CN107727718A - 玻碳微球双极电极电化学发光检测装置 - Google Patents
玻碳微球双极电极电化学发光检测装置 Download PDFInfo
- Publication number
- CN107727718A CN107727718A CN201710906572.XA CN201710906572A CN107727718A CN 107727718 A CN107727718 A CN 107727718A CN 201710906572 A CN201710906572 A CN 201710906572A CN 107727718 A CN107727718 A CN 107727718A
- Authority
- CN
- China
- Prior art keywords
- buffer pool
- capillary
- glass
- carbosphere
- detection cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Plasma & Fusion (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Electrochemistry (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
一种玻碳微球双极电极电化学发光检测装置,包括已有电化学发光信号检测器与数字化高压加压装置,数字化高压加压装置的发光检测箱内设置有固定架,固定架上设置有U形管状检测池,U形管状检测池位于发光检测箱光窗的正上方,检测池的材料为透光材料,毛细管电泳电化学发光检测仪的发光检测箱一侧设置有第一缓冲池,另一侧设置有第二缓冲池,检测池一端通过第一毛细管与第一缓冲池相联通,另一端通过第二毛细管与第二缓冲池相联通,数字化高压加压装置的正电极伸入到第一缓冲池中,负电极伸入到第二缓冲池中。本发明具有操作简单、体积小、待测液及双极电极可随时更换,驱动电极与检测池开放式连接的特点。
Description
技术领域
本发明属于一种双极电极电化学发光监测装置,具体是一种针对单个玻碳微球双极电极电化学发光的检测装置。
背景技术
电化学发光也称为电致化学发光。其原理为发光试剂在工作电极上通过电子转移由基态转变为高能激发态,激发态不稳定跃迁到基态时辐射出光子。从钌联吡啶的电化学发光现象被发现至今,电化学发光检测技术已成为一种强大的分析工具,被广泛的应用于各个领域,如药物分析、免疫检测、临床生化分析、法医鉴定和食品安全等。
双极电极作为一种导体一般被直接置于溶液的微管道中,当在微管道两端施加电压时,由于外加电场的作用,导体两端产生电势差,使其两端分别成为阴阳两极,极化电压的大小取决于电场强度和导体的尺寸。如果极化电压足够高,溶液中的电活性物质便可分别在阳极和阴极发生氧化和还原反应。近年来,由于其结构简单、加工方便、无需有线连接,已被广泛应用于电化学分析、电化学发光传感、材料科学等诸多方面。
自2001年首次将双极电极应用于芯片电泳-电化学发光检测后,双极电极与电化学发光技术的完美结合使其在分析应用中得到了快速发展。目前,双极电极电化学发光检测装置主要有微流控芯片(单晶硅片、玻璃芯片、石英芯片、高分子聚合物芯片等)、纸基芯片、两端插入电极直接施加电压的U型管,以及一些针对特殊双极电极利用特殊材料设计制造的装置等。这些装置大多加工过程复杂,对材料本身要求较高(如微流控芯片),价格高昂,且装置本身结构复杂,前期制作处理耗时较长,多数检测方法需要固定化,双极电极不易随时更换,大部分检测装置需要驱动电极与含双极电极的电解室一体化连接。
发明内容
本发明所要解决的技术问题在于提供一种结构简单、操作方便、易于更换的针对玻碳微球双极电极的电化学发光检测装置。
解决上述技术问题所采用的技术方案是:一种玻碳微球双极电极电化学发光检测装置,包括电化学发光信号检测器与数字化高压加压装置,电化学发光信号检测器的发光检测箱内设置有固定架,固定架上设置有U形管状检测池,U形管状检测池位于发光检测箱光窗的正上方,检测池为透光材料管,位于电化学发光信号检测器的发光检测箱一侧设置有第一缓冲池,另一侧设置有第二缓冲池,第一缓冲池与第二缓冲池结构相同,检测池一端通过第一毛细管与第一缓冲池相联通,另一端通过第二毛细管与第二缓冲池相联通,第一毛细管和第二毛细管的结构相同,数字化高压加压装置的正电极伸入到第一缓冲池中,负电极伸入到第二缓冲池中。
作为一种优选的技术方案,所述的检测池7的材质为玻璃或聚四氟乙烯。
作为一种优选的技术方案,所述的检测池7的管径为0.1~0.5mm、容积为30~100μL。
作为一种优选的技术方案,所述的第一毛细管3为弹性石英毛细管。
作为一种优选的技术方案,所述的第一毛细管3的内径为50~100μm。
本发明的有益效果如下:
本发明采用在电化学发光信号检测器内安装固定架,固定架上竖直固定有U形管状检测池,检测池通过第一毛细管和第二毛细管与第一缓冲池和第二缓冲池相联通,本发明的检测池体积小、且可调,双极电极无需固定化,易于随时更换,驱动电极与检测池的间接连接避免了驱动电极表面的电极反应对检测信号的影响,实现了对单个玻碳微球双极电极的电化学发光检测。
附图说明
图1是本发明的结构示意图。
图2是实施例1中钌联吡啶-三丙胺体系发光信号响应图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明不限于下述的实施方式。
实施例1
在图1中,本实施例的玻碳微球双极电极电化学发光检测装置由电化学发光信号检测器1、第一缓冲池2、第一毛细管3、第二毛细管4、第二缓冲池5、数字化高压加压装置6、检测池7、固定架8连接构成。
电化学发光信号检测器1的发光检测箱内安装有固定架8,固定架8上竖直固定有U形管状检测池7,U形管状检测池7位于发光检测箱光窗的正上方,检测池7的管径为0.3mm,材料为玻璃,容积为60μL,检测池7内放置有含玻碳微球双极电极的待测液,玻碳微球的直径为15μm,位于电化学发光信号检测器1的发光检测箱一侧安装有第一缓冲池2,另一侧安装有第二缓冲池5,第一缓冲池2与第二缓冲池5结构相同,第一缓冲池2与第二缓冲池5内放置有缓冲液,检测池7一端通过第一毛细管3与第一缓冲池2相联通,另一端通过第二毛细管4与第二缓冲池5相联通,第一毛细管3为弹性石英毛细管,内径为75μm,第二毛细管4与第一毛细管3结构相同,数字化高压加压装置6驱动电极的正电极伸入到第一缓冲池2中,负电极伸入到第二缓冲池5中,在第一毛细管3和第二毛细管7中注满缓冲溶液,利用毛细管的毛细效应联通驱动电极与检测池,避免了驱动电极上的氧化还原反应对检测池中玻碳微球双极电极电化学发光反应的影响,本实施例的电化学发光信号检测器1为西安瑞迈分析仪器有限公司销售的MPI-E型电致化学发光检测仪,数字化高压加压装置6为西安瑞迈分析仪器有限公司销售的数控毛细管电泳高压电源。
采用上述检测装置的微型双极电极电化学发光检测方法如下:
(1)将含有含10-4mol/L的钌联吡啶和10-4mol/L三丙胺混合溶液注入检测池7中,在显微镜下取出1个内径为15μm的玻碳微球放入检测池7中作为双极电极;
(2)在第一缓冲池2与第二缓冲池5及第一毛细管3与第二毛细管4中注入缓冲溶液,使第一缓冲池2与第二缓冲池5与检测池7导通,缓冲溶液是PH=7.4,浓度为0.01mol/L的磷酸钠;
(3)通过数字化高压加压装置6每隔60s施加5000V时长为5s的脉冲电压,钌联吡啶-三丙胺电化学发光体系在玻碳微球双极电极两端发生氧化—还原反应,产生电化学发光信号,利用电化学发光信号检测器1进行检测,结果如图2。
实施例2
在本实施例中,检测池7的管径为0.1mm,容积为30μL,材料为透光聚四氟乙烯,检测池7内放置有含玻碳微球双极电极的待测液,玻碳微球的直径为10μm,位于电化学发光信号检测器1的发光检测箱一侧安装有第一缓冲池2,另一侧安装有第二缓冲池5,第一缓冲池2与第二缓冲池5结构相同,第一缓冲池2与第二缓冲池5内放置有缓冲液,检测池7一端通过第一毛细管3与第一缓冲池2相联通,另一端通过第二毛细管4与第二缓冲池5相联通,第一毛细管3为弹性石英毛细管,内径为50μm,第二毛细管4与第一毛细管3结构相同。其他零部件及零部件的连接关系与实施例1相同。
实施例3
在本实施例中,检测池7的管径为0.5mm,容积为100μL,材料为透光聚四氟乙烯,检测池7内放置有含玻碳微球双极电极的待测液,玻碳微球的直径为20μm,位于电化学发光信号检测器1的发光检测箱一侧安装有第一缓冲池2,另一侧安装有第二缓冲池5,第一缓冲池2与第二缓冲池5结构相同,第一缓冲池2与第二缓冲池5内放置有缓冲液,检测池7一端通过第一毛细管3与第一缓冲池2相联通,另一端通过第二毛细管4与第二缓冲池5相联通,第一毛细管3为弹性石英毛细管,内径为100μm,第二毛细管4与第一毛细管3的结构相同。其他零部件及零部件的连接关系与实施例1相同。
Claims (6)
1.一种玻碳微球双极电极电化学发光检测装置,包括电化学发光信号检测器(1)与数字化高压加压装置(6),其特征在于:电化学发光信号检测器(1)的发光检测箱内设置有固定架(8),固定架(8)上设置有U形管状检测池(7),U形管状检测池(7)位于发光检测箱光窗的正上方,检测池(7)为透光材料管,检测池(7)内放置有玻碳微球,位于电化学发光信号检测器的发光检测箱一侧设置有第一缓冲池(2),另一侧设置有第二缓冲池(5),第一缓冲池(2)与第二缓冲池(5)结构相同,检测池(7)一端通过第一毛细管(3)与第一缓冲池(2)相联通,另一端通过第二毛细管(4)与第二缓冲池(5)相联通,第一毛细管(3)和第二毛细管(4)的结构相同,数字化高压加压装置(6)驱动电极的正电极伸入到第一缓冲池(2)中,负电极伸入到第二缓冲池(5)中。
2.根据权利要求1所述的玻碳微球双极电极电化学发光检测装置,其特征在于:所述的检测池(7)的材质为玻璃或聚四氟乙烯。
3.根据权利要求1或2所述的微型双极电极电化学发光检测装置,其特征在于:所述的检测池(7)的管径为0.1~0.5mm、容积为30~100μL。
4.根据权利要求1所述的玻碳微球双极电极电化学发光检测装置,其特征在于:所述的第一毛细管(3)为弹性石英毛细管。
5.根据权利要求1或4所述的玻碳微球双极电极电化学发光检测装置,其特征在于:所述的第一毛细管(3)的内径为50~100μm。
6.根据权利要求1所述的玻碳微球双极电极电化学发光检测装置,其特征在于:所述的玻碳微球的直径为10~20μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710906572.XA CN107727718A (zh) | 2017-09-29 | 2017-09-29 | 玻碳微球双极电极电化学发光检测装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710906572.XA CN107727718A (zh) | 2017-09-29 | 2017-09-29 | 玻碳微球双极电极电化学发光检测装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107727718A true CN107727718A (zh) | 2018-02-23 |
Family
ID=61209124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710906572.XA Pending CN107727718A (zh) | 2017-09-29 | 2017-09-29 | 玻碳微球双极电极电化学发光检测装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107727718A (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050019802A1 (en) * | 2003-06-13 | 2005-01-27 | Dar Bahatt | Electrochemiluminescence electrode |
WO2005010521A1 (en) * | 2003-07-22 | 2005-02-03 | The Texas A & M University System | Photonic signal reporting of electrochemical events |
CN103808711A (zh) * | 2014-02-28 | 2014-05-21 | 陕西师范大学 | 隔离式双极电极电化学发光装置 |
CN104132978A (zh) * | 2014-07-24 | 2014-11-05 | 南京大学 | 一种基于双极电极的光催化产生电化学发光的装置 |
-
2017
- 2017-09-29 CN CN201710906572.XA patent/CN107727718A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050019802A1 (en) * | 2003-06-13 | 2005-01-27 | Dar Bahatt | Electrochemiluminescence electrode |
WO2005010521A1 (en) * | 2003-07-22 | 2005-02-03 | The Texas A & M University System | Photonic signal reporting of electrochemical events |
CN103808711A (zh) * | 2014-02-28 | 2014-05-21 | 陕西师范大学 | 隔离式双极电极电化学发光装置 |
CN104132978A (zh) * | 2014-07-24 | 2014-11-05 | 南京大学 | 一种基于双极电极的光催化产生电化学发光的装置 |
Non-Patent Citations (3)
Title |
---|
HONG DAI等: "Fabrication of a new electrochemiluminescent sensor for fentanyl citrate based on glassy carbon microspheres and ionic liquid composite paste electrode", 《ANALYTICA CHIMICA ACTA》 * |
I.B.SVIR等: "OPTIMISATION OF SIMULATION OF DIFFUSIONAL TRANSPORT TO MICROSPHERE ELECTRODE AND ITS APPLICATION TO EEECTROGENERATED CHEMILUMINESCENCE", 《PROCEEDINGS OF LFNM"2000: 2ND INTERNATIONAL WORKSHOP ON LASER AND FIBER-OPTICAL NETWORKS MODELING》 * |
MILICA SENTIC等: "Light-Emitting Electrochemical "Swimmers"", 《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiu et al. | Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector | |
Mai et al. | Portable capillary electrophoresis instrument with automated injector and contactless conductivity detection | |
Liu et al. | Direct electrochemiluminescence imaging of a single cell on a chitosan film modified electrode | |
Li et al. | Molecularly imprinted electrochemical luminescence sensor based on signal amplification for selective determination of trace gibberellin A3 | |
Yin et al. | Capillary electrophoresis coupling with electrochemiluminescence detection: a review | |
Chow et al. | Wireless electrochemical DNA microarray sensor | |
Wallenborg et al. | End-column amperometric detection in capillary electrophoresis: influence of separation-related parameters on the observed half-wave potential for dopamine and catechol | |
Cox et al. | Steady-state voltammetry of a microelectrode in a closed bipolar cell | |
Liu et al. | Miniaturized Tris (2, 2 ‘-bipyridyl) ruthenium (II) Electrochemiluminescence Detection Cell for Capillary Electrophoresis and Flow Injection Analysis | |
Jin et al. | Simultaneous determination of tryptophan and glutathione in individual rat hepatocytes by capillary zone electrophoresis with electrochemical detection at a carbon fiber bundle− Au/Hg dual electrode | |
Guo et al. | Capillary electrophoresis with electrochemiluminescence detection: fundamental theory, apparatus, and applications | |
CN112697778B (zh) | 一种利用电致化学发光方法读出电位变化检测的方法及其装置 | |
Ryvolova et al. | Combined contactless conductometric, photometric, and fluorimetric single point detector for capillary separation methods | |
CY1115380T1 (el) | Μεθοδος και διαταξη για την ενισχυση της ηλεκτροπαραγομενης χημιφωταυγειας νανοσωματιδιων | |
CN106645334A (zh) | 一种基于双极电极阵列的可视化电化学发光传感器检测葡萄糖的方法 | |
Kang et al. | In-channel electrochemical detection in the middle of microchannel under high electric field | |
Yin et al. | Capillary electrophoresis coupled with electrochemiluminescence detection using porous etched joint | |
Liu et al. | Carbon film-based interdigitated array microelectrode used in capillary electrophoresis with electrochemical detection | |
Li et al. | In-channel indirect amperometric detection of heavy metal ions for electrophoresis on a poly (dimethylsiloxane) microchip | |
Li et al. | Applications of tris (2, 2′‐bipyridyl) ruthenium (II) in electrochemiluminescence | |
Zhang et al. | based electrochemiluminescence bipolar conductivity sensing mechanism: A critical supplement for the bipolar system | |
Liu et al. | Ultrasensitive chemiluminescence detection of sub-fM level Co (II) in capillary electrophoresis | |
Zhang et al. | Portable, universal, and visual ion sensing platform based on the light emitting diode-based self-referencing-ion selective field-effect transistor | |
CN106399338A (zh) | 一种检测活细胞细胞膜表面张力变化的生物探针 | |
Wang et al. | Determination of glutathione in single human hepatocarcinoma cells by capillary electrophoresis with electrochemical detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20180223 |