CN107742665B - 一种氮化物半导体发光二极管 - Google Patents
一种氮化物半导体发光二极管 Download PDFInfo
- Publication number
- CN107742665B CN107742665B CN201710850284.7A CN201710850284A CN107742665B CN 107742665 B CN107742665 B CN 107742665B CN 201710850284 A CN201710850284 A CN 201710850284A CN 107742665 B CN107742665 B CN 107742665B
- Authority
- CN
- China
- Prior art keywords
- layer
- arrangement hole
- arrangement
- quantum well
- well layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 36
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 33
- 241000209202 Bromus secalinus Species 0.000 claims abstract description 11
- 239000004615 ingredient Substances 0.000 claims abstract description 10
- 230000000737 periodic effect Effects 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 5
- 230000000694 effects Effects 0.000 abstract description 10
- 230000006798 recombination Effects 0.000 abstract description 6
- 238000005215 recombination Methods 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000005476 size effect Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/04—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
- H01L33/06—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/20—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
- H01L33/24—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
- H01L33/325—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
本发明公开一种氮化物半导体发光二极管,包括衬底,N型氮化物半导体,多量子阱,P型氮化物半导体,所述多量子阱的每一周期由开V形坑层,具有V形坑的第一量子阱层,封V形坑层,无V形坑的第二量子阱层组成的周期结构,穿透位错线连接V形坑。所述具有V形坑的第一量子阱层的V形坑被封V形坑层进行填充封闭后形成低In组分区,V形坑上方的无V形坑的第二量子阱层形成高In组分区,从而穿透位错线连着的V形坑在c轴方向形成纵向In组分高低涨落区,与第一量子阱层和第二量子层的ab轴的横向In组分涨落区进行耦合,形成三维立体的In组分涨落层,提升量子阱区的电子空穴的限制效应和复合几率,提升发光效率。
Description
技术领域
本发明涉及半导体光电器件领域,特别是一种具有三维立体In组分涨落层的氮化物半导体发光二极管。
背景技术
现今,氮化物半导体发光二极管(LED),因其较高的发光效率、波长连续可调、节能环保等优点,目前已广泛应用于室内白光照明、手机背光照明、电视背光照明、显示照明、路灯、景观灯等领域。采用量子结构的氮化物发光二极管通过局域量子限制作用,可提升有源区的电子和空穴波函数的交叠几率和复合效率,使量子效率再提升至一个新的台阶。当势阱材料的厚度达到可比拟电子的德布罗意波长或与玻尔半径时,会产生量子尺寸效应。采用多量子阱结构的氮化物发光二极管可在量子阱区域形成量子效应、量子限制效应、量子尺寸效应等,提升量子阱的电子和空穴的复合几率,从而使内量子效率可提升至75%以上。
发明内容
为了进一步提升氮化物半导体发光二极管的发光效率,本发明一种具有三维立体In组分涨落层的氮化物半导体发光二极管,通过在多量子阱区制作每一周期的开V形坑层,具有V形坑的第一量子阱层,封V形坑层,无V形坑的第二量子阱层,并使穿透位错线连接V形坑,从而使具有V形坑的第一量子阱层的V形坑被封V形坑层进行填充封闭后形成低In组分区,V形坑上方的无V形坑的第二量子阱层形成高In组分区,进而穿透位错线连着的V形坑在c轴方向形成纵向In组分高低涨落区,与第一量子阱层和第二量子层的ab轴的横向In组分涨落区进行耦合,形成三维立体的In组分涨落层,提升量子阱区的电子空穴的限制效应和复合几率,提升发光效率。
本发明公开一种具有三维立体In组分涨落层的氮化物半导体发光二极管,包括N型氮化物半导体,多量子阱,P型氮化物半导体,所述多量子阱的每一周期由开V形坑层,具有V形坑的第一量子阱层,封V形坑层,无V形坑的第二量子阱层组成的周期结构,穿透位错线连接V形坑,所述具有V形坑的第一量子阱层的V形坑被封V形坑层进行填充封闭后形成低In组分区,V形坑上方的无V形坑的第二量子阱层形成高In组分区,从而穿透位错线连着的V形坑在c轴方向形成纵向In组分高低涨落区,与第一量子阱层和第二量子层的ab轴的横向In组分涨落区进行耦合,形成三维立体的In组分涨落层,提升量子阱区的电子空穴的限制效应和复合几率,提升发光效率。
进一步地,所述纵向In组分涨落区的In组分高低起伏变化范围为0.05~0.35,所述横向In组分涨落区的In组分高低起伏变化范围为0.15~0.25。
进一步地,所述多量子阱由开V形坑层,具有V形坑的第一量子阱层,封V形坑层,无V形坑的第二量子阱层组成的周期结构,周期数量为n,其中n≥3对;第一量子阱层、第二量子阱层为InxGa1-xN/GaN,其中In组分0.15<x<0.20,厚度为100~200Å,优选 In组分为0.18,量子阱的阱层厚度为30Å,垒层厚度为100Å,量子阱的周期厚度为130Å。
进一步地,所述开V形坑层为低温条件生长的InyGa1-yN或GaN,其中0≤y<0.15,生长温度为700-900℃,优选温度为720℃,开V形坑层的厚度为5~500Å,优选20Å。
进一步地,所述封V形坑层为高温条件生长的GaN,生长温度为900-1000℃,优选温度为950℃,封V形坑层的厚度为5~500Å,优选厚度为20Å。
进一步地,所述具有V形坑的第一量子阱层的V形坑的大小为5~500Å,优选50Å。
进一步地,所述具有V形坑的第一量子阱层的V形坑被封V形坑层进行填充封闭后形成低In组分区的c轴纵向In组分起伏变化范围为0.05~0.20,ab轴横向In组分起伏变化范围为0.15~0.20;V形坑上方的无V形坑的第二量子阱层形成高In组分区的c轴纵向In组分起伏变化范围为0.20~0.35,横向In组分起伏变化范围为0.20~0.25。
本发明的主要创新点在于:制作In组分涨落层进一步提升量子效应,提升电子空穴在量子阱区域的复合效率,从而进一步提升发光效率。
附图说明
图1为传统氮化物半导体发光二极管的结构示意图。
图2为一种具有三维立体In组分涨落层的氮化物半导体发光二极管的结构示意图。
图3为一种具有三维立体In组分涨落层的氮化物半导体发光二极管的纵向In组分涨落层的示意图。
图4为一种具有三维立体In组分涨落层的氮化物半导体发光二极管的纵向In组分涨落层和横向In组分涨落层形成三维立体In组分涨落层的示意图。
图示说明:100:衬底;101:缓冲层,102:N型氮化物半导体,103:多量子阱,103a:开V形坑层,103b:具有V形坑的第一量子阱层,103c:封V形坑层,103d:无V形坑的第二量子阱层,104:P型氮化物半导体,105:P型接触层,106:V形坑,107:具有V形坑的第一量子阱层的V形坑被封V形坑层进行填充封闭后形成低In组分区,108:V形坑上方的无V形坑的第二量子阱层形成高In组分区,109:低In组分区和高In组分区形成c轴的纵向In组分涨落区,110:量子阱区域在ab轴的横向In组分涨落区,111:三维立体的In组分涨落区。
具体实施方式
具体实施例
传统的氮化物发光二极管一般由衬底100,缓冲层101,N型氮化物半导体102,多量子阱103,P型氮化物半导体104,P型接触层105组成,其中多量子阱103一般具有V形坑106,如图1所示。为了提升量子尺寸效应和量子限制效应等,本实施例提供一种具有三维立体In组分涨落层的氮化物半导体发光二极管,如图2所示,依次包括衬底100,缓冲层101,N型氮化物半导体102,多量子阱103,P型氮化物半导体104,P型接触层105,所述多量子阱103的每一周期由开V形坑层103a,具有V形坑的第一量子阱层103b,封V形坑层103c,无V形坑的第二量子阱层103d组成的周期结构,穿透位错线连接V形坑106。所述具有V形坑的第一量子阱层103b的V形坑106被封V形坑层103c进行填充封闭后形成低In组分区107,V形坑上方的无V形坑的第二量子阱层103d形成高In组分区108,从而穿透位错线连着的V形坑106在c轴方向形成纵向In组分高低涨落区109,与第一量子阱层和第二量子层的ab轴的横向In组分涨落区110进行耦合,形成三维立体的In组分涨落层111,如图3所示,通过三维立体的In组分涨落层提升量子阱区的电子空穴的限制效应和复合几率,提升发光效率。
所述纵向In组分涨落区109的In组分高低起伏变化范围为0.05~0.35,所述横向In组分涨落区110的In组分高低起伏变化范围为0.15~0.25。
所述多量子阱103由开V形坑层103a,具有V形坑的第一量子阱层103b,封V形坑层103c,无V形坑的第二量子阱层103d组成的周期结构,周期数量为n,优选周期数量n=5对;第一量子阱层103b、第二量子阱层103d为InxGa1-xN/GaN,其中In组分0.15<x<0.20,厚度为100~200Å,优选 In组分为0.18,量子阱的阱层厚度为30Å,垒层厚度为100Å,量子阱的周期厚度为130Å。
所述开V形坑层103a为低温条件生长的InyGa1-yN或GaN,其中0≤y<0.15,生长温度为700-900℃,优选温度为720℃,开V形坑层的厚度为5~500Å,优选20Å。
所述封V形坑层103c为高温条件生长的GaN,生长温度为900-1000℃,优选温度为950℃,封V形坑层的厚度为5~500Å,优选厚度为20Å。
所述具有V形坑的第一量子阱层103a的V形坑106的大小为5~500Å,优选50Å。
所述具有V形坑的第一量子阱层103a的V形坑106被封V形坑层103c进行填充封闭后形成低In组分区107的c轴纵向In组分起伏变化范围为0.05~0.20,ab轴横向In组分起伏变化范围为0.15~0.20;V形坑上方的无V形坑的第二量子阱层形成高In组分区108的c轴纵向In组分起伏变化范围为0.20~0.35,横向In组分起伏变化范围为0.20~0.25。
通过在量子阱区的c轴形成纵向In组分涨落层109,并与量子阱区ab轴的横向In组分涨落区110进行耦合,形成三维立体的In组分涨落层111,如图4所示,提升量子阱区的电子空穴的限制效应和复合几率,提升发光效率。
以上实施方式仅用于说明本发明,而并非用于限定本发明,本领域的技术人员,在不脱离本发明的精神和范围的情况下,可以对本发明做出各种修饰和变动,因此所有等同的技术方案也属于本发明的范畴,本发明的专利保护范围应视权利要求书范围限定。
Claims (10)
1.一种氮化物半导体发光二极管,包括衬底,N型氮化物半导体,多量子阱,P型氮化物半导体,所述多量子阱的每一周期由开V形坑层,具有V形坑的第一量子阱层,封V形坑层,无V形坑的第二量子阱层组成的周期结构,穿透位错线连接V形坑,所述具有V形坑的第一量子阱层的V形坑被封V形坑层进行填充封闭后形成低In组分区,V形坑上方的无V形坑的第二量子阱层形成高In组分区,从而穿透位错线连着的V形坑在c轴方向形成纵向In组分高低涨落区,与第一量子阱层和第二量子层的ab轴的横向In组分涨落区进行耦合,形成三维立体的In组分涨落层。
2.根据权利要求1所述一种氮化物半导体发光二极管,其特征在于:所述纵向In组分涨落区的In组分高低起伏变化范围为0.05~0.35。
3.根据权利要求1所述一种氮化物半导体发光二极管,其特征在于:所述横向In组分涨落区的In组分高低起伏变化范围为0.15~0.25。
4.根据权利要求1所述一种氮化物半导体发光二极管,其特征在于:所述多量子阱由开V形坑层,具有V形坑的第一量子阱层,封V形坑层,无V形坑的第二量子阱层组成的周期结构,周期数量为n,其中n≥3对。
5.根据权利要求1所述一种氮化物半导体发光二极管,其特征在于:所述第一量子阱层、第二量子阱层为InxGa1-xN/GaN,其中In组分0.15<x<0.20,厚度为100~200Å。
6.根据权利要求1所述的一种氮化物半导体发光二极管,其特征在于:所述开V形坑层为低温条件生长的InyGa1-yN,其中0≤y<0.15,生长温度为700-900℃,开V形坑层的厚度为5~500Å。
7.根据权利要求1所述的一种氮化物半导体发光二极管,其特征在于:所述封V形坑层为高温条件生长的GaN,生长温度为900-1000℃,封V形坑层的厚度为5~500Å。
8.根据权利要求1所述的一种氮化物半导体发光二极管,其特征在于:所述具有V形坑的第一量子阱层的V形坑的大小为5~500Å。
9.根据权利要求1所述的一种氮化物半导体发光二极管,其特征在于:所述具有V形坑的第一量子阱层的V形坑被封V形坑层进行填充封闭后形成低In组分区的c轴纵向In组分起伏变化范围为0.05~0.20,ab轴横向In组分起伏变化范围为0.15~0.20。
10.根据权利要求1所述的一种氮化物半导体发光二极管,其特征在于:所述V形坑上方的无V形坑的第二量子阱层形成高In组分区的c轴纵向In组分起伏变化范围为0.20~0.35,横向In组分起伏变化范围为0.20~0.25。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710850284.7A CN107742665B (zh) | 2017-09-20 | 2017-09-20 | 一种氮化物半导体发光二极管 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710850284.7A CN107742665B (zh) | 2017-09-20 | 2017-09-20 | 一种氮化物半导体发光二极管 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107742665A CN107742665A (zh) | 2018-02-27 |
CN107742665B true CN107742665B (zh) | 2019-05-24 |
Family
ID=61235200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710850284.7A Active CN107742665B (zh) | 2017-09-20 | 2017-09-20 | 一种氮化物半导体发光二极管 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107742665B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114420805A (zh) * | 2022-01-26 | 2022-04-29 | 安徽格恩半导体有限公司 | 一种具有三维极性畴多量子阱的半导体发光元件 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204760413U (zh) * | 2015-07-17 | 2015-11-11 | 安徽三安光电有限公司 | 多量子阱结构及包含该多量子阱结构的氮化物发光二极管 |
CN105870273A (zh) * | 2016-06-02 | 2016-08-17 | 厦门市三安光电科技有限公司 | 一种氮化物发光二极管 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017069299A (ja) * | 2015-09-29 | 2017-04-06 | 豊田合成株式会社 | Iii族窒化物半導体発光素子 |
-
2017
- 2017-09-20 CN CN201710850284.7A patent/CN107742665B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN204760413U (zh) * | 2015-07-17 | 2015-11-11 | 安徽三安光电有限公司 | 多量子阱结构及包含该多量子阱结构的氮化物发光二极管 |
CN105870273A (zh) * | 2016-06-02 | 2016-08-17 | 厦门市三安光电科技有限公司 | 一种氮化物发光二极管 |
Also Published As
Publication number | Publication date |
---|---|
CN107742665A (zh) | 2018-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108231965B (zh) | 一种提高光输出的AlGaN基深紫外LED外延结构 | |
CN101821861B (zh) | 不含磷的基于氮化物的红和白发光二极管的制造 | |
CN107086258B (zh) | 一种多量子阱结构及其发光二极管 | |
CN103730557B (zh) | 一种具有新型的p型电子阻挡层结构的发光二极管的生长方法 | |
CN103824909B (zh) | 一种提高GaN基LED发光亮度的外延方法 | |
CN102664145B (zh) | 采用金属有机化合物气相外延技术生长非对称电子储蓄层高亮度发光二极管的方法 | |
CN102822995A (zh) | 带具有变化的阱厚度的多量子阱结构的基于iii族氮化物的发光二极管结构 | |
CN105990479A (zh) | 一种氮化镓基发光二极管外延结构及其制备方法 | |
CN107195746B (zh) | 一种具有共振隧穿结构电子阻挡层的发光二极管 | |
CN103985798A (zh) | 一种具有新型量子阱结构的led及其制作方法 | |
CN103137805A (zh) | 用于光电微型传感器的宽谱紫外发光二极管及其制作方法 | |
CN105206726A (zh) | 一种led结构及其生长方法 | |
CN106328788B (zh) | GaN基LED外延结构及其制造方法 | |
CN103560187B (zh) | 含有超晶格势垒层的led结构外延生长方法及其结构 | |
CN103560190A (zh) | 阻挡电子泄漏和缺陷延伸的外延生长方法及其结构 | |
CN104538517A (zh) | 一种具有n型超晶格结构的LED外延结构及其生长方法 | |
CN108039397B (zh) | 一种氮化物半导体发光二极管 | |
CN102280547A (zh) | 一种有源区为p型的氮化镓系半导体发光管 | |
CN103137807A (zh) | 具有应力释放层的绿光led外延结构及制作方法 | |
CN101740693A (zh) | 一种降低ⅲ族氮化物发光二极管光衰的方法 | |
CN108520913A (zh) | 一种具有强极化空穴注入层的氮化物半导体发光二极管 | |
CN104465910A (zh) | 一种与ZnO薄膜高效匹配的LED芯片结构及其制作方法 | |
CN104253181A (zh) | 一种具有多重垒层led外延结构 | |
CN106299056B (zh) | 一种高复合效率的led外延结构 | |
CN105609601A (zh) | 具有新型量子阱的发光二极管外延片及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20231025 Address after: Yuanqian village, Shijing Town, Nan'an City, Quanzhou City, Fujian Province Patentee after: QUANZHOU SAN'AN SEMICONDUCTOR TECHNOLOGY Co.,Ltd. Address before: 361009 no.1721-1725, Luling Road, Siming District, Xiamen City, Fujian Province Patentee before: XIAMEN SANAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd. |