> <msub> <mi>D</mi> <mrow> <mi>S</mi> <mi>i</mi> <mi>O</mi> </mrow> </msub> <mrow> <msub> <mi>RT&delta;</mi> <mi>g</mi> </msub> </mrow> </mfrac> <mfrac> <msub> <mi>p</mi> <mn>0</mn> </msub> <msub> <mi>C</mi> <mrow> <mi>S</mi> <mi>i</mi> </mrow> </msub> </mfrac> <mi>exp</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mi>&Delta;</mi> <mi>G</mi> </mrow> <mrow> <mi>R</mi> <mi>T</mi> </mrow> </mfrac> <mo>)</mo> </mrow> <msub> <mi>C</mi> <mrow> <mi>s</mi> <mi>u</mi> <mi>r</mi> <mi>f</mi> </mrow> </msub> </mrow>In formula, COAnd CsurfIt is the oxygen concentration of oxygen concentration in melt and free surface respectively;CSiIt is melted silicon concentration;DOAnd DSiO It is diffusion coefficient and SiO gas diffusion coefficient in argon gas of the oxygen in silicon melt respectively;Δ G is chemical equation (Simelt +Omelt=SiOgas) Gibbs free amount, p0It is the steam pressure of silicon monoxide gas, R is gas molar constant, and T is chemistry Reaction temperature;δgIt is free surface boundary layer thickness;During the actual growing environment of crystal, the oxygen of free surface is under the brushing of argon gas, the oxygen concentration C of free surfacesurfOnly For melt inside oxygen concentration COCount very much, therefore by the oxygen concentration C of free surfacesurfIgnore, then the oxygen of free surface is dense Degree boundary condition is reduced toCO=0mol/m3;(3) the oxygen concentration boundary condition at solid liquid interface (crystal growth interface) place:<mrow> <mi>D</mi> <mfrac> <mrow> <mo>&part;</mo> <msub> <mi>C</mi> <mi>O</mi> </msub> </mrow> <mrow> <mo>&part;</mo> <mi>n</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>V</mi> <mi>g</mi> </msub> <msub> <mi>C</mi> <mi>O</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow>In formula, D be oxygen diffusion coefficient, VgFor the translational speed of solid liquid interface, k is the segregation coefficient of oxygen, CoFor the oxygen in melt Concentration.Experiment discloses the segregation coefficient of oxygen close to unit 1, and the oxygen more than 99% is evaporate among argon gas from free surface, So the oxygen content being incorporated into crystal is ignored in solid liquid interface Whole Oxygen flux equilibrium, above formula is reduced to<mrow> <mfrac> <mrow> <mo>&part;</mo> <msub> <mi>C</mi> <mi>O</mi> </msub> </mrow> <mrow> <mo>&part;</mo> <mi>n</mi> </mrow> </mfrac> <mo>=</mo> <mn>0</mn> <mi>m</mi> <mi>o</mi> <mi>l</mi> <mo>/</mo> <msup> <mi>m</mi> <mn>3</mn> </msup> </mrow>Graphite crucible bottom and graphite crucible outer wall apply constant gradient Temperature Distribution value in temperature boundary condition, at free surface Establish heat flow density equation, such as following formula:<mrow> <mfrac> <mrow> <mo>-</mo> <msub> <mi>K</mi> <mi>l</mi> </msub> <mo>&part;</mo> <msub> <mi>T</mi> <mrow> <mn>3</mn> <mi>D</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <mi>n</mi> </mrow> </mfrac> <mo>=</mo> <mi>&beta;</mi> <msup> <mrow> <mo>&lsqb;</mo> <mi>T</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> <mn>1.25</mn> </msup> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>l</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mi>s</mi> <mi>q</mi> <mi>r</mi> <mi>t</mi> <mrow> <mo>(</mo> <msup> <mi>x</mi> <mn>2</mn> </msup> <mo>+</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </mrow>Q′l=qout,k-qin,k=σ ε T4-εqin,kqin,k=sumJ=1~N(Fk,jqout,j)In formula, β [T (r)-T0(r)]1.25For describing due to gaseous exchange and caused thermal losses, Q 'lFor describing melt liquid Face caused thermal losses by radiation, T are free surface temperature, T0For environment temperature, KlFor the silicon melt coefficient of heat conduction, β is gas The thermal losses coefficient of body convection current, r are free surface radius, and ε is radiation coefficient, and σ is Stefan-Boltzmann constants, Fk,jFor Ascent between two surfaces of k, j, qout,kIt is the heat flow of flux surface, qin,kIt is the heat flow for flowing into surface, x, z are sky Between rectangular coordinate system direction variable, N is surface total number;The inner surface not contacted in graphite crucible and the top surface of silica crucible, silica crucible with silicon melt and crystal outer surface Deng the surface of solids, similar heat flow density equation, such as following formula are also established:<mrow> <mfrac> <mrow> <mo>-</mo> <msub> <mi>K</mi> <mi>s</mi> </msub> <mo>&part;</mo> <msub> <mi>T</mi> <mrow> <mn>3</mn> <mi>D</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&part;</mo> <mi>n</mi> </mrow> </mfrac> <mo>=</mo> <mi>&beta;</mi> <msup> <mrow> <mo>&lsqb;</mo> <mi>T</mi> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> <mn>1.25</mn> </msup> <mo>+</mo> <msubsup> <mi>Q</mi> <mi>s</mi> <mo>&prime;</mo> </msubsup> <mrow> <mo>(</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mi>c</mi> <mi>r</mi> <mi>y</mi> <mi>s</mi> <mi>t</mi> <mi>a</mi> <mi>l</mi> <mo>/</mo> <mi>c</mi> <mi>r</mi> <mi>u</mi> <mi>c</mi> <mi>i</mi> <mi>b</mi> <mi>l</mi> <mi>e</mi> <mi> </mi> <mi>r</mi> <mi>a</mi> <mi>d</mi> <mi>i</mi> <mi>u</mi> <mi>s</mi> </mrow>Q′s=qout,k-qin,k=σ ε T4-εqin,kWherein, Q 'sFor describing the surface of solids caused thermal losses by radiation, KsFor the silicon melt coefficient of heat conduction, r is crystal The inside radius of radius or silica crucible, y are rectangular coordinate system in space direction variable.It is 90000 that iterations is set in iterative controls, and time factor 1, the residual values of convergence curve are arranged to 1E- 06。
- 6. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 1, its It is characterised by, the step 3 is specifically implemented according to following steps:Step 3.1, the numerical solver using CFX modules, under numerical solution difference superconduction horizontal magnetic intensity, crystal rotation ωs With crucible rotation ωcFlowing and heat transfer when being 0rpm in crucible melt;Step 3.2, the Temperature Distribution cloud atlas and oxygen concentration point of melt are obtained by the post processing of CFX modules after iteration convergence Cloth cloud atlas, solid liquid interface 1685K isothermal line positions are followed the trail of on Temperature Distribution cloud atlas, obtain the oxygen concentration distribution in solid liquid interface Data, the relation curve of oxygen concentration and crystal diameter, i.e. solid liquid interface radial direction oxygen concentration distribution curve are obtained, according to solid liquid interface Average oxygen concentrationThe mean square error MSE of radial direction oxygen concentration distribution curveOWith gradient error and δOFor minimum principle, choose and close Suitable cryogenic magnetic field intensity, such as following formula<mrow> <msub> <mover> <mi>C</mi> <mo>&OverBar;</mo> </mover> <mi>O</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>c</mi> <mi>i</mi> </msub> </mrow>Wherein, n is the oxygen data amount check in collected solid liquid interface, ciFor oxygen data point, i is oxygen data arguments;<mrow> <msub> <mi>MSE</mi> <mi>O</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msup> <mrow> <mo>(</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mover> <mi>c</mi> <mo>&OverBar;</mo> </mover> <mi>O</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow><mrow> <msub> <mi>&delta;</mi> <mi>O</mi> </msub> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>gradO</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>gradO</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>Wherein, gradOiIt is the gradient of each oxygen data point on solid liquid interface radial direction oxygen concentration distribution curve, gradOminIt is solid-liquid circle Face diameter is to the minimal gradient of oxygen concentration distribution curve, gradient error and δOIt is smaller, then illustrate that solid liquid interface radial direction oxygen concentration is distributed Uniformity it is more uniform.
- 7. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 1, its It is characterised by, the step 4 is specifically implemented according to following steps:Step 4.1, during processing is set before CFX, suitable magnetic field intensity of the magnetic field intensity selected by step 3 is set, by crucible Rotational speed omegac0rpm is arranged to, adjusts different crystal rotational speed omegas, iterative to residual error curve convergence, so as to obtain solid liquid interface Oxygen concentration data on 1685K thermoisopleths;Step 4.2, the relation curve between oxygen concentration and crystal diameter, i.e. solid liquid interface radial direction oxygen concentration distribution curve are obtained, For influence of the analyzing crystal rotating speed to radial temperature profile in solid-liquid interface shape and melt, temperature detection loca is derived from melt Inside, apart from melt and argon gas interface 0.08m, length 0.3m, crystal growth is pointed in direction by crucible and melt interface Axle, according to solid liquid interface average oxygen concentrationThe mean square error MSE of radial direction oxygen concentration distribution curveOWith gradient error and δOFor Minimum principle, choose suitable crystal rotation.
- 8. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 1, its It is characterised by, the step 5 is specifically implemented according to following steps:Step 5.1, during processing is set before CFX, suitable magnetic field intensity of the magnetic field intensity selected by step 3 is set, set brilliant Body rotational speed omegasFor 0rpm, regulation crucible rotation ωc, by numerical solver iterative to residual error curve convergence, so as to obtain Oxygen concentration data on solid liquid interface 1685K thermoisopleths;Step 5.2, the relation curve between oxygen concentration and crystal diameter, i.e. solid liquid interface radial direction oxygen concentration distribution curve are obtained, In order to analyze influence of the crucible rotation to radial temperature profile in solid-liquid interface shape and melt, temperature detection loca is derived from melt Inside, height distance melt are 0.08m with argon gas interface, and length 0.3m, direction is pointed to brilliant by crucible and melt interface Body growth axis, according to solid liquid interface average oxygen concentrationThe mean square error MSE of radial direction oxygen concentration distribution curveOAnd gradient error And δOFor minimum principle, suitable crystal rotation is chosen.
- 9. a kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method according to claim 1, its It is characterised by, the step 6 is specifically implemented according to following steps:Step 6.1, during processing is set before CFX, superconduction horizontal magnetic intensity and crucible rotation are set for selected by step 3, step 5 Suitable the superconduction horizontal magnetic intensity and crucible rotation taken, because Gao Jingzhuan is advantageous to improve the uniformity of solid liquid interface, so First by crystal rotation ωsGao Jingzhuan is arranged to, is solved by iterative numerical and MATLAB maps to obtain solid liquid interface radial direction oxygen Concentration profile;Step 6.2, by crystal rotation ωsLow brilliant turn is arranged to, is solved by iterative numerical and MATLAB maps to obtain solid liquid interface Radial direction oxygen concentration distribution curve;Step 6.3, crystal rotation ω is calculated respectivelysWhen turning for high brilliant turn with low crystalline substance in solid liquid interface radial direction oxygen concentration distribution curve The average oxygen concentration of solid liquid interfaceThe mean square error MSE related to oxygen concentration distributing homogeneityOWith gradient error and δO, lead to Comparative analysis qualitatively and quantitatively is crossed, selection is both adapted to reduce solid liquid interface oxygen concentration and can raising solid liquid interface radial direction oxygen Superconduction horizontal magnetic intensity, crystal rotation and the crucible rotation of uniform concentration distribution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710811360.3A CN107747122B (en) | 2017-09-11 | 2017-09-11 | Method for optimizing solid-liquid interface oxygen distribution regulation in Czochralski silicon single crystal growth process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710811360.3A CN107747122B (en) | 2017-09-11 | 2017-09-11 | Method for optimizing solid-liquid interface oxygen distribution regulation in Czochralski silicon single crystal growth process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107747122A true CN107747122A (en) | 2018-03-02 |
CN107747122B CN107747122B (en) | 2020-03-31 |
Family
ID=61255668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710811360.3A Active CN107747122B (en) | 2017-09-11 | 2017-09-11 | Method for optimizing solid-liquid interface oxygen distribution regulation in Czochralski silicon single crystal growth process |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107747122B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108914201A (en) * | 2018-08-29 | 2018-11-30 | 西安理工大学 | A kind of Modelling of Crystal Growth in CZ-Si Pulling process parameter optimization method |
CN109576785A (en) * | 2018-12-29 | 2019-04-05 | 徐州鑫晶半导体科技有限公司 | The method of oxygen content during adjusting monocrystalline silicon growing |
CN110512278A (en) * | 2019-09-12 | 2019-11-29 | 西安奕斯伟硅片技术有限公司 | A kind of crystal pulling apparatus, device and method |
CN111926384A (en) * | 2020-06-05 | 2020-11-13 | 徐州鑫晶半导体科技有限公司 | Single crystal furnace, method for determining operating parameters of single crystal furnace in growth process of single crystal silicon and method for preparing single crystal silicon |
CN118658570A (en) * | 2024-08-19 | 2024-09-17 | 西安交通大学 | Method and device for determining shape of inner wall surface of crucible for growing silicon carbide by liquid phase method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060243192A1 (en) * | 2003-05-28 | 2006-11-02 | Kounosuke Kitamura | Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal |
CN101923591A (en) * | 2010-08-09 | 2010-12-22 | 西安理工大学 | Three-dimensional optimal design method of asymmetric cusp magnetic field used for MCZ single crystal furnace |
CN103678890A (en) * | 2013-11-28 | 2014-03-26 | 西北工业大学 | Method for simulating influence of heating technology on premelting and melting of crystal boundaries by aid of crystal phase-field process |
-
2017
- 2017-09-11 CN CN201710811360.3A patent/CN107747122B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060243192A1 (en) * | 2003-05-28 | 2006-11-02 | Kounosuke Kitamura | Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal |
CN101923591A (en) * | 2010-08-09 | 2010-12-22 | 西安理工大学 | Three-dimensional optimal design method of asymmetric cusp magnetic field used for MCZ single crystal furnace |
CN103678890A (en) * | 2013-11-28 | 2014-03-26 | 西北工业大学 | Method for simulating influence of heating technology on premelting and melting of crystal boundaries by aid of crystal phase-field process |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108914201A (en) * | 2018-08-29 | 2018-11-30 | 西安理工大学 | A kind of Modelling of Crystal Growth in CZ-Si Pulling process parameter optimization method |
CN108914201B (en) * | 2018-08-29 | 2019-09-27 | 西安理工大学 | A kind of Modelling of Crystal Growth in CZ-Si Pulling process parameter optimization method |
CN109576785A (en) * | 2018-12-29 | 2019-04-05 | 徐州鑫晶半导体科技有限公司 | The method of oxygen content during adjusting monocrystalline silicon growing |
CN110512278A (en) * | 2019-09-12 | 2019-11-29 | 西安奕斯伟硅片技术有限公司 | A kind of crystal pulling apparatus, device and method |
CN111926384A (en) * | 2020-06-05 | 2020-11-13 | 徐州鑫晶半导体科技有限公司 | Single crystal furnace, method for determining operating parameters of single crystal furnace in growth process of single crystal silicon and method for preparing single crystal silicon |
CN111926384B (en) * | 2020-06-05 | 2022-06-17 | 徐州鑫晶半导体科技有限公司 | Single crystal furnace, method for determining operating parameters of single crystal furnace in growth process of single crystal silicon and method for preparing single crystal silicon |
CN118658570A (en) * | 2024-08-19 | 2024-09-17 | 西安交通大学 | Method and device for determining shape of inner wall surface of crucible for growing silicon carbide by liquid phase method |
Also Published As
Publication number | Publication date |
---|---|
CN107747122B (en) | 2020-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107747122A (en) | A kind of Modelling of Crystal Growth in CZ-Si Pulling process optimization solid liquid interface oxygen distribution adjusting method | |
Derby et al. | Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth: I. Simulation | |
EP2385025B1 (en) | Method for calculating temperature distribution in crucible | |
Dropka et al. | Numerical study on transport phenomena in a directional solidification process in the presence of travelling magnetic fields | |
CN101923591A (en) | Three-dimensional optimal design method of asymmetric cusp magnetic field used for MCZ single crystal furnace | |
Zhang et al. | Nucleation and bulk growth control for high efficiency silicon ingot casting | |
WO2022268099A1 (en) | Single crystal growth method and apparatus, and single crystal | |
Qiu et al. | Process parameters influence on the growth rate during silicon purification by vacuum directional solidification | |
Luo et al. | Numerical and experimental study of vacuum directional solidification purification process for SoG-Si in metallurgical route | |
Li et al. | Thermodynamic analysis of dissolved oxygen in a silicon melt and the effect of processing parameters on the oxygen distribution in single-crystal silicon during Czochralski growth | |
Kesavan et al. | Optimizing oxygen impurities using different heater design in the directional solidification of multi-crystalline silicon | |
Teng et al. | Numerical analysis of solid–liquid interface shape during large-size single crystalline silicon with Czochralski method | |
Zhang et al. | Impact of heat shield structure in the growth process of Czochralski silicon derived from numerical simulation | |
Popescu et al. | Numerical study of the influence of melt convection on the crucible dissolution rate in a silicon directional solidification process | |
Avetissov et al. | Modeling of axial vibrational control technique for CdTe VGF crystal growth under controlled cadmium partial pressure | |
KR100719207B1 (en) | Method of simulation with respect to density distribution and size distribution of void defect within single crystal and oxygen precipitation nucleus within single crystal | |
Teng et al. | Experiment and numerical simulation of melt convection and oxygen distribution in 400-mm Czochralski silicon crystal growth | |
Ding et al. | Influence of particle parameters on the melting/migration of silicon particles and turbulent heat transfer during CCZ monocrystalline silicon growth | |
Kakimoto | Crystallization of silicon by a directional solidification method | |
Ren et al. | Effects of Control Parameters on Oxygen Distribution in Czochralski Crystal Growth Process | |
Kakimoto et al. | Heat transfer in β-Ga2O3 crystal grown through a skull melting method | |
Mori | Modeling the linkages between heat transfer and microdefect formation in crystal growth: examples of Czochralski growth of silicon and vertical Bridgman growth of bismuth germanate | |
Daggolu | Thermal-capillary analysis of the horizontal ribbon growth of solar silicon | |
Voigt et al. | Controlling Point Defects in Single Silicon Crystals Grown by the Czochralski Method | |
Anttila et al. | 32 Numerical modeling of Czochralski silicon crystal growth |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200806 Address after: E2-002, Science Park, Xi'an University of technology, No.26, gazeng Road, Zhangba Street office, hi tech Zone, Xi'an City, Shaanxi Province Patentee after: Xi'an yisiwei Equipment Technology Co.,Ltd. Address before: 710077 Shaanxi city of Xi'an province high tech Zone gazelle Road No. 26 Co-patentee before: Xi'an core magnetic intelligent technology partnership (limited partnership) Patentee before: Xi'an Polytechnic Asset Management Co.,Ltd. Effective date of registration: 20200806 Address after: 710077 Shaanxi city of Xi'an province high tech Zone gazelle Road No. 26 Co-patentee after: Liu Ding Patentee after: Xi'an Polytechnic Asset Management Co.,Ltd. Co-patentee after: Zhao Yue Co-patentee after: Jiao Shangbin Co-patentee after: Jiang Lei Co-patentee after: Liang Yanming Co-patentee after: Wu Shihai Co-patentee after: Jiang Jian Address before: 710077 Shaanxi city of Xi'an province high tech Zone gazelle Road No. 26 Patentee before: Xi'an Polytechnic Asset Management Co.,Ltd. Effective date of registration: 20200806 Address after: 710077 Shaanxi city of Xi'an province high tech Zone gazelle Road No. 26 Patentee after: Xi'an Polytechnic Asset Management Co.,Ltd. Address before: 710048 Shaanxi city of Xi'an Province Jinhua Road No. 5 Patentee before: XI'AN University OF TECHNOLOGY Effective date of registration: 20200806 Address after: 710077 Shaanxi city of Xi'an province high tech Zone gazelle Road No. 26 Co-patentee after: Xi'an core magnetic intelligent technology partnership (limited partnership) Patentee after: Xi'an Polytechnic Asset Management Co.,Ltd. Address before: 710077 Shaanxi city of Xi'an province high tech Zone gazelle Road No. 26 Co-patentee before: Liu Ding Patentee before: Xi'an Polytechnic Asset Management Co.,Ltd. Co-patentee before: Zhao Yue Co-patentee before: Jiao Shangbin Co-patentee before: Jiang Lei Co-patentee before: Liang Yanming Co-patentee before: Wu Shihai Co-patentee before: Jiang Jian |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210924 Address after: 710000 room 1-3-029, No. 1888, Xifeng South Road, high tech Zone, Xi'an, Shaanxi Province Patentee after: Xi'an yisiwei Material Technology Co.,Ltd. Patentee after: Xi'an yisiwei Equipment Technology Co.,Ltd. Address before: 710077 Science Park, Xi'an University of technology ez-002, No. 26, gazelle Road, Zhangba Street office, high tech Zone, Xi'an, Shaanxi Province Patentee before: Xi'an yisiwei Equipment Technology Co.,Ltd. |
|
TR01 | Transfer of patent right | ||
CP01 | Change in the name or title of a patent holder |
Address after: 710000 room 1-3-029, No. 1888, Xifeng South Road, high tech Zone, Xi'an, Shaanxi Province Patentee after: Xi'an Yisiwei Material Technology Co.,Ltd. Patentee after: Xi'an Xinhui Equipment Technology Co.,Ltd. Address before: 710000 room 1-3-029, No. 1888, Xifeng South Road, high tech Zone, Xi'an, Shaanxi Province Patentee before: Xi'an yisiwei Material Technology Co.,Ltd. Patentee before: Xi'an yisiwei Equipment Technology Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder |