CN107746559A - Biodegradable plastic and preparation method thereof - Google Patents
Biodegradable plastic and preparation method thereof Download PDFInfo
- Publication number
- CN107746559A CN107746559A CN201710728473.7A CN201710728473A CN107746559A CN 107746559 A CN107746559 A CN 107746559A CN 201710728473 A CN201710728473 A CN 201710728473A CN 107746559 A CN107746559 A CN 107746559A
- Authority
- CN
- China
- Prior art keywords
- parts
- polylactic acid
- soybean
- raw materials
- biodegradable plastic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000704 biodegradable plastic Polymers 0.000 title claims abstract description 77
- 238000002360 preparation method Methods 0.000 title claims abstract description 19
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 97
- 239000004626 polylactic acid Substances 0.000 claims abstract description 72
- 229920000747 poly(lactic acid) Polymers 0.000 claims abstract description 71
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 66
- 108010073771 Soybean Proteins Proteins 0.000 claims abstract description 63
- 235000019710 soybean protein Nutrition 0.000 claims abstract description 62
- 239000002994 raw material Substances 0.000 claims abstract description 61
- 235000010469 Glycine max Nutrition 0.000 claims abstract description 51
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 47
- 235000011187 glycerol Nutrition 0.000 claims abstract description 47
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 47
- 239000002245 particle Substances 0.000 claims abstract description 44
- 239000000203 mixture Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 19
- 230000008569 process Effects 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims description 90
- 244000068988 Glycine max Species 0.000 claims description 50
- 239000003242 anti bacterial agent Substances 0.000 claims description 18
- 239000003638 chemical reducing agent Substances 0.000 claims description 17
- 239000007822 coupling agent Substances 0.000 claims description 17
- 238000001125 extrusion Methods 0.000 claims description 17
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 claims description 15
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical group CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 claims description 15
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 claims description 14
- 235000010241 potassium sorbate Nutrition 0.000 claims description 14
- 239000004302 potassium sorbate Substances 0.000 claims description 14
- 229940069338 potassium sorbate Drugs 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 12
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 claims description 11
- 239000012752 auxiliary agent Substances 0.000 claims description 11
- 238000004898 kneading Methods 0.000 claims description 11
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 230000006835 compression Effects 0.000 claims description 10
- 235000013312 flour Nutrition 0.000 claims description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 5
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 claims description 5
- WXMKPNITSTVMEF-UHFFFAOYSA-M sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 claims description 4
- 235000010234 sodium benzoate Nutrition 0.000 claims description 4
- 239000004299 sodium benzoate Substances 0.000 claims description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical group OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 3
- 238000005469 granulation Methods 0.000 claims description 3
- 230000003179 granulation Effects 0.000 claims description 3
- 238000011534 incubation Methods 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 229920003023 plastic Polymers 0.000 abstract description 38
- 239000004033 plastic Substances 0.000 abstract description 38
- 238000012545 processing Methods 0.000 abstract description 19
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- CAXNYFPECZCGFK-UHFFFAOYSA-N 2-phenyl-2-pyridin-2-ylacetonitrile Chemical compound C=1C=CC=NC=1C(C#N)C1=CC=CC=C1 CAXNYFPECZCGFK-UHFFFAOYSA-N 0.000 abstract 1
- 235000012054 meals Nutrition 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 30
- 239000000463 material Substances 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 9
- 235000018102 proteins Nutrition 0.000 description 8
- 108090000623 proteins and genes Proteins 0.000 description 8
- 102000004169 proteins and genes Human genes 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 229920002472 Starch Polymers 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000008107 starch Substances 0.000 description 7
- 235000019698 starch Nutrition 0.000 description 7
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 6
- 238000006065 biodegradation reaction Methods 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229920006238 degradable plastic Polymers 0.000 description 4
- 238000004321 preservation Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000003912 environmental pollution Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 235000014655 lactic acid Nutrition 0.000 description 3
- 239000004310 lactic acid Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- 238000005303 weighing Methods 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 1
- 239000004368 Modified starch Substances 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 241000209140 Triticum Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- -1 amino, carboxyl Chemical group 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000004945 emulsification Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 235000019426 modified starch Nutrition 0.000 description 1
- 239000005445 natural material Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000013502 plastic waste Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 229940001941 soy protein Drugs 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/06—Biodegradable
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
技术领域technical field
本发明涉及塑料技术领域,尤其涉及一种生物可降解塑料及其制备方法。The invention relates to the technical field of plastics, in particular to a biodegradable plastic and a preparation method thereof.
背景技术Background technique
塑料制品已经广泛应用于人们的日常生活,为人们的生活提供了极大地方便。统计显示,全球每年塑料总消费量4亿吨,中国消费6000万吨以上。换言之,我国消费的塑料占全球总消费量的15%。然而,可回收利用的塑料却只占很小的比例。随着塑料制品的生产和应用的迅速发展,日益增长的塑料垃圾越来越严重地威胁到人类的生态环境。目前处理废旧塑料的方法,如填埋和焚烧等方法,需要占用较大的处理空间以及大量资金投入,同时也带来环保问题。Plastic products have been widely used in people's daily life, providing great convenience for people's life. Statistics show that the world's total annual plastic consumption is 400 million tons, and China consumes more than 60 million tons. In other words, my country's plastic consumption accounts for 15% of the world's total consumption. However, only a small percentage of plastics are recycled. With the rapid development of the production and application of plastic products, the growing amount of plastic waste is increasingly threatening the human ecological environment. The current methods of processing waste plastics, such as landfill and incineration, require a large processing space and a large amount of capital investment, and also bring environmental problems.
随着人们的环保意识的增强,解决塑料材料与环保的协调发展问题愈加凸显。可降解塑料是指在生产过程中加入一定量的添加剂(如淀粉、改性淀粉或其它纤维素、光敏剂、生物降解剂等),稳定性下降,较容易在自然环境中降解的塑料。可降解塑料的出现,不仅扩大了塑料功能,而且在一定程度上可缓解与环境的矛盾,节约和代替石油资源,有效地消除白色污染,保护环境。聚乳酸(PLA)是一种新型的生物降解材料,使用可再生的植物资源(如玉米)所提出的淀粉原料制成,淀粉原料经由发酵过程制成乳酸,再通过化学合成转换成聚乳酸。尽管聚乳酸具有良好的生物降解性,但聚乳酸还存在生产成本高等问题,其力学和加工性能还有待进一步提高。With the enhancement of people's awareness of environmental protection, it is more and more prominent to solve the problem of the coordinated development of plastic materials and environmental protection. Degradable plastics refer to plastics that add a certain amount of additives (such as starch, modified starch or other cellulose, photosensitizers, biodegradants, etc.) The emergence of degradable plastics not only expands the functions of plastics, but also alleviates the contradiction with the environment to a certain extent, saves and replaces petroleum resources, effectively eliminates white pollution, and protects the environment. Polylactic acid (PLA) is a new type of biodegradable material, which is made from starch raw materials proposed by renewable plant resources (such as corn). The starch raw materials are fermented into lactic acid, and then converted into polylactic acid by chemical synthesis. Although polylactic acid has good biodegradability, polylactic acid still has problems such as high production cost, and its mechanical and processing properties need to be further improved.
大豆蛋白作为一种天然材料,包含多种功能团,如氨基、羟基、酚基、羧基等,这些活性基团可作为化学改性或交联的位点,来合成具有各种功能的聚合物。由于大豆蛋白具有产量大、成本低和可再生的优点,成为塑料领域的研究热点,但是大豆蛋白塑料具有硬度大、脆性高和流动性差的特点,不易加工,且耐水性差。As a natural material, soybean protein contains a variety of functional groups, such as amino groups, hydroxyl groups, phenolic groups, carboxyl groups, etc. These active groups can be used as chemical modification or cross-linking sites to synthesize polymers with various functions . Because soybean protein has the advantages of large output, low cost and renewable, it has become a research hotspot in the field of plastics. However, soybean protein plastics have the characteristics of high hardness, high brittleness and poor fluidity, which are not easy to process and have poor water resistance.
有鉴于此,提出本发明。In view of this, the present invention is proposed.
发明内容Contents of the invention
本发明的目的在于提供一种生物可降解塑料,通过将聚乳酸颗粒、大豆蛋白粉和大豆粉进行共混制备生物可降解塑料,能够降低聚乳酸塑料的生产成本,改善大豆蛋白塑料的力学性能和耐水性,该生物可降解塑料具有良好的生物降解性能、机械性能和加工性能,安全无污染,是一款综合性能较为理想的生物可降解塑料。The purpose of the present invention is to provide a biodegradable plastic, which can reduce the production cost of polylactic acid plastics and improve the mechanical properties of soybean protein plastics by blending polylactic acid particles, soybean protein powder and soybean powder to prepare biodegradable plastics And water resistance, the biodegradable plastic has good biodegradable performance, mechanical properties and processing performance, safe and pollution-free, it is a biodegradable plastic with relatively ideal comprehensive performance.
本发明的另一目的在于提供一种生物可降解塑料的制备方法,工艺简单,易于加工,成本低廉,具有广阔的应用前景。Another object of the present invention is to provide a method for preparing biodegradable plastics, which is simple in process, easy to process, low in cost and has broad application prospects.
为实现上述目的,本发明采用的技术方案为:To achieve the above object, the technical solution adopted in the present invention is:
一种生物可降解塑料,主要由以下重量份数的原料制成:聚乳酸颗粒80-120份、大豆蛋白粉40-60份、大豆粉40-60份、水55-75份、甘油15-30份、聚乙二醇15-25份,以及任选的助剂。A biodegradable plastic, mainly made of the following raw materials in parts by weight: 80-120 parts of polylactic acid particles, 40-60 parts of soybean protein powder, 40-60 parts of soybean powder, 55-75 parts of water, 15-15 parts of glycerin 30 parts, 15-25 parts of polyethylene glycol, and optional auxiliary agents.
进一步地,所述生物可降解塑料主要由以下重量份数的原料制成:聚乳酸颗粒90-110份、大豆蛋白粉45-55份、大豆粉45-55份、水60-70份、甘油20-25份、聚乙二醇18-22份,以及任选的助剂。Further, the biodegradable plastic is mainly made of the following raw materials in parts by weight: 90-110 parts of polylactic acid particles, 45-55 parts of soybean protein powder, 45-55 parts of soybean powder, 60-70 parts of water, glycerin 20-25 parts, 18-22 parts of polyethylene glycol, and optional auxiliary agents.
优选地,所述生物可降解塑料主要由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水65份、甘油22.5份、聚乙二醇20份,以及任选的助剂。Preferably, the biodegradable plastic is mainly made of the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 65 parts of water, 22.5 parts of glycerin, 20 parts of polyethylene glycol parts, and optional auxiliaries.
进一步地,所述助剂包括偶联剂、还原剂或抗菌剂中的一种或至少两种的组合。Further, the auxiliary agent includes one or a combination of at least two of a coupling agent, a reducing agent or an antibacterial agent.
优选地,所述助剂为偶联剂、还原剂和抗菌剂的组合,Preferably, the auxiliary agent is a combination of coupling agent, reducing agent and antibacterial agent,
进一步优选地,所述助剂为偶联剂6-9份、还原剂0.5-1.5份和抗菌剂0.5-1.5份。Further preferably, the auxiliary agent is 6-9 parts of coupling agent, 0.5-1.5 parts of reducing agent and 0.5-1.5 parts of antibacterial agent.
进一步地,所述偶联剂为苯酐或马来酸酐,优选为苯酐。Further, the coupling agent is phthalic anhydride or maleic anhydride, preferably phthalic anhydride.
进一步地,所述还原剂为亚硫酸盐或亚硫酸氢盐,优选为亚硫酸酸氢盐,进一步优选为亚硫酸氢钠。Further, the reducing agent is sulfite or bisulfite, preferably bisulfite, more preferably sodium bisulfite.
进一步地,所述抗菌剂为有机抗菌剂,优选为山梨酸钾或苯甲酸钠,进一步优选为山梨酸钾。Further, the antibacterial agent is an organic antibacterial agent, preferably potassium sorbate or sodium benzoate, more preferably potassium sorbate.
所述生物可降解塑料主要由以下重量份数的原料制成:聚乳酸颗粒90-110份、大豆蛋白粉45-55份、大豆粉45-55份、水60-70份、甘油20-25份、聚乙二醇18-22份、苯酐7-8份、亚硫酸氢钠0.8-1.2份和山梨酸钾0.8-1.2份;The biodegradable plastic is mainly made of the following raw materials in parts by weight: 90-110 parts of polylactic acid particles, 45-55 parts of soybean protein powder, 45-55 parts of soybean powder, 60-70 parts of water, 20-25 parts of glycerin 18-22 parts of polyethylene glycol, 7-8 parts of phthalic anhydride, 0.8-1.2 parts of sodium bisulfite and 0.8-1.2 parts of potassium sorbate;
优选地,所述生物可降解塑料主要由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水65份、甘油22.5份、聚乙二醇20份、苯酐7.5份、亚硫酸氢钠1份和山梨酸钾1份。Preferably, the biodegradable plastic is mainly made of the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 65 parts of water, 22.5 parts of glycerin, 20 parts of polyethylene glycol 7.5 parts of phthalic anhydride, 1 part of sodium bisulfite and 1 part of potassium sorbate.
上述生物可降解塑料的制备方法,包括以下步骤:The preparation method of the above-mentioned biodegradable plastics comprises the following steps:
将各原料的混合物依次经过捏合、挤出和造粒,得到生物可降解塑料。The mixture of raw materials is sequentially kneaded, extruded and granulated to obtain biodegradable plastics.
进一步地,先将各原料混合,待混合物温度上升至100-105℃时,保温8-15分钟后,得到各原料的混合物。Further, the raw materials are firstly mixed, and when the temperature of the mixture rises to 100-105° C., the mixture is kept for 8-15 minutes to obtain a mixture of the raw materials.
优选地,先将大豆蛋白粉、大豆粉、水、甘油和助剂放入混料机中,加热至45-55℃后加入聚乳酸颗粒和聚乙二醇,待混合物温度上升至100-105℃时,保温8-15分钟后,得到各原料的混合物。Preferably, first put soybean protein powder, soybean powder, water, glycerin and additives into the mixer, heat to 45-55°C, add polylactic acid particles and polyethylene glycol, and wait until the temperature of the mixture rises to 100-105 ℃, after 8-15 minutes of heat preservation, a mixture of raw materials is obtained.
进一步优选地,先将大豆蛋白粉、大豆粉、水、甘油和助剂放入混料机中,加热至50℃后加入聚乳酸颗粒和聚乙二醇,待混合物温度上升至102℃时,保温10分钟后,得到各原料的混合物。Further preferably, first put soybean protein powder, soybean powder, water, glycerin and additives into a mixer, heat to 50°C and then add polylactic acid particles and polyethylene glycol, and when the temperature of the mixture rises to 102°C, After 10 minutes of incubation, a mixture of the raw materials was obtained.
进一步地,在各原料混合过程中混料机的转速为400-500转/分,优选为420-480转/分,进一步优选为450转/分。Further, during the mixing process of each raw material, the rotation speed of the mixer is 400-500 rpm, preferably 420-480 rpm, more preferably 450 rpm.
进一步地,所述捏合的温度为105-115℃,优选为108-112℃,进一步优选为110℃。Further, the kneading temperature is 105-115°C, preferably 108-112°C, more preferably 110°C.
进一步地,采用挤出机进行挤出造粒,挤出机送料口位置温度为90-110℃,优选为95-105℃,进一步优选为100℃;Further, an extruder is used for extrusion granulation, and the temperature at the feeding port of the extruder is 90-110°C, preferably 95-105°C, more preferably 100°C;
和/或,中部压缩区温度为120-135℃,优选为125-130℃,进一步优选为128℃;And/or, the temperature in the middle compression zone is 120-135°C, preferably 125-130°C, more preferably 128°C;
和/或,挤出成型区温度为90-110℃,优选为95-105℃,进一步优选为100℃;And/or, the extrusion molding zone temperature is 90-110°C, preferably 95-105°C, more preferably 100°C;
和/或,挤出机的螺杆转速为250-350转/分,优选为280-320转/分,进一步优选为300转/分。And/or, the screw speed of the extruder is 250-350 rpm, preferably 280-320 rpm, more preferably 300 rpm.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
1.本发明的生物可降解塑料通过将聚乳酸颗粒、大豆蛋白粉和大豆粉进行共混制备生物可降解塑料,一方面可以降低聚乳酸塑料的生产成本,另一方面可以改善大豆蛋白塑料的力学性能和耐水性,并且通过添加水、甘油和聚乙二醇,改善整体的力学性能和加工性能,进而获得综合性能较为理想的生物可降解塑料,该生物可降解塑料具有良好的生物降解性能、机械性能和加工性能,生产成本低,安全无污染。1. The biodegradable plastic of the present invention prepares the biodegradable plastic by blending polylactic acid particles, soybean protein powder and soybean powder, which can reduce the production cost of polylactic acid plastics on the one hand, and improve the quality of soybean protein plastics on the other hand. Mechanical properties and water resistance, and by adding water, glycerin and polyethylene glycol, the overall mechanical properties and processing properties are improved, and then a biodegradable plastic with ideal comprehensive properties is obtained. The biodegradable plastic has good biodegradable properties , mechanical properties and processing performance, low production cost, safe and pollution-free.
2.本发明提供的生物可降解塑料的制备方法,工艺简单,易于加工,成本低廉,具有广阔的应用前景。2. The preparation method of the biodegradable plastic provided by the present invention is simple in process, easy to process, low in cost, and has broad application prospects.
具体实施方式Detailed ways
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions of the present invention will be clearly and completely described below in conjunction with the embodiments. Obviously, the described embodiments are part of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
聚乳酸塑料和大豆蛋白塑料都具有良好的生物可降解性,但聚乳酸塑料生产升本高,大豆蛋白塑料硬度大、脆性高、耐水性差。本发明通过将聚乳酸、大豆蛋白粉和大豆粉进行共混制备生物可降解塑料,一方面可以降低聚乳酸塑料的生产成本,另一方面可以改善大豆蛋白塑料的力学性能和耐水性,并且通过添加水、甘油和聚乙二醇,改善整体的力学性能和加工性能,进而获得综合性能较为理想的生物可降解塑料。Both polylactic acid plastic and soybean protein plastic have good biodegradability, but the production cost of polylactic acid plastic is high, and soybean protein plastic has high hardness, high brittleness and poor water resistance. The present invention prepares biodegradable plastics by blending polylactic acid, soybean protein powder and soybean powder. On the one hand, the production cost of polylactic acid plastics can be reduced, and on the other hand, the mechanical properties and water resistance of soybean protein plastics can be improved. Add water, glycerin and polyethylene glycol to improve the overall mechanical properties and processing properties, and then obtain biodegradable plastics with ideal comprehensive properties.
本发明提供了一种生物可降解塑料,主要由以下重量份数的原料制成:聚乳酸颗粒80-120份、大豆蛋白粉40-60份、大豆粉40-60份、水55-75份、甘油15-30份、聚乙二醇15-25份,以及任选的助剂。The invention provides a biodegradable plastic, which is mainly made of the following raw materials in parts by weight: 80-120 parts of polylactic acid particles, 40-60 parts of soybean protein powder, 40-60 parts of soybean powder, and 55-75 parts of water , 15-30 parts of glycerin, 15-25 parts of polyethylene glycol, and optional auxiliary agents.
聚乳酸(PLA)也称为聚丙交酯,属于聚酯家族。聚乳酸是以乳酸为主要原料聚合得到的聚合物,原料来源充分且可再生,生产过程无污染,而且产品可以生物降解。聚乳酸是使用可再生的植物资源如玉米、小麦、甘蔗等天然农作物所提取的淀粉原料制成,原料可经发酵过程制成乳酸,再通过化学方法合成得到聚乳酸。聚乳酸在堆肥条件下可以完全生物降解,是一种完全绿色材料,被认为是最具竞争力的可再生塑料。Polylactic acid (PLA), also known as polylactide, belongs to the family of polyesters. Polylactic acid is a polymer obtained by polymerizing lactic acid as the main raw material. The source of raw material is sufficient and renewable, the production process is pollution-free, and the product is biodegradable. Polylactic acid is made from starch raw materials extracted from renewable plant resources such as corn, wheat, sugarcane and other natural crops. The raw materials can be fermented into lactic acid, and then chemically synthesized to obtain polylactic acid. Polylactic acid is fully biodegradable under composting conditions, is a completely green material, and is considered to be the most competitive renewable plastic.
本发明中,按重量份数计,聚乳酸颗粒典型但非限制性含量为:80份、85份、90份、95份、100份、105份、110份、115份或120份。In the present invention, the typical but non-limiting content of polylactic acid particles in parts by weight is: 80 parts, 85 parts, 90 parts, 95 parts, 100 parts, 105 parts, 110 parts, 115 parts or 120 parts.
大豆蛋白粉,是经过一系列加工步骤从大豆中提取,得到的蛋白质粉。大豆粉,是由大豆制成的豆粉,也含有丰富的大豆蛋白质,含量高达40%。大豆蛋白质是由一条或多条多肽链按各自的特殊方式结合的分子,它含有多种活性侧基如氨基、羧基和羟基,能和许多物质发生化学反应,具有特定的初级结构和高级空间结构。大豆蛋白质是一种可生物降解的高分子,且可再生、成本低,制作的塑料具有优良的力学性能、耐水性以及可生物降解的优点。此外,大豆粉中还含有纤维素和淀粉等天然高分子,可通过氢键作用来提高材料的韧性。Soybean protein powder is a protein powder obtained by extracting soybeans through a series of processing steps. Soybean flour, which is made from soybeans, is also rich in soy protein, with a content of up to 40%. Soybean protein is a molecule composed of one or more polypeptide chains combined in their own special way. It contains a variety of active side groups such as amino, carboxyl and hydroxyl groups, which can chemically react with many substances and have specific primary structures and advanced spatial structures. . Soybean protein is a kind of biodegradable polymer, which is renewable and low in cost. The plastics produced have the advantages of excellent mechanical properties, water resistance and biodegradability. In addition, soybean flour also contains natural polymers such as cellulose and starch, which can improve the toughness of the material through hydrogen bonding.
本发明中,按重量份数计、大豆蛋白粉典型但非限制性含量为:40份、41份、42份、43份、44份、45份、46份、47份、48份、49份、50份、51份、52份、53份、54份、55份、56份、57份、58份、59份或60份。In the present invention, the typical but non-limiting content of soybean protein powder in parts by weight is: 40 parts, 41 parts, 42 parts, 43 parts, 44 parts, 45 parts, 46 parts, 47 parts, 48 parts, 49 parts , 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60.
本发明中,按重量份数计,大豆粉典型但非限制性含量为:40份、41份、42份、43份、44份、45份、46份、47份、48份、49份、50份、51份、52份、53份、54份、55份、56份、57份、58份、59份或60份。In the present invention, in parts by weight, the typical but non-limiting content of soybean flour is: 40 parts, 41 parts, 42 parts, 43 parts, 44 parts, 45 parts, 46 parts, 47 parts, 48 parts, 49 parts, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or 60.
聚合物共混改性的目的是能够综合均衡格聚合物组分的性能,取长补短,消除各单一组分性能上的弱点,改善材料的性能。将聚乳酸颗粒和大豆粉及大豆蛋白粉共混制备生物可降解塑料,一方面可以降低聚乳酸塑料的生产成本,另一方面可以改善大豆蛋白塑料的力学性能和耐水性。The purpose of polymer blending modification is to comprehensively balance the properties of the polymer components, learn from each other, eliminate the weaknesses in the performance of each single component, and improve the performance of the material. Blending polylactic acid particles with soybean powder and soybean protein powder to prepare biodegradable plastics can reduce the production cost of polylactic acid plastics on the one hand, and improve the mechanical properties and water resistance of soybean protein plastics on the other hand.
甘油,又称丙三醇。一方面,甘油的极性基团与高聚物分子的极性基团相互作用,使聚合物溶胀,甘油中的非极性部分把聚合物分子的极性屏蔽起来,并增大了大分子之间的距离,渗入淀粉分子与羟基形成一种物理与化学作用,使体系原有的羟基量减少,从而逐渐降低了材料的吸水率。另一方面,甘油能有效渗入聚乳酸和蛋白质分子间,降低聚乳酸和蛋白质分子间作用力,对聚乳酸和蛋白质分子有增塑作用,能提高材料的韧性和延展性。因此,在塑料中加入甘油可以减少塑料制品的吸水率,同时增大塑料制品的拉伸强度。Glycerin, also known as glycerol. On the one hand, the polar group of glycerin interacts with the polar group of the polymer molecule to make the polymer swell, and the non-polar part of the glycerol shields the polarity of the polymer molecule and increases the size of the macromolecule. The distance between starch molecules and hydroxyl groups penetrate into starch molecules to form a physical and chemical interaction, which reduces the amount of original hydroxyl groups in the system, thereby gradually reducing the water absorption rate of the material. On the other hand, glycerin can effectively penetrate between polylactic acid and protein molecules, reduce the force between polylactic acid and protein molecules, have a plasticizing effect on polylactic acid and protein molecules, and improve the toughness and ductility of materials. Therefore, adding glycerin to plastics can reduce the water absorption rate of plastic products and increase the tensile strength of plastic products at the same time.
本发明中,按重量份数计,甘油典型但非限制性含量为:15份、16份、17份、18份、19份、20份、21份、22份、23份、24份、25份、26份、27份、28份、29份或30份。In the present invention, by weight, the typical but non-limiting content of glycerol is: 15 parts, 16 parts, 17 parts, 18 parts, 19 parts, 20 parts, 21 parts, 22 parts, 23 parts, 24 parts, 25 parts servings, 26 servings, 27 servings, 28 servings, 29 servings or 30 servings.
水含有羟基,可以进入聚乳酸分子或者蛋白质分子之间,减弱其分子间的作用力,提高熔体流动性能,并减小最终产品的脆性,进而提高材料的韧性和延展性,相应地改变着材料的力学性能和加工性能。Water contains hydroxyl groups, which can enter between polylactic acid molecules or protein molecules, weaken the intermolecular force, improve the melt flow performance, and reduce the brittleness of the final product, thereby improving the toughness and ductility of the material, and changing accordingly. Mechanical properties and processing properties of materials.
本发明中,按重量份数计,水典型但非限制性含量为:55份、56份、57份、58份、59份、60份、61份、62份、63份、64份、65份、66份、67份、68份、69份、70份、71份、72份、73份、74份或75份。In the present invention, by weight, the typical but non-limiting content of water is: 55 parts, 56 parts, 57 parts, 58 parts, 59 parts, 60 parts, 61 parts, 62 parts, 63 parts, 64 parts, 65 parts parts, 66 parts, 67 parts, 68 parts, 69 parts, 70 parts, 71 parts, 72 parts, 73 parts, 74 parts or 75 parts.
聚乙二醇,可以降低聚乳酸颗粒的熔融温度。由于聚乳酸的熔融温度高于大豆蛋白的熔融温度,加入聚乙二醇可以调解聚乳酸熔融温度,使聚乳酸颗粒和大豆蛋白粉及大豆粉能够更好的的熔融共混,同时降低加工温度。而且,聚乙二醇还可以减少大豆蛋白在高温状态下的降解。聚乙二醇还有一定的增塑作用。此外,聚乙二醇还可以作为润滑剂,方便塑料的挤压成型。Polyethylene glycol can reduce the melting temperature of polylactic acid particles. Since the melting temperature of polylactic acid is higher than that of soybean protein, adding polyethylene glycol can adjust the melting temperature of polylactic acid, so that polylactic acid particles, soybean protein powder and soybean powder can be better melt blended, and at the same time reduce the processing temperature . Moreover, polyethylene glycol can also reduce the degradation of soybean protein at high temperature. Polyethylene glycol also has a certain plasticizing effect. In addition, polyethylene glycol can also be used as a lubricant to facilitate the extrusion of plastics.
本发明中,按重量份数计,聚乙二醇典型但非限制性含量为:15份、16份、17份、18份、19份、20份、21份、22份、23份、24份或25份。In the present invention, the typical but non-limiting content of polyethylene glycol in parts by weight is: 15 parts, 16 parts, 17 parts, 18 parts, 19 parts, 20 parts, 21 parts, 22 parts, 23 parts, 24 parts servings or 25 servings.
本发明选用聚乳酸、大豆蛋白粉和大豆粉共混作为基础原料,同时水、甘油和聚乙二醇,改善整体的力学性能和加工性能,使制得的生物可降解塑料具有良好的生物降解性能,其废弃物在微生物的作用下,可完全分解为低分子化合物,避免污染环境,同时又具有良好的机械性能和加工性能,生产成本低,安全无污染。The present invention selects polylactic acid, soybean protein powder and soybean powder as basic raw materials, and at the same time water, glycerin and polyethylene glycol improve the overall mechanical properties and processing properties, so that the prepared biodegradable plastics have good biodegradability Performance, its waste can be completely decomposed into low-molecular compounds under the action of microorganisms, avoiding environmental pollution, and at the same time has good mechanical properties and processing properties, low production cost, safe and pollution-free.
为了更好地增加本发明的生物可降解塑料,可以向原料中加入助剂。In order to better increase the biodegradable plastic of the present invention, additives can be added to the raw materials.
在本发明的可选实施方式中,所述助剂包括偶联剂、还原剂或抗菌剂中的一种或至少两种的组合,如偶联剂,还原剂,抗菌剂,偶联剂和还原剂的组合,偶联剂和抗菌剂的组合,还原剂和抗菌剂的组合,偶联剂、还原剂和抗菌剂的组合。In an optional embodiment of the present invention, the auxiliary agent includes one or a combination of at least two of a coupling agent, a reducing agent or an antibacterial agent, such as a coupling agent, a reducing agent, an antibacterial agent, a coupling agent and Combination of reducing agent, combination of coupling agent and antibacterial agent, combination of reducing agent and antibacterial agent, combination of coupling agent, reducing agent and antibacterial agent.
在本发明的可选实施方案中,助剂为偶联剂6-9份、还原剂0.5-1.5份和抗菌剂0.5-1.5份。In an optional embodiment of the present invention, the auxiliary agents are 6-9 parts of coupling agent, 0.5-1.5 parts of reducing agent and 0.5-1.5 parts of antibacterial agent.
偶联剂,可以使聚乳酸颗粒和蛋白质之间容易相互分散,降低两组分间的界面张力,增加相容性。在本发明的可选实施方式中,偶联剂为苯酐或马来酸酐。苯酐或马来酸酐可引起蛋白质分子的亚基解离,使分子变得伸展而导致柔韧性增大,同时可以减少大豆分离蛋白分子所带的正电荷,使其结合水的能力减弱,有助于降低吸水率。在本发明的优选实施方式中,偶联剂为苯酐。The coupling agent can make the polylactic acid particles and the protein disperse easily, reduce the interfacial tension between the two components, and increase the compatibility. In an optional embodiment of the present invention, the coupling agent is phthalic anhydride or maleic anhydride. Phthalic anhydride or maleic anhydride can cause the dissociation of the subunits of the protein molecule, making the molecule stretch and increase the flexibility. to reduce water absorption. In a preferred embodiment of the present invention, the coupling agent is phthalic anhydride.
在本发明的可选实施方式中,还原剂可通过反应减少蛋白质分子或多肽分子中的二硫键而形成巯基(-SH基),还可以用来提高大豆蛋白的溶解度及改善其乳化特性。在本发明的可选实施方式中,还原剂为亚硫酸盐或亚硫酸氢盐。在本发明的优可选实施方式中,还原剂为亚硫酸氢钠。In an optional embodiment of the present invention, the reducing agent can reduce disulfide bonds in protein molecules or polypeptide molecules to form sulfhydryl groups (-SH groups), and can also be used to improve the solubility and emulsification properties of soybean protein. In an alternative embodiment of the present invention, the reducing agent is sulfite or bisulfite. In a preferred embodiment of the present invention, the reducing agent is sodium bisulfite.
抗菌剂,能够抑制塑料在加工过程中的微生物致病细菌,增加塑料使用的安全性。Antimicrobial agents can inhibit microbial pathogenic bacteria during plastic processing and increase the safety of plastic use.
在本发明的可选实施方式中,抗菌剂为山梨酸钾或苯甲酸钠。在本发明的优可选实施方式中,抗菌剂为山梨酸钾。In an alternative embodiment of the present invention, the antibacterial agent is potassium sorbate or sodium benzoate. In a preferred embodiment of the present invention, the antibacterial agent is potassium sorbate.
在本发明的可选实施方式中,生物可降解塑料主要由以下重量份数的原料制成:聚乳酸颗粒90-110份、大豆蛋白粉45-55份、大豆粉45-55份、水60-70份、甘油20-25份、聚乙二醇18-22份、苯酐7-8份、亚硫酸氢钠0.8-1.2份和山梨酸钾0.8-1.2份。In an optional embodiment of the present invention, the biodegradable plastic is mainly made of the following raw materials in parts by weight: 90-110 parts of polylactic acid particles, 45-55 parts of soybean protein powder, 45-55 parts of soybean powder, 60 parts of water -70 parts, 20-25 parts of glycerin, 18-22 parts of polyethylene glycol, 7-8 parts of phthalic anhydride, 0.8-1.2 parts of sodium bisulfite and 0.8-1.2 parts of potassium sorbate.
在本发明的一种优选实施方式中,生物可降解塑料主要由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水65份、甘油22.5份、聚乙二醇20份、苯酐7.5份、亚硫酸氢钠1份和山梨酸钾1份。In a preferred embodiment of the present invention, the biodegradable plastic is mainly made of the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 65 parts of water, and 22.5 parts of glycerin , 20 parts of polyethylene glycol, 7.5 parts of phthalic anhydride, 1 part of sodium bisulfite and 1 part of potassium sorbate.
本发明选用聚乳酸、大豆蛋白粉和大豆粉共混作为基础原料,同时水、甘油和聚乙二醇,改善整体的力学性能和加工性能,使制得的生物可降解塑料具有良好的生物降解性能,其废弃物在微生物的作用下,可完全分解为低分子化合物,避免污染环境,同时又具有良好的机械性能和加工性能,生产成本低,安全无污染。The present invention selects polylactic acid, soybean protein powder and soybean powder as basic raw materials, and at the same time water, glycerin and polyethylene glycol improve the overall mechanical properties and processing properties, so that the prepared biodegradable plastics have good biodegradability Performance, its waste can be completely decomposed into low-molecular compounds under the action of microorganisms, avoiding environmental pollution, and at the same time has good mechanical properties and processing properties, low production cost, safe and pollution-free.
需要说明的是,本发明的生物可降解塑料良好的可降解性能、力学性能和加工性能是由其特定的原料组分及配比所决定的,若组分及其配比不相互协调,单个组分所带来的有益效果,很可能会被其他组分消减甚至消除,起不到整体综合作用。本发明通过大量的研究和反复验证,得到了生物可降解塑料的最优组合及配比,使得多个组分综合在一起、相互协调,产生积极协同作用,能够让最后制得的生物可降解塑料,具有良好的可降解性能、力学性能和加工性能。It should be noted that the good degradable performance, mechanical properties and processing performance of the biodegradable plastic of the present invention are determined by its specific raw material components and proportions. If the components and their proportions are not coordinated with each other, a single The beneficial effects brought by the components are likely to be reduced or even eliminated by other components, and the overall comprehensive effect cannot be achieved. Through a lot of research and repeated verification, the present invention has obtained the optimal combination and ratio of biodegradable plastics, so that multiple components are integrated and coordinated with each other to produce positive synergies, and can make the final biodegradable plastic Plastic, with good degradability, mechanical properties and processing properties.
本发明还提供了一种生物可降解塑料的制备方法,包括以下步骤:将各原料的混合物依次经过捏合、挤出和造粒,得到生物可降解塑料。The invention also provides a preparation method of the biodegradable plastic, which comprises the following steps: kneading, extruding and granulating the mixture of various raw materials in sequence to obtain the biodegradable plastic.
本发明的生物可降解塑料的制备方法,包括混料、捏合和挤出工艺步骤,工艺简单,易于加工,且成本低廉。The preparation method of the biodegradable plastic of the present invention includes the process steps of mixing materials, kneading and extruding, and the process is simple, easy to process and low in cost.
在本发明的一种可选实施方式中,先将各原料混合,待混合物温度上升至100-105℃时,保温8-15分钟后,各原料的混合物。In an optional embodiment of the present invention, the raw materials are firstly mixed, and when the temperature of the mixture rises to 100-105° C., the mixture of the raw materials is kept for 8-15 minutes.
在本发明的一种优选实施方式中,先将大豆蛋白粉、大豆粉、水、甘油和助剂放入混料机中,加热至50℃后加入聚乳酸颗粒和聚乙二醇,待混合物温度上升至102℃时,保温10分钟后,得到各原料的混合物。由于聚乳酸颗粒的熔融温度相对大豆蛋白粉和大豆粉而言较高,在加入聚乳酸颗粒的同时加入聚乙二醇能够降低聚乳酸的熔融温度,使各物质能够比较好的共混。In a preferred embodiment of the present invention, first put soybean protein powder, soybean powder, water, glycerin and additives into the mixer, add polylactic acid particles and polyethylene glycol after heating to 50°C, and wait for the mixture to When the temperature was raised to 102°C, a mixture of the raw materials was obtained after holding the temperature for 10 minutes. Since the melting temperature of polylactic acid particles is higher than that of soybean protein powder and soybean powder, adding polyethylene glycol while adding polylactic acid particles can reduce the melting temperature of polylactic acid, so that various substances can be blended better.
在本发明的一种可选实施方式中,混料机的转速为400-500转/分。混料机的转速典型但非限制性为:400转/分、410转/分、420转/分、430转/分、440转/分、450转/分、460转/分、470转/分、480转/分、490转/分或500转/分。在本发明的一种优选实施方式中,混料机的转速为450转/分。在本发明提供的转速范围内,各物质共混均匀且用时较短。In an optional embodiment of the present invention, the rotation speed of the mixer is 400-500 rpm. Typical but non-limiting speeds of the mixer are: 400 rpm, 410 rpm, 420 rpm, 430 rpm, 440 rpm, 450 rpm, 460 rpm, 470 rpm min, 480 rpm, 490 rpm or 500 rpm. In a preferred embodiment of the present invention, the rotation speed of the mixer is 450 rpm. Within the rotational speed range provided by the invention, the materials are blended evenly and the time is short.
在本发明的一种可选实施方式中,捏合温度为105-115℃。捏合温度典型但非限制性为:105℃、106℃、107℃、108℃、109℃、110℃、111℃、112℃、113℃、114℃或115℃。在本发明的一种优选实施方式中,捏合时温度为110℃。捏合温度对塑料的成型有一定的影响,温度越高,反应原料越易结块或结团,不易均匀分散。In an alternative embodiment of the present invention, the kneading temperature is 105-115°C. Typical but non-limiting kneading temperatures are: 105°C, 106°C, 107°C, 108°C, 109°C, 110°C, 111°C, 112°C, 113°C, 114°C or 115°C. In a preferred embodiment of the present invention, the temperature during kneading is 110°C. The kneading temperature has a certain influence on the molding of plastics. The higher the temperature, the easier it is for the reaction raw materials to agglomerate or agglomerate, and it is not easy to disperse evenly.
在本发明的一种可选实施方式中,采用挤出机进行挤出造粒,挤出机送料口位置温度为90-110℃。挤出机送料口位置温度典型但非限制性为:90℃、91℃、92℃、93℃、94℃、95℃、96℃、97℃、98℃、99℃、100℃、101℃、102℃、103℃、104℃、105℃、106℃、107℃、108℃、109℃或110℃。在本发明的一种优选实施方式中,挤出机送料口位置温度为100℃。送料口温度过低,会导致原料无法顺利地进入挤出机;送料口温度过高,原料不容易成型。In an optional embodiment of the present invention, an extruder is used for extrusion granulation, and the temperature at the feeding port of the extruder is 90-110°C. Typical but non-limiting temperatures at the feed port of the extruder are: 90°C, 91°C, 92°C, 93°C, 94°C, 95°C, 96°C, 97°C, 98°C, 99°C, 100°C, 101°C, 102°C, 103°C, 104°C, 105°C, 106°C, 107°C, 108°C, 109°C or 110°C. In a preferred embodiment of the present invention, the temperature at the feeding port of the extruder is 100°C. If the temperature of the feeding port is too low, the raw materials cannot enter the extruder smoothly; if the temperature of the feeding port is too high, the raw materials are not easy to form.
在本发明的一种可选实施方式中,中部压缩区温度为120-135℃。中部压缩区温度典型但非限制性为:120℃、121℃、122℃、123℃、124℃、125℃、126℃、127℃、128℃、129℃、130℃、131℃、132℃、133℃、134℃或135℃。在本发明的一种优选实施方式中,中部压缩区温度为为128℃。中部压缩区温度过低,熔体粘度大,不容易压缩成型;中部压缩区温度过高,原料成型的稳定性差。In an optional embodiment of the present invention, the temperature in the middle compression zone is 120-135°C. Typical but non-limiting temperatures in the central compression zone are: 120°C, 121°C, 122°C, 123°C, 124°C, 125°C, 126°C, 127°C, 128°C, 129°C, 130°C, 131°C, 132°C, 133°C, 134°C or 135°C. In a preferred embodiment of the present invention, the temperature in the middle compression zone is 128°C. The temperature in the central compression zone is too low, the melt viscosity is high, and it is not easy to compress and form; the temperature in the central compression zone is too high, and the stability of raw material molding is poor.
在本发明的一种可选实施方式中,挤出成型区温度为90-110℃。挤出成型区温度典型但非限制性为:90℃、91℃、92℃、93℃、94℃、95℃、96℃、97℃、98℃、99℃、100℃、101℃、102℃、103℃、104℃、105℃、106℃、107℃、108℃、109℃或110℃。在本发明的一种优选实施方式中,挤出成型区温度为100℃。成型区温度低时塑化不完全,成型区温度高时容易老化。In an optional embodiment of the present invention, the temperature in the extrusion molding zone is 90-110°C. Typical but non-limiting temperatures in the extrusion molding zone are: 90°C, 91°C, 92°C, 93°C, 94°C, 95°C, 96°C, 97°C, 98°C, 99°C, 100°C, 101°C, 102°C , 103°C, 104°C, 105°C, 106°C, 107°C, 108°C, 109°C or 110°C. In a preferred embodiment of the present invention, the temperature in the extrusion molding zone is 100°C. When the temperature in the forming area is low, the plasticization is not complete, and when the temperature in the forming area is high, it is easy to age.
在本发明的一种可选实施方式中,挤出机的螺杆转速为250-350转/分。挤出机的螺杆转速温度典型但非限制性为:250转/分、260转/分、270转/分、280转/分、290转/分、300转/分、310转/分、320转/分、330转/分、340转/分或350转/分。在本发明的一种优选实施方式中,挤出机的螺杆转速为300转/分。螺杆转速是控制挤出速率以及产量的重要参数。挤出机的螺杆转速增加,产量提高;但螺杆转速过高,电机负载过大,熔体压力过高,剪切速率过高,离模膨胀加大,表面变坏,且挤出量不稳。In an optional embodiment of the present invention, the screw speed of the extruder is 250-350 rpm. Typical but non-limiting screw speed temperatures for extruders are: 250 rpm, 260 rpm, 270 rpm, 280 rpm, 290 rpm, 300 rpm, 310 rpm, 320 rpm RPM, 330 RPM, 340 RPM or 350 RPM. In a preferred embodiment of the present invention, the screw speed of the extruder is 300 rpm. Screw speed is an important parameter to control extrusion rate and output. The screw speed of the extruder increases, and the output increases; but the screw speed is too high, the motor load is too large, the melt pressure is too high, the shear rate is too high, the die expansion is increased, the surface is deteriorated, and the extrusion volume is unstable .
本发明提供的生物可降解塑料的制备方法,工艺简单,易于加工,成本低廉,具有广阔的应用前景。The preparation method of the biodegradable plastic provided by the invention has the advantages of simple process, easy processing, low cost and wide application prospect.
下面结合具体实施例对本发明进行具体解释。The present invention will be specifically explained below in conjunction with specific embodiments.
实施例1Example 1
实施例1的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水65份、甘油22.5份和聚乙二醇20份。The biodegradable plastic of Example 1 is made from the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 65 parts of water, 22.5 parts of glycerin and 20 parts of polyethylene glycol .
实施例2Example 2
实施例2的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒90份、大豆蛋白粉55份、大豆粉45份、水70份、甘油20份和聚乙二醇22份。The biodegradable plastic of Example 2 is made from the following raw materials in parts by weight: 90 parts of polylactic acid particles, 55 parts of soybean protein powder, 45 parts of soybean powder, 70 parts of water, 20 parts of glycerin and 22 parts of polyethylene glycol .
实施例3Example 3
实施例3的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒110份、大豆蛋白粉45份、大豆粉55份、水60份、甘油25份和聚乙二醇18份。The biodegradable plastic of Example 3 is made from the following raw materials in parts by weight: 110 parts of polylactic acid particles, 45 parts of soybean protein powder, 55 parts of soybean powder, 60 parts of water, 25 parts of glycerin and 18 parts of polyethylene glycol .
实施例4Example 4
实施例4的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水65份、甘油22.5份和聚乙二醇20份、苯酐7.5份、亚硫酸氢钠1份和山梨酸钾1份。The biodegradable plastic of Example 4 is made of the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 65 parts of water, 22.5 parts of glycerin and 20 parts of polyethylene glycol , 7.5 parts of phthalic anhydride, 1 part of sodium bisulfite and 1 part of potassium sorbate.
实施例5Example 5
实施例5的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒80份、大豆蛋白粉60份、大豆粉40份、水75份、甘油15份、聚乙二醇25份、马来酸酐6份、亚硫酸氢钠1.5份和山梨酸钾0.5份。The biodegradable plastic of Example 5 is made of the following raw materials in parts by weight: 80 parts of polylactic acid particles, 60 parts of soybean protein powder, 40 parts of soybean powder, 75 parts of water, 15 parts of glycerin, and 25 parts of polyethylene glycol , 6 parts of maleic anhydride, 1.5 parts of sodium bisulfite and 0.5 parts of potassium sorbate.
实施例6Example 6
实施例6的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒120份、大豆蛋白粉40份、大豆粉60份、水55份、甘油30份、聚乙二醇15份、苯酐9份、亚硫酸钠0.5份和苯甲酸钠1.5份。The biodegradable plastic of Example 6 is made of the following raw materials in parts by weight: 120 parts of polylactic acid particles, 40 parts of soybean protein powder, 60 parts of soybean powder, 55 parts of water, 30 parts of glycerin, and 15 parts of polyethylene glycol , 9 parts of phthalic anhydride, 0.5 parts of sodium sulfite and 1.5 parts of sodium benzoate.
实施例7Example 7
实施例7的生物可降解塑料的制备方法,包括如下步骤:The preparation method of the biodegradable plastic of embodiment 7, comprises the steps:
(a)混料:先将大豆蛋白粉、大豆粉、水、甘油和助剂放入混料机中,保持混料机的转速为450转/分,加热至50℃后加入聚乳酸颗粒和聚乙二醇,待混合物温度上升至102℃时,保温10分钟后,得到各原料的混合物;(a) Mixing: first put soybean protein powder, soybean powder, water, glycerin and additives into the mixer, keep the speed of the mixer at 450 rpm, heat to 50°C and add polylactic acid particles and Polyethylene glycol, when the temperature of the mixture rises to 102°C, after 10 minutes of heat preservation, a mixture of the raw materials is obtained;
(b)捏合:将步骤(a)得到的混合物料送入捏合机,并对混合物料在110℃下进行捏合;(b) kneading: the mixed material obtained in step (a) is sent into a kneader, and the mixed material is kneaded at 110°C;
(c)挤出:将捏合后的混合物料送入挤出机,设置挤出机送料口位置温度为100℃,中部压缩区温度为128℃,挤出成型区温度为100℃,并保持转速为300转/分,制成颗粒,即得生物可降解塑料。(c) Extrusion: Send the kneaded mixture into the extruder, set the temperature at the feeding port of the extruder to 100°C, the temperature in the middle compression zone to 128°C, and the temperature in the extrusion molding zone to 100°C, and keep the speed Be 300 rev/mins, make granule, promptly obtain biodegradable plastics.
实施例1-6的生物可降解塑料均按照实施例7的制备方法制得。The biodegradable plastics of Examples 1-6 were all prepared according to the preparation method of Example 7.
实施例8Example 8
实施例8的生物可降解塑料的制备方法,包括如下步骤:The preparation method of the biodegradable plastic of embodiment 8, comprises the steps:
(a)混料:先将大豆蛋白粉、大豆粉、水、甘油、助剂放入混料机中,保持混料机的转速为400转/分,加热至45℃后加入聚乳酸颗粒和聚乙二醇,待混合物温度上升至100℃时,保温15分钟后,得到各原料的混合物;(a) Mixing: first put soybean protein powder, soybean powder, water, glycerin, and additives into the mixer, keep the speed of the mixer at 400 rpm, heat to 45°C, and then add polylactic acid particles and Polyethylene glycol, when the temperature of the mixture rises to 100°C, after 15 minutes of heat preservation, a mixture of various raw materials is obtained;
(b)捏合:将步骤(a)得到的混合物料送入捏合机,并对混合物料在1℃下进行捏合;(b) kneading: the mixed material obtained in step (a) is sent into a kneader, and the mixed material is kneaded at 1°C;
(c)挤出:将捏合后的混合物料送入挤出机,设置挤出机送料口位置温度为90℃,中部压缩区温度为120℃,挤出成型区温度为90℃,并保持转速为250转/分,制成颗粒,即得生物可降解塑料。(c) Extrusion: Send the kneaded mixture into the extruder, set the temperature at the feeding port of the extruder to 90°C, the temperature in the middle compression zone to 120°C, and the temperature in the extrusion molding zone to 90°C, and keep the speed Be 250 rev/mins, make granule, promptly obtain biodegradable plastics.
实施例9Example 9
实施例9的生物可降解塑料的制备方法,包括如下步骤:The preparation method of the biodegradable plastic of embodiment 9, comprises the steps:
(a)混料:先将大豆蛋白粉、大豆粉、水、甘油、聚乳酸颗粒和聚乙二醇和助剂放入混料机中,保持混料机的转速为500转/分,待混合物温度上升至105℃时,保温8分钟后,各原料的混合物;(a) Mixing: first put soybean protein powder, soybean powder, water, glycerin, polylactic acid particles, polyethylene glycol and additives into the mixer, keep the speed of the mixer at 500 rpm, and wait for the mixture to When the temperature rises to 105°C, after 8 minutes of heat preservation, the mixture of each raw material;
(b)捏合:将步骤(a)得到的混合物料送入捏合机,并对混合物料在115℃下进行捏合;(b) kneading: the mixed material obtained in step (a) is sent into a kneader, and the mixed material is kneaded at 115°C;
(c)挤出:将捏合后的混合物料送入挤出机,设置挤出机送料口位置温度为110℃,中部压缩区温度为130℃,挤出成型区温度为110℃,并保持转速为350转/分,制成颗粒,即得生物可降解塑料。(c) Extrusion: Send the kneaded mixture into the extruder, set the temperature at the feeding port of the extruder to 110°C, the temperature in the middle compression zone to 130°C, and the temperature in the extrusion molding zone to 110°C, and keep the speed Be 350 rev/mins, make granule, promptly obtain biodegradable plastics.
对比例1Comparative example 1
对比例1的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒60份、大豆蛋白粉80份、大豆粉80份、水50份、甘油10份和聚乙二醇30份。The biodegradable plastic of Comparative Example 1 is made of the following raw materials in parts by weight: 60 parts of polylactic acid particles, 80 parts of soybean protein powder, 80 parts of soybean powder, 50 parts of water, 10 parts of glycerin and 30 parts of polyethylene glycol .
对比例2Comparative example 2
对比例2的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒150份、大豆蛋白粉30份、大豆粉30份、水80份、甘油40份和聚乙二醇10份。The biodegradable plastic of Comparative Example 2 is made of the following raw materials in parts by weight: 150 parts of polylactic acid particles, 30 parts of soybean protein powder, 30 parts of soybean powder, 80 parts of water, 40 parts of glycerin and 10 parts of polyethylene glycol .
对比例3Comparative example 3
对比例3与实施例1的区别在于不含有聚乳酸颗粒。The difference between Comparative Example 3 and Example 1 is that it does not contain polylactic acid particles.
对比例4Comparative example 4
对比例4与实施例1的区别在于不含有大豆蛋白粉和大豆粉。The difference between Comparative Example 4 and Example 1 is that it does not contain soybean protein powder and soybean powder.
对比例5Comparative example 5
对比例5与实施例1的区别在于不含有大豆蛋白粉。The difference between Comparative Example 5 and Example 1 is that it does not contain soybean protein powder.
对比例6Comparative example 6
对比例6与实施例1的区别在于不含有大豆粉。The difference between Comparative Example 6 and Example 1 is that it does not contain soybean flour.
对比例7Comparative example 7
对比例7的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒40份、大豆蛋白粉80份、大豆粉70份、水65份、甘油22.5份和聚乙二醇20份。The biodegradable plastic of Comparative Example 7 is made of the following raw materials in parts by weight: 40 parts of polylactic acid particles, 80 parts of soybean protein powder, 70 parts of soybean powder, 65 parts of water, 22.5 parts of glycerin and 20 parts of polyethylene glycol .
对比例8Comparative example 8
对比例8与实施例1的区别在于不含有甘油。The difference between Comparative Example 8 and Example 1 is that it does not contain glycerin.
对比例9Comparative example 9
对比例9与实施例1的区别在于不含有水。The difference between Comparative Example 9 and Example 1 is that it does not contain water.
对比例10Comparative example 10
对比例10与实施例1的区别在于不含有聚乙二醇。The difference between Comparative Example 10 and Example 1 is that it does not contain polyethylene glycol.
对比例11Comparative example 11
对比例11的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水80份、甘油22.5份和聚乙二醇20份。The biodegradable plastic of Comparative Example 11 is made of the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 80 parts of water, 22.5 parts of glycerin and 20 parts of polyethylene glycol .
对比例12Comparative example 12
对比例12的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水65份、甘油60份和聚乙二醇20份。The biodegradable plastic of Comparative Example 12 is made of the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 65 parts of water, 60 parts of glycerin and 20 parts of polyethylene glycol .
对比例13Comparative example 13
对比例13的生物可降解塑料,由以下重量份数的原料制成:聚乳酸颗粒100份、大豆蛋白粉50份、大豆粉50份、水65份、甘油22.5份和聚乙二醇50份。The biodegradable plastic of Comparative Example 13 is made of the following raw materials in parts by weight: 100 parts of polylactic acid particles, 50 parts of soybean protein powder, 50 parts of soybean powder, 65 parts of water, 22.5 parts of glycerin and 50 parts of polyethylene glycol .
对比例1-13所述的可降解塑料采用实施例7所述的可降解塑料的制备方法制得。The degradable plastics described in Comparative Examples 1-13 were prepared by the preparation method of the degradable plastics described in Example 7.
试验例Test case
(1)浸水性试验(1) Water immersion test
将生物可降解塑料样品材料做成长为76.2mm、宽为25.4mm、高度为3.2mm的条形,把样品放到干燥箱中干燥,干燥温度为50℃,干燥24小时后拿出,在室温(20-25℃)下冷却,并进行初始称重;接着浸入蒸馏水中,浸泡24小时后再次称重,记录重量变化,计算吸水率,称重时需要擦干表面的水分,擦干水和称重过程最好不要超过2分钟。Make the biodegradable plastic sample material into strips with a length of 76.2mm, a width of 25.4mm, and a height of 3.2mm, and put the sample in a drying oven for drying at 50°C. After drying for 24 hours, take it out and store it at room temperature. Cool at (20-25°C) and perform initial weighing; then immerse in distilled water, weigh again after soaking for 24 hours, record the weight change, and calculate the water absorption rate. When weighing, you need to wipe off the moisture on the surface, dry the water and The weighing process should not exceed 2 minutes.
(2)抗拉伸试验(2) tensile test
拉伸强度测试用的是ASTM638标准,将生物可降解塑料样品材料做成长度为165mm、宽度为12.7和厚度为3.2mm的条形,拉伸速度为50mm/min,拉伸过程中,试件一直拉伸,直到拉断为止,记录最大拉伸力和断裂后的长度变化,并计算拉伸强度和断裂伸长率。The tensile strength test uses the ASTM638 standard. The biodegradable plastic sample material is made into strips with a length of 165mm, a width of 12.7mm and a thickness of 3.2mm. The tensile speed is 50mm/min. During the stretching process, the specimen Stretch until it breaks, record the maximum tensile force and the change in length after breaking, and calculate the tensile strength and elongation at break.
(3)样品材料的生物降解率(3) Biodegradation rate of sample material
采用土埋的方法,测定样品材料30天、60天后的质量损失,并计算样品材料的生物降解率。Using the method of soil burial, measure the mass loss of the sample material after 30 days and 60 days, and calculate the biodegradation rate of the sample material.
试验结果见表1。The test results are shown in Table 1.
表1试验结果Table 1 Test results
从表1中可以看出,采用实施例1-6提供的生物可降解塑料的拉伸强度在11MPa以上,断裂伸长率在140%以上,吸水率低于4%,样品材料30天的生物降解率高于28%,样品材料60天的生物降解率高于68%。同时,研究还发现在微生物的作用下,本发明的生物可降解塑料在3-6个月时间内完全降解为低分子化合物,避免环境污染。As can be seen from Table 1, the tensile strength of the biodegradable plastics provided by Examples 1-6 is more than 11MPa, the elongation at break is more than 140%, and the water absorption is lower than 4%. The degradation rate was higher than 28%, and the 60-day biodegradation rate of the sample material was higher than 68%. At the same time, the study also found that under the action of microorganisms, the biodegradable plastic of the present invention can be completely degraded into low-molecular compounds within 3-6 months to avoid environmental pollution.
通过对比例1-13与实施例1的比较发现,对比例1-6的拉伸强度远低于实施例1,断裂伸长率从远低于实施例1,吸水率远高于实施例1,样品材料30天和60天的生物降解率均低于实施例1,生物可降解塑料的力学性能、耐水性和生物降解性依赖于原料组分及配比,可见本发明提供的生物可降解塑料具有良好的力学性能、耐水性和生物降解性能,是一款综合性能较为理想的生物可降解塑料。通过对比例3-7与实施例1的比较可以看出,通过聚乳酸、大豆蛋白粉和大豆粉三者的共混能够明显提高生物可降解塑料的拉伸强度,降低吸水率,提高生物降解性能,聚乳酸、大豆蛋白粉和大豆粉的配比对生物可降解塑料的的拉伸强度,吸水率和生物降解性能也有较大影响。通过对比例8-13与实施例1的比较可以看出,水、甘油和聚乙二醇对生物可降解塑料的的拉伸强度,吸水率和生物降解性能也有较大影响。Through the comparison of Comparative Examples 1-13 and Example 1, it is found that the tensile strength of Comparative Examples 1-6 is far lower than that of Example 1, the elongation at break is far lower than that of Example 1, and the water absorption is much higher than that of Example 1. , the biodegradation rate of sample material 30 days and 60 days is all lower than embodiment 1, and the mechanical properties of biodegradable plastics, water resistance and biodegradability depend on raw material component and proportioning, it can be seen that the biodegradable plastic provided by the present invention Plastic has good mechanical properties, water resistance and biodegradability, and is a biodegradable plastic with ideal comprehensive properties. By comparison of Comparative Examples 3-7 and Example 1, it can be seen that the blending of polylactic acid, soybean protein powder and soybean powder can significantly improve the tensile strength of biodegradable plastics, reduce water absorption, and improve biodegradation. Performance, the ratio of polylactic acid, soybean protein powder and soybean powder also has a great influence on the tensile strength, water absorption and biodegradability of biodegradable plastics. By comparing Examples 8-13 with Example 1, it can be seen that water, glycerin and polyethylene glycol also have a greater impact on the tensile strength, water absorption and biodegradability of biodegradable plastics.
综上所述,采用本发明提供的原料组成及配比的生物可降解塑料具有力学性能、耐水性和生物降解性能,是一款综合性能较为理想的生物可降解塑料。In summary, the biodegradable plastic with the raw material composition and ratio provided by the present invention has mechanical properties, water resistance and biodegradability, and is a biodegradable plastic with relatively ideal comprehensive properties.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710728473.7A CN107746559A (en) | 2017-08-22 | 2017-08-22 | Biodegradable plastic and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710728473.7A CN107746559A (en) | 2017-08-22 | 2017-08-22 | Biodegradable plastic and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107746559A true CN107746559A (en) | 2018-03-02 |
Family
ID=61255503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710728473.7A Pending CN107746559A (en) | 2017-08-22 | 2017-08-22 | Biodegradable plastic and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107746559A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108752940A (en) * | 2018-06-06 | 2018-11-06 | 安徽永豪日用品有限公司 | A kind of preparation method of degradable garbage bags |
CN108796659A (en) * | 2018-06-28 | 2018-11-13 | 巢湖市荷花渔网有限公司 | A kind of preparation method of complete biodegradable fishing lines |
CN108903542A (en) * | 2018-06-06 | 2018-11-30 | 安徽永豪日用品有限公司 | A kind of preparation method of self-adhesion degradable disponsable tablecloth |
WO2022071799A1 (en) * | 2020-09-30 | 2022-04-07 | Coda Intellectual Property B.V. | Polymer composite comprising oilseed meal |
CN114479147A (en) * | 2021-02-24 | 2022-05-13 | 陈雅婷 | A degradable plastic composite film |
CN116178770A (en) * | 2022-11-30 | 2023-05-30 | 苏州中达航材料科技有限公司 | Biodegradable mulching film special for garlic and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030078323A1 (en) * | 1999-05-04 | 2003-04-24 | Jinwen Zhang | Biodegradable plant protein composites and related methods |
US6632925B1 (en) * | 1999-05-04 | 2003-10-14 | Iowa State University Research Foundation, Inc. | Biodegradable plant protein composites and related methods |
CN101486806A (en) * | 2009-02-17 | 2009-07-22 | 四川大学 | Natural polymer / degradable polymer composite material and preparation thereof |
CN104371288A (en) * | 2014-11-10 | 2015-02-25 | 苏州蔻美新材料有限公司 | Composite starch biodegradable material and preparation method thereof |
-
2017
- 2017-08-22 CN CN201710728473.7A patent/CN107746559A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030078323A1 (en) * | 1999-05-04 | 2003-04-24 | Jinwen Zhang | Biodegradable plant protein composites and related methods |
US6632925B1 (en) * | 1999-05-04 | 2003-10-14 | Iowa State University Research Foundation, Inc. | Biodegradable plant protein composites and related methods |
CN101486806A (en) * | 2009-02-17 | 2009-07-22 | 四川大学 | Natural polymer / degradable polymer composite material and preparation thereof |
CN104371288A (en) * | 2014-11-10 | 2015-02-25 | 苏州蔻美新材料有限公司 | Composite starch biodegradable material and preparation method thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108752940A (en) * | 2018-06-06 | 2018-11-06 | 安徽永豪日用品有限公司 | A kind of preparation method of degradable garbage bags |
CN108903542A (en) * | 2018-06-06 | 2018-11-30 | 安徽永豪日用品有限公司 | A kind of preparation method of self-adhesion degradable disponsable tablecloth |
CN108796659A (en) * | 2018-06-28 | 2018-11-13 | 巢湖市荷花渔网有限公司 | A kind of preparation method of complete biodegradable fishing lines |
WO2022071799A1 (en) * | 2020-09-30 | 2022-04-07 | Coda Intellectual Property B.V. | Polymer composite comprising oilseed meal |
NL2026593B1 (en) * | 2020-09-30 | 2022-06-01 | Coda Intellectual Property B V | Polymer composite comprising oilseed meal |
CN114479147A (en) * | 2021-02-24 | 2022-05-13 | 陈雅婷 | A degradable plastic composite film |
CN116178770A (en) * | 2022-11-30 | 2023-05-30 | 苏州中达航材料科技有限公司 | Biodegradable mulching film special for garlic and preparation method thereof |
CN116178770B (en) * | 2022-11-30 | 2024-01-30 | 苏州中达航材料科技有限公司 | A kind of biodegradable mulch film specially made for garlic and its preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107746559A (en) | Biodegradable plastic and preparation method thereof | |
CN101525487B (en) | Composite material degraded by environment and preparation method thereof | |
CN101781467B (en) | Biomass-synthetic plastic product and method for preparing same | |
CN113801350A (en) | Calcium carbonate filled PBAT/PLA biodegradable plastic film and preparation method thereof | |
CN113861635A (en) | Starch modified PBAT/PLA biodegradable plastic film and preparation method thereof | |
CN109486083A (en) | A kind of biodegradable blend film and preparation method thereof | |
CN103627154B (en) | A kind of polylactic acid/starch Biobased degradable composite material and preparation method thereof | |
CN103421286A (en) | High temperature resistant and degradable polylactic acid wood plastic material and preparation method thereof | |
Graiver et al. | Biodegradable soy protein–polyester blends by reactive extrusion process | |
CN104151622B (en) | A kind of biodegradable cellulose intermingling material and preparation method thereof | |
CN109021519A (en) | A kind of thermoplastic polyurethane elastomer toughening wood powder/lactic acid composite material wire rod preparation method for 3D printing | |
CN101654528B (en) | Biodegradable resin for agricultural film and production method thereof | |
CN102604164A (en) | Master batch capable of fully and biologically degrading plastic film and preparation method thereof | |
CN103992518B (en) | Biodegradable packaging material | |
CN107841102A (en) | A kind of biodegradable toughness reinforcing heat-proof polylactic acid modified resin and preparation method thereof | |
CN108659491A (en) | A kind of lactic acid composite material of activeness and quietness and preparation method thereof | |
CN105733220B (en) | Biodegradable plastic containing biogas residue and preparation method thereof | |
CN102134380B (en) | Completely biodegradable composite material and preparation method thereof | |
CN102585464A (en) | Polylactic acid (PLA)/polybutylene succinate (PBS)/bamboo powder composite material and preparation method thereof | |
CN110317406A (en) | A kind of biodegradable polypropene composition and preparation method thereof | |
CN1315927C (en) | Green degradable resin and production thereof | |
CN104559098B (en) | The preparation method of leather-making waste collagen powder/lactic acid composite material | |
CN102617969B (en) | Preparation method of thermoplastic konjac glucomannan/polybutylene succinate blend material | |
CN111548617B (en) | Biodegradable polylactic acid material and preparation method and application thereof | |
CN108034210A (en) | A kind of flexibilized grade agricultural film composite material and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180302 |
|
RJ01 | Rejection of invention patent application after publication |