CN107732643A - 单泵双端泵浦红外激光器 - Google Patents
单泵双端泵浦红外激光器 Download PDFInfo
- Publication number
- CN107732643A CN107732643A CN201711194370.3A CN201711194370A CN107732643A CN 107732643 A CN107732643 A CN 107732643A CN 201711194370 A CN201711194370 A CN 201711194370A CN 107732643 A CN107732643 A CN 107732643A
- Authority
- CN
- China
- Prior art keywords
- mirror
- semi
- crystal
- lens
- total reflective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094038—End pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/09—Processes or apparatus for excitation, e.g. pumping
- H01S3/091—Processes or apparatus for excitation, e.g. pumping using optical pumping
- H01S3/094—Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
- H01S3/094049—Guiding of the pump light
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
一种单泵双端泵浦红外激光器,包括泵浦源、准直透镜、半透半反镜、第一全反镜、第一聚焦透镜、第二全反镜、第三全反镜、第二聚焦透镜、激光晶体、第一端镜、第二端镜、转折镜、尾端镜、输出镜、及调Q晶体;第一端镜、第二端镜、转折镜、第一尾端镜、及输出镜构成谐振腔;泵浦源发出的泵浦光经准直透镜后变成平行光线,然后经过半透半反镜,部分泵浦光在半透半反镜上发生反射,部分泵浦光透射过半透半反镜所述转折镜与所述第一端镜、所述输出镜相对设置。本发明的单泵双端泵浦红外激光器通过从激光晶体的两端射入泵浦光,使在总输出功率要求不变的条件下,激光晶体单端因吸收泵浦光而所产生的热量下降,有利1064nm红外激光器的高功率运行。
Description
技术领域
本发明涉及激光技术,特别是涉及一种单泵双端泵浦红外激光器。
背景技术
激光是近代科学技术中的重大发明之一,其中,1064nm红外激光应用于冷加工领域,在非金属以及精密加工中的应用价值尤其突出。随着全球对精细加工的需求日益增加,使得红外激光器的应用领域不断扩大。现有的1064nm红外激光器常使用单端面泵浦的工作方式,然而单端面泵浦仅能满足低功率的应用需求,在高平均输出功率的应用下,单端面泵浦往往使激光器中的激光晶体往往因吸收泵浦光后受热不均而开裂,导致1064nm红外激光器无法在高输出功率下稳定运行。
发明内容
基于此,本发明提供一种采用单泵双端泵浦,可满足高功率1064nm红外激光输出要求的单泵双端泵浦红外激光器。
为了实现本发明的目的,本发明采用以下技术方案:
一种单泵双端泵浦红外激光器,包括泵浦源、准直透镜、半透半反镜、第一全反镜、第一聚焦透镜、第二全反镜、第三全反镜、第二聚焦透镜、激光晶体、第一端镜、第二端镜、转折镜、尾端镜、输出镜、及调Q晶体;所述泵浦源用于发出泵浦光;所述泵浦源发出的泵浦光经所述准直透镜后变成平行的光线,然后经过所述半透半反镜,一部分泵浦光在所述半透半反镜上发生反射,另一部分泵浦光透射过所述半透半反镜;所述第一端镜、所述第二端镜、所述转折镜、所述尾端镜、及所述输出镜构成谐振腔;所述激光晶体设有第一入射端、及第二入射端;所述第一聚焦透镜、所述激光晶体、及所述第二聚焦透镜位于所述第一全反镜与所述第三全反镜之间;所述第一端镜位于所述第一聚焦透镜与所述激光晶体之间,所述第二端镜位于所述第二聚焦透镜与所述激光晶体之间;所述转折镜与所述第一端镜、所述输出镜相对设置;所述调Q晶体位于所述第二端镜与所述尾端镜之间;在所述半透半反镜上反射出的泵浦光,经过所述第一全反镜反射后平行进入所述第一聚焦透镜,所述第一全反镜反射出的泵浦光经过所述第一聚焦透镜聚焦,并从所述第一入射端入射所述激光晶体;透射过所述半透半反镜的泵浦光依次被所述第二全反镜、所述第三全反镜反射,所述第三全反镜反射出的泵浦光经过所述第二聚焦透镜聚焦,并从所述第二入射端入射所述激光晶体;泵浦光从两端入射所述激光晶体后,在谐振腔内产生1064nm基频连续光;通过所述调Q晶体调节,得到在所述谐振腔内来回反射的1064nm脉冲光;沿所述第二端镜到尾端镜的方向,1064nm脉冲光经过所述调Q晶体后,1064nm脉冲光经所述尾端镜反射并沿原路返回,继续在所述谐振腔内工作;沿所述转折镜到所述输出镜的方向,部分1064nm脉冲光透射所述输出镜后输出,部分1064nm脉冲光经所述输出镜反射后沿原路返回。
本发明的单泵双端泵浦红外激光器通过从激光晶体的两端射入泵浦光,使在总输出功率要求不变的条件下,激光晶体单端因吸收泵浦光而所产生的热量下降,泵浦光在激光晶体上产生的热量在激光晶体两侧均匀分布,避免了激光晶体因单端受热而开裂的问题,有利于1064nm红外激光器的高功率运行。
在其中一个实施例中,所述半透半反镜反射50%泵浦光、透射50%泵浦光。
在其中一个实施例中,所述第一聚焦透镜将泵浦光聚焦在所述激光晶体内且与所述第一入射端相距1~2mm处,所述第二聚焦透镜将泵浦光聚焦在所述激光晶体内且与所述第二入射端相距1~2mm处。
在其中一个实施例中,所述准直透镜为平凸透镜,所述半透半反镜与所述准直透镜的凸面相对设置并相对于所述准直透镜的平面倾斜。
在其中一个实施例中,所述第一全反镜、所述第二全反镜、及所述第三全反镜为808nm或880nm高反的镜片。
在其中一个实施例中,所述第一端镜、所述第二端镜为808nm或880nm增透、1064nm高反的镜片。
在其中一个实施例中,所述尾端镜为1064nm高反的镜片;所述转折镜为1064nm高反的镜片。
在其中一个实施例中,所述调Q晶体为声光Q晶体、或电光Q晶体。
在其中一个实施例中,所述激光晶体为Nd:YVO4、Nd:YAG、Nd:YLF或Nd:GVO4。
在其中一个实施例中,所述输出镜对于1064nm脉冲光的透射率为10~40%。
附图说明
图1为本发明的一较佳实施例的单泵双端泵浦红外激光器的立体示意图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图1,为本发明一较佳实施方式的单泵双端泵浦红外激光器100,用于产生1064nm红外激光。该单泵双端泵浦红外激光器100包括泵浦源10、准直透镜11、半透半反镜12、第一全反镜13、第一聚焦透镜14、第二全反镜15、第三全反镜16、第二聚焦透镜17、激光晶体20、第一端镜21、第二端镜22、转折镜23、尾端镜24、输出镜25、及调Q晶体26。
泵浦源10用于发出泵浦光,泵浦源10可以是发出808nm泵浦光的泵浦模块,也可以是发出880nm泵浦光的泵浦激光器模块。在本实施方式中,泵浦源10为发出808nm泵浦光的泵浦激光器模块。
准直透镜11为平凸透镜,半透半反镜12位于准直透镜11与第二全反镜15之间,半透半反镜12与准直透镜11的凸面相对设置并相对于准直透镜11的平面倾斜。
半透半反镜12具有反射50%泵浦光、透射50%泵浦光的特性;泵浦源10发出的泵浦光经准直透镜11后变成平行的光线,平行的光线经过半透半反镜12,一部分泵浦光在半透半反镜12上发生反射,另一部分泵浦光透射半透半反镜12。
激光晶体20设有第一入射端、及第二入射端,第一入射端及第二入射端分别为激光晶体20的两端;半透半反镜12靠近准直透镜11的一面与第一全反镜13相对;第一聚焦透镜14、激光晶体20、及第二聚焦透镜17位于第一全反镜13与第三全反镜16之间。
在半透半反镜12上反射出的泵浦光,经过第一全反镜13反射后平行进入第一聚焦透镜14,第一全反镜13反射出的泵浦光经过第一聚焦透镜14聚焦,并从第一入射端入射激光晶体20。
透射过半透半反镜12的泵浦光依次被第二全反镜15、第三全反镜16反射,第三全反镜16反射出的泵浦光经过第二聚焦透镜17聚焦,并从第二入射端入射激光晶体20;优选地,为使得泵浦光在激光晶体20内能更好地与谐振腔内光路重叠,提高转换效率,第一聚焦透镜14将泵浦光聚焦在激光晶体20内且与第一入射端相距1~2mm处,第二聚焦透镜17将泵浦光聚焦在激光晶体20内且与第二入射端相距1~2mm处。
具体地,第一全反镜13、第二全反镜15、及第三全反镜16为808nm或880nm高反的镜片;激光晶体20为Nd:YVO4、Nd:YAG、Nd:YLF或Nd:GVO4晶体。
第一端镜21位于第一聚焦透镜14与激光晶体20之间,第二端镜22位于第二聚焦透镜17与激光晶体20之间;第一端镜21、第二端镜22、转折镜23、尾端镜24、及输出镜25构成谐振腔;激光晶体20位于谐振腔内,具体地,激光晶体20位于第一端镜21与第二端镜22之间;第一端镜21与激光晶体20的第一入射端相对设置并相对于激光晶体20的轴线倾斜,第二端镜22与激光晶体20的第二入射端相对设置并相对于激光晶体20的轴线倾斜;转折镜23与第一端镜21、输出镜25相对设置;调Q晶体26位于第二端镜22与尾端镜24之间的光路上且靠近尾端镜24设置。
具体地,第一端镜21、第二端镜22为808nm或880nm增透、1064nm高反的镜片,故第一端镜21、第二端镜22对于808nm或880nm泵浦光都具有增透作用,对1064nm脉冲光具有高反射作用;尾端镜24为1064nm高反的镜片,因此,尾端镜24对于1064nm脉冲光具有高反射作用;转折镜23为1064nm高反的镜片;输出镜25为1064nm脉冲光部分透射的镜片,输出镜25对于1064nm脉冲光的透射率为10~40%;调Q晶体26为声光Q晶体或电光Q晶体。
808nm或880nm的泵浦光经聚焦入射到激光晶体20内,对激光晶体20产生双端面泵浦,激光晶体20吸收能量实现粒子反转,在谐振腔内产生1064nm基频连续光;通过调Q晶体26对谐振腔的Q值进行调节,使光路通断切换,得到在谐振腔内来回反射的1064nm脉冲光。
沿第二端镜22到尾端镜24的方向,1064nm脉冲光经过调Q晶体26后,1064nm脉冲光经尾端镜24反射并沿原路返回,继续在谐振腔内工作。
沿转折镜23到输出镜25的方向,部分1064nm脉冲光透射输出镜25后输出(图中的L1),部分1064nm脉冲光经过输出镜25时发生反射并沿原路返回,继续在谐振腔内工作。
本实用例中,由于谐振腔由第一端镜21、第二端镜22、转折镜23、尾端镜24、及输出镜25构成,且转折镜23与第一端镜21相对设置,第一端镜21与输出镜25之间的光路通过转折镜23转折,减少了谐振腔所占用的空间,从而更有利于实现激光器的小型化。
本实用例中,由于将泵浦光分别从激光晶体20的两端入射,使在总输出功率要求不变的条件下,激光晶体20单端因吸收泵浦光而所产生的热量下降,泵浦光在激光晶体20上产生的热量在激光晶体20两侧均匀分布,避免了激光晶体20因单端受热而开裂的问题,有利于激光器的高功率运行。
进一步地,为确保分别从激光晶体20的两端入射的两股泵浦光的强度、波长一致,从而保证激光晶体20两侧的热量均匀分布,本实用例中,利用半透半反镜12、第一全反镜13、第二全反镜15、及第三全反镜16将由单一泵浦源10发出的单束泵浦光,调整为两股从不同端射入激光晶体20的泵浦光,使从两端入射激光晶体20的泵浦光的波长一致,另外,由于半透半反镜12反射同一泵浦源10所发出的泵浦光准直后的50%部分,透射同一泵浦源10所发出的泵浦光准直后的50%部分,保证从激光晶体20的两端入射的两股泵浦光的强度一致,使晶体两端受到的热量一致;由于从两端入射激光晶体20的泵浦光来自同一泵浦源10,在单泵双端泵浦红外激光器100长期使用后,从两端入射激光晶体20的泵浦光的衰减程度一致,从而避免长期使用后谐振腔因两端泵浦光不一致而失调,保证激光器正常输出、以及延长了单泵双端泵浦红外激光器100的使用寿命,令单泵双端泵浦红外激光器100在高功率输出下能稳定长久运行。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (10)
1.一种单泵双端泵浦红外激光器,其特征在于,包括泵浦源、准直透镜、半透半反镜、第一全反镜、第一聚焦透镜、第二全反镜、第三全反镜、第二聚焦透镜、激光晶体、第一端镜、第二端镜、转折镜、尾端镜、输出镜、及调Q晶体;所述泵浦源用于发出泵浦光;所述泵浦源发出的泵浦光经所述准直透镜后变成平行的光线,然后经过所述半透半反镜,一部分泵浦光在所述半透半反镜上发生反射,另一部分泵浦光透射过所述半透半反镜;所述第一端镜、所述第二端镜、所述转折镜、所述尾端镜、及所述输出镜构成谐振腔;所述激光晶体设有第一入射端、及第二入射端;所述第一聚焦透镜、所述激光晶体、及所述第二聚焦透镜位于所述第一全反镜与所述第三全反镜之间;所述第一端镜位于所述第一聚焦透镜与所述激光晶体之间,所述第二端镜位于所述第二聚焦透镜与所述激光晶体之间;所述转折镜与所述第一端镜、所述输出镜相对设置;所述调Q晶体位于所述第二端镜与所述尾端镜之间;在所述半透半反镜上反射出的泵浦光,经过所述第一全反镜反射后平行进入所述第一聚焦透镜,所述第一全反镜反射出的泵浦光经过所述第一聚焦透镜聚焦,并从所述第一入射端入射所述激光晶体;透射过所述半透半反镜的泵浦光依次被所述第二全反镜、所述第三全反镜反射,所述第三全反镜反射出的泵浦光经过所述第二聚焦透镜聚焦,并从所述第二入射端入射所述激光晶体;泵浦光从两端入射所述激光晶体后,在谐振腔内产生1064nm基频连续光;通过所述调Q晶体调节,得到在所述谐振腔内来回反射的1064nm脉冲光;沿所述第二端镜到尾端镜的方向,1064nm脉冲光经过所述调Q晶体后,1064nm脉冲光经所述尾端镜反射并沿原路返回,继续在所述谐振腔内工作;沿所述转折镜到所述输出镜的方向,部分1064nm脉冲光透射所述输出镜后输出,部分1064nm脉冲光经所述输出镜反射后沿原路返回。
2.根据权利要求1所述的单泵双端泵浦红外激光器,其特征在于,所述半透半反镜反射50%泵浦光、透射50%泵浦光。
3.根据权利要求2所述的单泵双端泵浦红外激光器,其特征在于,所述第一聚焦透镜将泵浦光聚焦在所述激光晶体内且与所述第一入射端相距1~2mm处,所述第二聚焦透镜将泵浦光聚焦在所述激光晶体内且与所述第二入射端相距1~2mm处。
4.根据权利要求1所述的单泵双端泵浦红外激光器,其特征在于,所述准直透镜为平凸透镜,所述半透半反镜与所述准直透镜的凸面相对设置并相对于所述准直透镜的平面倾斜。
5.根据权利要求1所述的单泵双端泵浦红外激光器,其特征在于,所述第一全反镜、所述第二全反镜、及所述第三全反镜为808nm或880nm高反的镜片。
6.根据权利要求5所述的单泵双端泵浦红外激光器,其特征在于,所述第一端镜、所述第二端镜为808nm或880nm增透、1064nm高反的镜片。
7.根据权利要求6所述的单泵双端泵浦红外激光器,其特征在于,所述尾端镜为1064nm高反的镜片;所述转折镜为1064nm高反的镜片。
8.根据权利要求1所述的单泵双端泵浦红外激光器,其特征在于,所述调Q晶体为声光Q晶体、或电光Q晶体。
9.根据权利要求1所述的单泵双端泵浦红外激光器,其特征在于,所述激光晶体为Nd:YVO4、Nd:YAG、Nd:YLF或Nd:GVO4。
10.根据权利要求1所述的单泵双端泵浦红外激光器,其特征在于,所述输出镜对于1064nm脉冲光的透射率为10~40%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711194370.3A CN107732643A (zh) | 2017-11-24 | 2017-11-24 | 单泵双端泵浦红外激光器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711194370.3A CN107732643A (zh) | 2017-11-24 | 2017-11-24 | 单泵双端泵浦红外激光器 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107732643A true CN107732643A (zh) | 2018-02-23 |
Family
ID=61218354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711194370.3A Pending CN107732643A (zh) | 2017-11-24 | 2017-11-24 | 单泵双端泵浦红外激光器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107732643A (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109004507A (zh) * | 2018-09-18 | 2018-12-14 | 深圳市杰普特光电股份有限公司 | 可控的被动调q红外激光器 |
CN109119875A (zh) * | 2018-09-21 | 2019-01-01 | 深圳市杰普特光电股份有限公司 | 双晶体红外激光器 |
CN109462138A (zh) * | 2018-12-03 | 2019-03-12 | 南京罗默激光科技有限公司 | 一种高重频短脉冲红外激光器 |
CN109687266A (zh) * | 2018-12-19 | 2019-04-26 | 山东大学 | 一种高峰值功率2.79微米铒激光器 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333065A (ja) * | 2004-05-21 | 2005-12-02 | Topcon Corp | 固体レーザ装置 |
CN102044837A (zh) * | 2010-11-26 | 2011-05-04 | 珠海市粤茂科技实业有限公司 | 一种半导体二极管双端泵浦高功率绿光激光器 |
CN105261924A (zh) * | 2015-11-09 | 2016-01-20 | 黑龙江工程学院 | 一种产生绿光连续激光的固体激光器与方法 |
CN207572712U (zh) * | 2017-11-24 | 2018-07-03 | 深圳市杰普特光电股份有限公司 | 单泵双端泵浦红外激光器 |
-
2017
- 2017-11-24 CN CN201711194370.3A patent/CN107732643A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005333065A (ja) * | 2004-05-21 | 2005-12-02 | Topcon Corp | 固体レーザ装置 |
CN102044837A (zh) * | 2010-11-26 | 2011-05-04 | 珠海市粤茂科技实业有限公司 | 一种半导体二极管双端泵浦高功率绿光激光器 |
CN105261924A (zh) * | 2015-11-09 | 2016-01-20 | 黑龙江工程学院 | 一种产生绿光连续激光的固体激光器与方法 |
CN207572712U (zh) * | 2017-11-24 | 2018-07-03 | 深圳市杰普特光电股份有限公司 | 单泵双端泵浦红外激光器 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109004507A (zh) * | 2018-09-18 | 2018-12-14 | 深圳市杰普特光电股份有限公司 | 可控的被动调q红外激光器 |
CN109119875A (zh) * | 2018-09-21 | 2019-01-01 | 深圳市杰普特光电股份有限公司 | 双晶体红外激光器 |
CN109462138A (zh) * | 2018-12-03 | 2019-03-12 | 南京罗默激光科技有限公司 | 一种高重频短脉冲红外激光器 |
CN109687266A (zh) * | 2018-12-19 | 2019-04-26 | 山东大学 | 一种高峰值功率2.79微米铒激光器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107732643A (zh) | 单泵双端泵浦红外激光器 | |
CN103182604B (zh) | 激光复合焊接方法与系统 | |
CN107749560A (zh) | 单泵双端泵浦紫外激光器 | |
CN103618205B (zh) | 一种全固态单纵模黄光激光器 | |
CN103346471B (zh) | 100W级1064nm端面泵浦全固态激光器 | |
CN203774604U (zh) | 一种sesam被动锁模激光器 | |
CN112260051B (zh) | 一种1342nm红外固体激光器 | |
CN101814695B (zh) | 直接泵浦的自受激拉曼散射人眼安全波段激光器 | |
CN101483309A (zh) | 以可饱和吸收体作为选频和调q元件的双波长激光器及应用 | |
CN113078534A (zh) | 一种基于复合结构增益介质的腔内级联泵浦激光器 | |
CN111769431A (zh) | 一种角侧面泵浦增加单程增益的结构和实现方法 | |
CN207819169U (zh) | 单泵双端泵浦紫外激光器 | |
CN102610992B (zh) | 一种实现对泵浦光高吸收效率的Nd:YAG激光器方法 | |
CN207572712U (zh) | 单泵双端泵浦红外激光器 | |
CN202695966U (zh) | 一种双端泵浦腔内和频355nm波长紫外固体激光器 | |
CN207572713U (zh) | 单泵双端泵浦绿光激光器 | |
CN106848821B (zh) | 一种泵浦激光器 | |
CN107971631A (zh) | 一种短波长高效稳定的高反金属的激光焊接系统 | |
CN202059040U (zh) | 一种线形腔被动调q光纤激光器 | |
CN104409957B (zh) | 一种窄线宽2μm激光器装置 | |
CN103390854B (zh) | 双单端泵浦双棒串接固体激光器 | |
CN215070852U (zh) | 一种多棒串接端面泵浦谐振腔 | |
CN102581485A (zh) | 激光焊接设备 | |
CN113067241A (zh) | 一种多棒串接端面泵浦谐振腔 | |
CN107742819A (zh) | 单泵双端泵浦绿光激光器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20180223 |
|
RJ01 | Rejection of invention patent application after publication |